Package 'rxode2ll'

December 15, 2024

Version 2.0.13

Title Log-Likelihood Functions for 'rxode2'

Maintainer Matthew L. Fidler <matthew.fidler@gmail.com>

Depends R (>= 4.0.0)

Suggests covr, testthat (>= 3.0.0)

Imports Rcpp (>= 1.0.8), checkmate, RcppParallel

Description Provides the log-likelihoods with gradients from 'stan' (Carpenter et al (2015), <doi:10.48550/arXiv.1509.07164>) needed for generalized log-likelihood estimation in 'nlmixr2' (Fidler et al (2019) <doi:10.1002/psp4.12445>). This is split of to reduce computational burden of recompiling 'rxode2' (Wang, Hallow and James (2016) <doi:10.1002/psp4.12052>) which runs the 'nlmixr2' models during estimation.

BugReports https://github.com/nlmixr2/rxode2ll/issues/

NeedsCompilation yes

License GPL (>= 3)

URL https://nlmixr2.github.io/rxode211/,

https://github.com/nlmixr2/rxode211/

RoxygenNote 7.2.3

Biarch true

LinkingTo Rcpp (>= 1.0.8), RcppEigen (>= 0.3.3.9.2), StanHeaders (>= 2.21.0.7), BH (>= 1.78.0.0), RcppParallel

Encoding UTF-8

Language en-US

Config/testthat/edition 3

Author Matthew L. Fidler [aut, cre] (<https://orcid.org/0000-0001-8538-6691>)

Repository CRAN

Date/Publication 2024-12-15 03:40:02 UTC

Contents

lli	kBeta										•								•		 •									•		•		2
lli	kBinom																				 													3
lli	kCauchy																				 													4
lli	kChisq	 •																			 													4
lli	kExp	 •								•		•		•							 •				•				•					5
lli	kF	 •								•		•	•	•	•	•	•				 				•				•			•		6
lli	kGamma .	 •								•		•	•	•	•	•	•				 				•				•			•		7
lli	kGeom	 •								•		•	•	•	•	•	•				 				•				•			•		7
lli	kNbinom .	 •								•		•	•	•	•	•	•				 				•				•			•		8
lli	kNbinomMu	•								•		•	•	•	•	•	•				 				•				•			•		9
lli	kNorm																				 •													10
lli	kPois											•		•							 •													10
lli	kT											•		•							 •													11
lli	kUnif											•		•							 •													12
lli	kWeibull .	 •	•	•	•	 •	•	•	•	•	•	•	•	•	•	•	•	•	•	• •	 •		•	•	•	•	•	•	•	•	•	•	•	13
																																		14

Index

llikBeta

Calculate the log likelihood of the binomial function (and its derivatives)

Description

Calculate the log likelihood of the binomial function (and its derivatives)

Usage

llikBeta(x, shape1, shape2, full = FALSE)

Arguments

Х	Observation
shape1, shape2	non-negative parameters of the Beta distribution.
full	Add the data frame showing x, mean, sd as well as the fx and derivatives

Value

data frame with fx for the log pdf value of with dShape1 and dShape2 that has the derivatives with respect to the parameters at the observation time-point

Author(s)

llikBinom

Examples

x <- seq(1e-4, 1 - 1e-4, length.out = 21)
llikBeta(x, 0.5, 0.5)
llikBeta(x, 1, 3, TRUE)</pre>

llikBinom	Calculate the log likelihood of the binomial function (and its deriva-
	tives)

Description

Calculate the log likelihood of the binomial function (and its derivatives)

Usage

llikBinom(x, size, prob, full = FALSE)

Arguments

х	Number of successes
size	Size of trial
prob	probability of success
full	Add the data frame showing x, mean, sd as well as the fx and derivatives

Value

data frame with fx for the pdf value of with dProb that has the derivatives with respect to the parameters at the observation time-point

Author(s)

Matthew L. Fidler

Examples

llikBinom(46:54, 100, 0.5)

llikBinom(46:54, 100, 0.5, TRUE)

llikCauchy

Description

log likelihood of Cauchy distribution and it's derivatives (from stan)

Usage

llikCauchy(x, location = 0, scale = 1, full = FALSE)

Arguments

Х	Observation
location, scale	location and scale parameters.
full	Add the data frame showing x, mean, sd as well as the fx and derivatives

Value

data frame with fx for the log pdf value of with dLocation and dScale that has the derivatives with respect to the parameters at the observation time-point

Author(s)

Matthew L. Fidler

Examples

x <- seq(-3, 3, length.out = 21)
llikCauchy(x, 0, 1)
llikCauchy(x, 3, 1, full=TRUE)</pre>

llikChisq

Description

log likelihood and derivatives for chi-squared distribution

Usage

llikChisq(x, df, full = FALSE)

llikExp

Arguments

х	variable that is distributed by chi-squared distribution
df	degrees of freedom (non-negative, but can be non-integer).
full	Add the data frame showing x, mean, sd as well as the fx and derivatives

Value

data frame with fx for the log pdf value of with dDf that has the derivatives with respect to the df parameter the observation time-point

Author(s)

Matthew L. Fidler

Examples

llikChisq(1, df = 1:3, full=TRUE)

llikChisq(1, df = 6:9)

llikExp	log likelihood and derivatives for exponential distribution
---------	---

Description

log likelihood and derivatives for exponential distribution

Usage

llikExp(x, rate, full = FALSE)

Arguments

х	variable that is distributed by exponential distribution
rate	vector of rates.
full	Add the data frame showing x, mean, sd as well as the fx and derivatives

Value

data frame with fx for the log pdf value of with dRate that has the derivatives with respect to the rate parameter the observation time-point

Author(s)

Examples

```
llikExp(1, 1:3)
llikExp(1, 1:3, full=TRUE)
```

llikF

log likelihood and derivatives for F distribution

Description

log likelihood and derivatives for F distribution

Usage

llikF(x, df1, df2, full = FALSE)

Arguments

х	variable that is distributed by f distribution
df1, df2	degrees of freedom. Inf is allowed.
full	Add the data frame showing x, mean, sd as well as the fx and derivatives

Value

data frame with fx for the log pdf value of with dDf1 and dDf2 that has the derivatives with respect to the df1/df2 parameters at the observation time-point

Author(s)

Matthew L. Fidler

Examples

x <- seq(0.001, 5, length.out = 100) llikF(x^2, 1, 5) llikGamma

Description

log likelihood and derivatives for Gamma distribution

Usage

llikGamma(x, shape, rate, full = FALSE)

Arguments

х	variable that is distributed by gamma distribution
shape	this is the distribution's shape parameter. Must be positive.
rate	this is the distribution's rate parameters. Must be positive.
full	Add the data frame showing x, mean, sd as well as the fx and derivatives

Value

data frame with fx for the log pdf value of with dProb that has the derivatives with respect to the prob parameters at the observation time-point

Author(s)

Matthew L. Fidler

Examples

llikGamma(1, 1, 10)

llikGeom

log likelihood and derivatives for Geom distribution

Description

log likelihood and derivatives for Geom distribution

Usage

llikGeom(x, prob, full = FALSE)

Arguments

х	variable distributed by a geom distribution
prob	probability of success in each trial. $0 < \text{prob} \le 1$.
full	Add the data frame showing x, mean, sd as well as the fx and derivatives

Value

data frame with fx for the log pdf value of with dProb that has the derivatives with respect to the prob parameters at the observation time-point

Author(s)

Matthew L. Fidler

Examples

llikGeom(1:10, 0.2)

llikNbinom	Calculate the log likelihood of the negative binomial function (and its
	derivatives)

Description

Calculate the log likelihood of the negative binomial function (and its derivatives)

Usage

llikNbinom(x, size, prob, full = FALSE)

Arguments

Х	Number of successes
size	Size of trial
prob	probability of success
full	Add the data frame showing x, mean, sd as well as the fx and derivatives

Value

data frame with fx for the pdf value of with dProb that has the derivatives with respect to the parameters at the observation time-point

Author(s)

llikNbinomMu

Examples

llikNbinom(46:54, 100, 0.5)

llikNbinom(46:54, 100, 0.5, TRUE)

llikNbinomMu	Calculate the log likelihood of the negative binomial function (and its
	derivatives)

Description

Calculate the log likelihood of the negative binomial function (and its derivatives)

Usage

llikNbinomMu(x, size, mu, full = FALSE)

Arguments

х	Number of successes
size	Size of trial
mu	mu parameter for negative binomial
full	Add the data frame showing x, mean, sd as well as the fx and derivatives

Value

data frame with fx for the pdf value of with dProb that has the derivatives with respect to the parameters at the observation time-point

Author(s)

Matthew L. Fidler

Examples

llikNbinomMu(46:54, 100, 40)

llikNbinomMu(46:54, 100, 40, TRUE)

llikNorm

Description

Log likelihood for normal distribution

Usage

llikNorm(x, mean = 0, sd = 1, full = FALSE)

Arguments

х	Observation
mean	Mean for the likelihood
sd	Standard deviation for the likelihood
full	Add the data frame showing x, mean, sd as well as the fx and derivatives

Value

data frame with fx for the pdf value of with dMean and dSd that has the derivatives with respect to the parameters at the observation time-point

Author(s)

Matthew L. Fidler

Examples

llikNorm(0)

llikNorm(seq(-2,2,length.out=10), full=TRUE)

llikPois

log-likelihood for the Poisson distribution

Description

log-likelihood for the Poisson distribution

Usage

llikPois(x, lambda, full = FALSE)

llikT

Arguments

Х	non negative integers
lambda	non-negative means
full	Add the data frame showing x, mean, sd as well as the fx and derivatives

Value

data frame with fx for the pdf value of with dLambda that has the derivatives with respect to the parameters at the observation time-point

Author(s)

Matthew L. Fidler

llikT

Log likelihood of T and it's derivatives (from stan)

Description

Log likelihood of T and it's derivatives (from stan)

Usage

llikT(x, df, mean = 0, sd = 1, full = FALSE)

Arguments

x	Observation
df	degrees of freedom (> 0, maybe non-integer). df = Inf is allowed.
mean	Mean for the likelihood
sd	Standard deviation for the likelihood
full	Add the data frame showing x, mean, sd as well as the fx and derivatives

Value

data frame with fx for the log pdf value of with dDf dMean and dSd that has the derivatives with respect to the parameters at the observation time-point

Author(s)

Examples

x <- seq(-3, 3, length.out = 21)
llikT(x, 7, 0, 1)
llikT(x, 15, 0, 1, full=TRUE)</pre>

llikUnif

log likelihood and derivatives for Unif distribution

Description

log likelihood and derivatives for Unif distribution

Usage

llikUnif(x, alpha, beta, full = FALSE)

Arguments

х	variable distributed by a uniform distribution
alpha	is the lower limit of the uniform distribution
beta	is the upper limit of the distribution
full	Add the data frame showing x, mean, sd as well as the fx and derivatives

Value

data frame with fx for the log pdf value of with dProb that has the derivatives with respect to the prob parameters at the observation time-point

Author(s)

Matthew L. Fidler

Examples

llikUnif(1, -2, 2)

12

llikWeibull

Description

log likelihood and derivatives for Weibull distribution

Usage

llikWeibull(x, shape, scale, full = FALSE)

Arguments

Х	variable distributed by a Weibull distribution
shape, scale	shape and scale parameters, the latter defaulting to 1.
full	Add the data frame showing x, mean, sd as well as the fx and derivatives

Value

data frame with fx for the log pdf value of with dProb that has the derivatives with respect to the prob parameters at the observation time-point

Author(s)

Matthew L. Fidler

Examples

llikWeibull(1, 1, 10)

Index

llikBeta, 2
llikBinom, 3
llikCauchy, 4
llikChisq, 4
llikExp, 5
llikF, 6
llikGamma, 7
llikGeom, 7
llikNbinomMu, 9
llikNorm, 10
llikPois, 10
llikT, 11
llikUnif, 12
llikWeibull, 13