rtkore: R and STK++ Integration using Repp

Serge lovleff
May 2, 2025

Abstract

This vignette gives some hints about the usage of the rtkore (successor of the rtkpp) package. It explains
shortly how to wrap R vectors and matrices into STK++ structures. It gives also an example of Makevars for
linking an R package with rtkore. More informations can be found in the other vignettes coming with the
package about the functionnalities furnished by the STK++ library.

1 Introduction

STK++ is a versatile, fast, reliable and elegant collection of C++ classes for statistics, clustering, linear algebra
(using native methods or Lapack[I]), arrays (with an Eigen-like API [2]), regression, dimension reduction, etc.
Some functionalities provided by the library are available in the R environment as R functions or distributed as
R packages (MixAll [0], blockcluster [7] and HDPenReg [5] among others).

The rtkore package provides a subset of the STK++ library and is only composed of templated classes and
inlined functions. This package furnishes implementations of Rcpp::as and Rcpp: :wrap for the C++ classes
defined in STK++. In this sense it is similar to the RcppEigen [3) 2] and ReppArmadillo [4] packages.

The current version of the stk++ library is given below

> .Call("stk_version", FALSE, PACKAGE="rtkore")

major minor patch
0 9 21

2 Wrapping R data with STK++ arrays

rtkore proposes two objects in order to facilitate data transfer

typename RVector<Type>;
typename RMatrix<Type>;

Repp facilitates conversion of objects from R to C++ through the templated functions Rcpp: :as. The function
Rcpp: :as is re-implemented in STK++ but it is not strictly necessary to use it. You can rather use this kind of
code

SEXP myFunction (SEXP data)
{
// wrap a R SEXP struct with a STK++ RMatrix
STK::RMatrix<double> mat (data); // if data is not a matrix, an exception is thrown
// wrap a Rcpp matrix in a STK++ RMatrix
Rcpp::NumericMatrix rmat (100,20);
STK::RMatrix<double> mat (rmat) ;
// Comnstructor with given dimension
RMatrix<double> myData (100, 20);
}

The template class STK: :RMatrix wraps a Rcpp matrix which itself wrap the R SEXP structure. You can access
directly (and eventually modify) the R data in your application like an usual STK++ array.
The second template class you can use is STK: :RVector which allows to wrap SEXP struct.

3 Converting STK++ arrays and expressions to R data

Rcpp facilitates data conversion from C++ to R through Rcpp: :wrap. This function is extended by rtkore for
STK++ arrays and vectors.
The following example is taken from the STK: :ClusterLauncher class (in MixAll package)

Array2D<Real> mean(K, nbVariable), sigma(K, nbVariable);
// get estimated parameters

/] .

// and save them
NumericVector m_mean
NumericVector m_sigma

Rcpp::wrap (mean);
Rcpp::wrap(sigma);

Note that the Rcpp: :wrap is rather limited in its usage and if you need, for example, to convert expression
rather than arrays then you can use the STK: :wrap function (see example below).

4 Using rtkore random number generators

All the random numbers of R are interfaced in rtkore. You can used them as STK++ random number generators
like in the following example

RcppExport SEXP fastBetaRand(SEXP n, SEXP alpha, SEXP beta)

BEGIN_RCPP;

// create a STK++ RVector

STK::RVector <double> tab(Rcpp::as<int>(n));

// Create a Beta distribution function with alpha and beta as parameters
STK::Law::Beta law(Rcpp::as<double>(alpha), Rcpp::as<double>(beta));

// £ill tab with random numbers

tab.rand(law) ;

// return the wrapped Rcpp vector

return tab.vector();

END_RCPP;

5 Linking with rtkore

At the R level, you have to add the LinkingTo: rtkore,Rcpp line in the DESCRIPTION file.
At the C+-+ level, the only thing to do is to include the header file

// Rcpp.h will be include by rtkore
#include <RTKpp.h>

in the C++ code.

When compiling the sources, you indicate the location of the stk++ library using rtkore: ::CxxFlags(),
rtkore:: :CppFlags () and rtkore:::LdFlags() in the src/Makevars file.

A minimal Makevars would look like

PKG_CXXFLAGS
PKG_CPPFLAGS
PKG_LIBS

“${R_HOME}/bin/Rscript -e "rtkore:::CxxFlags(O""
“${R_HOME}/bin/Rscript -e "rtkore:::CppFlags()"" $(SHLIB_OPENMP_CXXFLAGS)
“$(R_HOME) /bin/Rscript -e "rtkore:::LdFlags()"™ \

$ (SHLIB_OPENMP_CFLAGS) $(LAPACK_LIBS) $(BLAS_LIBS) $(FLIBS)

6 Building huge package using rtkore

If you are building a package with a lot of cpp files, you may find convenient to locate your sources in a separate
directory. Hereafter we give an example of a Makevars you can modify at your convenience in order to handle
this situation.

B
Purpose: Makevars for the R packages using rtkore (stk++)

B o o o
PKGNAME = NAME_OF_YOUR_SRC # for example MyPackage

PKGDIR = PATH_TO_YOUR_SRC # for example ./MyPackage
PKGLIBDIR = $(PKGDIR)/lib # ./MyPackage/lib
PKGLIB = $(PKGLIBDIR)/1ib$(PKGNAME) .a # ./MyPackage/lib/libMyPackage.a

Use the R_HOME indirection to support installations of multiple R version.
PKG_CXXFLAGS = “${R_HOME}/bin/Rscript -e "rtkore:::CxxFlags()""
PKG_CPPFLAGS = "~${R_HOME}/bin/Rscript -e "rtkore:::CppFlags()"™ \

$ (SHLIB_OPENMP_CXXFLAGS)

We link the source in the src/ directory with the stkpp library and libMyPackage.a
use $(SHLIB_OPENMP_CFLAGS) as stkpp use openMP
use $(LAPACK_LIBS) $(BLAS_LIBS) $(FLIBS) if you want to use lapack and/or stk++
wrappers of lapack
PKG_LIBS = “$(R_HOME) /bin/Rscript -e "rtkore:::LdFlags()"~ $(PKGLIB) \
$ (SHLIB_OPENMP_CFLAGS) \
$(LAPACK_LIBS) $(BLAS_LIBS) $(FLIBS)

Define any flags you may need for compiling your sources and export them
MY_CXXFLAGS = $(PKG_CXXFLAGS)
MY_CPPFLAGS = $(PKG_CPPFLAGS)

export
.PHONY: all pkglib

$(SHLIB) is the usual default target that is built automatically from all source
files in this directory. pkglib is an additional target for the package

that will be found in $(PKGDIR).

all: $(SHLIB)

$(SHLIB): pkglib

build the PKGLIB (1ib$(PKGNAME).a)
pkglib:

(cd $(PKGDIR) && $(MAKE) all)

(cd $(PKGDIR) && $(MAKE) clean)

7 An example

The package countMissings is basically composed of one R-script file (countNA.R) and one C++ file (countNA.cpp).
Given a R matrix, you get a list composed of two vectors constaining respectively the number of missing
values in each rows and each columns of the R matrix.
The R-script countNA.R is essentially

countNA <- function(data)

{
if ('is.matrix(data)) { stop()}
.Call(, data, PACKAGE =)

}

and the C++ files is

#include
RcppExport SEXP countNA(SEXP r_matrix)
{

BEGIN_RCPP

STK::RMatrix<double> m_data(r_matrix);

// use STK::wrap function (Rcpp::wrap function will not work)

return Rcpp::List::create(Rcpp::Named()= STK::wrap (STK::countByRow(m_data.isNA()))
, Rcpp::Named ()= STK::wrap (STK::count(m_data.isNA()))
)

END_RCPP

References

[1] E. Anderson, Z. Bai, C. Bischof, S. Blackford, J. Demmel, J. Dongarra, J. Du Croz, A. Greenbaum, S. Ham-
marling, A. McKenney, and D. Sorensen. LAPACK Users’ Guide. Society for Industrial and Applied
Mathematics, Philadelphia, PA, third edition, 1999.

[2] Douglas Bates and Dirk Eddelbuettel. Fast and elegant numerical linear algebra using the RcppEigen
package. Journal of Statistical Software, 52(5):1-24, 2013.

[3] Douglas Bates, Romain Francois, and Dirk Eddelbuettel. ReppEigen: Repp integration for the Eigen tem-
plated linear algebra library, 2014. R package version 0.3.2.0.2.

[4] Romain Frangois, Dirk Eddelbuettel, and Douglas Bates. RcppArmadillo: Repp integration for Armadillo
templated linear algebra library, 2014. R package version 0.4.000.2.

[5] Quentin Grimonprez. HDPenReg: High-Dimensional Penalized Regression, 2015. R package version 0.91.
[6] Serge Iovleff. Clustering With MizAll, 2015. R package version 1.0.2.

[7] Parmeet Singh Bhatia, Serge Iovleff, and Gérard Govaert. blockcluster: An R package for model-based
co-clustering. Journal of Statistical Software, 76(9):1-24, 2017.

	Introduction
	Wrapping R data with STK++ arrays
	Converting STK++ arrays and expressions to R data
	Using rtkore random number generators
	Linking with rtkore
	Building huge package using rtkore
	An example

