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Abstract

This vignette gives some hints about the usage of the rtkore (successor of the rtkpp) package. It explains
shortly how to wrap R vectors and matrices into STK++ structures. It gives also an example of Makevars for
linking an R package with rtkore. More informations can be found in the other vignettes coming with the
package about the functionnalities furnished by the STK++ library.

1 Introduction

STK++ is a versatile, fast, reliable and elegant collection of C++ classes for statistics, clustering, linear algebra
(using native methods or Lapack[I]), arrays (with an Eigen-like API [2]), regression, dimension reduction, etc.
Some functionalities provided by the library are available in the R environment as R functions or distributed as
R packages (MixAll [0], blockcluster [7] and HDPenReg [5] among others).

The rtkore package provides a subset of the STK++ library and is only composed of templated classes and
inlined functions. This package furnishes implementations of Rcpp::as and Rcpp: :wrap for the C++ classes
defined in STK++. In this sense it is similar to the RcppEigen [3) 2] and ReppArmadillo [4] packages.

The current version of the stk++ library is given below

> .Call("stk_version", FALSE, PACKAGE="rtkore")

major minor patch
0 9 21

2 Wrapping R data with STK++ arrays

rtkore proposes two objects in order to facilitate data transfer

typename RVector<Type>;
typename RMatrix<Type>;

Repp facilitates conversion of objects from R to C++ through the templated functions Rcpp: :as. The function
Rcpp: :as is re-implemented in STK++ but it is not strictly necessary to use it. You can rather use this kind of
code

SEXP myFunction (SEXP data)
{
// wrap a R SEXP struct with a STK++ RMatrix
STK::RMatrix<double> mat (data); // if data is not a matrix, an exception is thrown
// wrap a Rcpp matrix in a STK++ RMatrix
Rcpp::NumericMatrix rmat (100,20);
STK::RMatrix<double> mat (rmat) ;
// Comnstructor with given dimension
RMatrix<double> myData (100, 20);
}

The template class STK: :RMatrix wraps a Rcpp matrix which itself wrap the R SEXP structure. You can access
directly (and eventually modify) the R data in your application like an usual STK++ array.
The second template class you can use is STK: :RVector which allows to wrap SEXP struct.



3 Converting STK++ arrays and expressions to R data

Rcpp facilitates data conversion from C++ to R through Rcpp: :wrap. This function is extended by rtkore for
STK++ arrays and vectors.
The following example is taken from the STK: :ClusterLauncher class (in MixAll package)

Array2D<Real> mean(K, nbVariable), sigma(K, nbVariable);
// get estimated parameters

/] .

// and save them
NumericVector m_mean
NumericVector m_sigma

Rcpp::wrap (mean);
Rcpp::wrap(sigma);

Note that the Rcpp: :wrap is rather limited in its usage and if you need, for example, to convert expression
rather than arrays then you can use the STK: :wrap function (see example below).

4 Using rtkore random number generators

All the random numbers of R are interfaced in rtkore. You can used them as STK++ random number generators
like in the following example

RcppExport SEXP fastBetaRand( SEXP n, SEXP alpha, SEXP beta)

BEGIN_RCPP;

// create a STK++ RVector

STK::RVector <double> tab(Rcpp::as<int>(n));

// Create a Beta distribution function with alpha and beta as parameters
STK::Law::Beta law(Rcpp::as<double>(alpha), Rcpp::as<double>(beta));

// £ill tab with random numbers

tab.rand(law) ;

// return the wrapped Rcpp vector

return tab.vector();

END_RCPP;

5 Linking with rtkore

At the R level, you have to add the LinkingTo: rtkore,Rcpp line in the DESCRIPTION file.
At the C+-+ level, the only thing to do is to include the header file

// Rcpp.h will be include by rtkore
#include <RTKpp.h>

in the C++ code.

When compiling the sources, you indicate the location of the stk++ library using rtkore: ::CxxFlags(),
rtkore:: :CppFlags () and rtkore:::LdFlags() in the src/Makevars file.

A minimal Makevars would look like

PKG_CXXFLAGS
PKG_CPPFLAGS
PKG_LIBS

“${R_HOME}/bin/Rscript -e "rtkore:::CxxFlags(O""
“${R_HOME}/bin/Rscript -e "rtkore:::CppFlags()"" $(SHLIB_OPENMP_CXXFLAGS)
“$(R_HOME) /bin/Rscript -e "rtkore:::LdFlags()"™ \

$ (SHLIB_OPENMP_CFLAGS) $(LAPACK_LIBS) $(BLAS_LIBS) $(FLIBS)

6 Building huge package using rtkore

If you are building a package with a lot of cpp files, you may find convenient to locate your sources in a separate
directory. Hereafter we give an example of a Makevars you can modify at your convenience in order to handle
this situation.

B
# Purpose: Makevars for the R packages using rtkore (stk++)

B o o o
PKGNAME = NAME_OF_YOUR_SRC # for example MyPackage



PKGDIR = PATH_TO_YOUR_SRC # for example ./MyPackage
PKGLIBDIR = $(PKGDIR)/lib # ./MyPackage/lib
PKGLIB = $(PKGLIBDIR)/1ib$(PKGNAME) .a # ./MyPackage/lib/libMyPackage.a

## Use the R_HOME indirection to support installations of multiple R version.
PKG_CXXFLAGS = “${R_HOME}/bin/Rscript -e "rtkore:::CxxFlags()""
PKG_CPPFLAGS = "~${R_HOME}/bin/Rscript -e "rtkore:::CppFlags()"™ \

$ (SHLIB_OPENMP_CXXFLAGS)

## We link the source in the src/ directory with the stkpp library and libMyPackage.a
## use $(SHLIB_OPENMP_CFLAGS) as stkpp use openMP
## use $(LAPACK_LIBS) $(BLAS_LIBS) $(FLIBS) if you want to use lapack and/or stk++
## wrappers of lapack
PKG_LIBS = “$(R_HOME) /bin/Rscript -e "rtkore:::LdFlags()"~ $(PKGLIB) \
$ (SHLIB_OPENMP_CFLAGS) \
$(LAPACK_LIBS) $(BLAS_LIBS) $(FLIBS)

## Define any flags you may need for compiling your sources and export them
MY_CXXFLAGS = $(PKG_CXXFLAGS)
MY_CPPFLAGS = $(PKG_CPPFLAGS)

export
.PHONY: all pkglib

## $(SHLIB) is the usual default target that is built automatically from all source
## files in this directory. pkglib is an additional target for the package

## that will be found in $(PKGDIR).

all: $(SHLIB)

$(SHLIB): pkglib

## build the PKGLIB (1ib$(PKGNAME).a)
pkglib:

(cd $(PKGDIR) && $(MAKE) all)

(cd $(PKGDIR) && $(MAKE) clean)

7 An example

The package countMissings is basically composed of one R-script file (countNA.R) and one C++ file (countNA.cpp).
Given a R matrix, you get a list composed of two vectors constaining respectively the number of missing
values in each rows and each columns of the R matrix.
The R-script countNA.R is essentially

countNA <- function(data)

{
if ('is.matrix(data)) { stop( )}
.Call( , data, PACKAGE = )

}

and the C++ files is

#include
RcppExport SEXP countNA( SEXP r_matrix)
{

BEGIN_RCPP

STK::RMatrix<double> m_data(r_matrix);

// use STK::wrap function (Rcpp::wrap function will not work)

return Rcpp::List::create( Rcpp::Named( )= STK::wrap (STK::countByRow(m_data.isNA()))
, Rcpp::Named ( )= STK::wrap (STK::count(m_data.isNA()))
)

END_RCPP
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