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Abstract

This vignette provides a simple guide to flexible parametric models provided by rstpm2.
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1. Introduction

The rstpm2 package supports flexible parametric survival models to model time-to-event data.
These models are fully parametric for the survival function. These models are particularly
useful for:

• Estimating predictions for hazards, hazard differences, hazard ratios, survival, survival
differences and survival ratios, restricted mean survival

• Estimating marginal predictions, including standardised survival and standardised sur-
vival differences

• Modelling time-varying effects, including time-varying hazards ratios.

This guide is intended to provide an accessible guide to some of the models and predictions
provided by flexible parametric survival models. This guide can then be followed by the other
vignette, which provides a more complete mathematical presentation.

For this guide, we describe the most common flexible parametric survival model, which is
a proportional hazards model. Let the survival function S(t|x) = Pr(T > t|x) for random
variable T at time t and covariates x = (xj) be modelled by

S(t|x) = exp
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for some parametric smooth function s(u; γ), for parameters γ and β, and for j being an
index over the covariates. For this model, we use a smooth function to model the baseline
log cumulative hazard function and include a linear predictor to model the covariates. To see
that this is a proportional hazards model, we can see that the cumulative hazard and hazard
functions are, respectively,

H(t|x) = − log(S(t|x)) = exp
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Now, for two sets of covariates x1 = (x1j) and x2 = (x2j), we have the hazard ratio

h(t|x2)

h(t|x1)
=

exp(s(log(t); γ) +
∑

j βjx2j) × ds(log(t);γ)
dt

exp(s(log(t); γ) +
∑

j βjx1j) × ds(log(t);γ)
dt

= exp





∑

j

βj(x2j − x1j)





If the covariates only vary by one for the jth covariate, such that x2j = x1j + 1 and x2j′ = x1j′

for j′ ̸= j, then the hazard ratio is equal to exp(βj) for all t and for all values of the other
covariates.

We can motivate this model as an extension of exponential (or Poisson) regression. If we assume
that the rates are constant over time and proportional with respect to covariates, then we have
an exponential distribution with a hazard h(t|x) = exp(γ0 +

∑

j βjxj) for log baseline hazard
γ0, with a survival function S(t|x) = exp(− exp(γ0+log(t)+

∑

j βjxj)). The flexible parametric
survival models generalise the function γ0 + log(t) to some smooth function s(log(t); γ).

The default smoother provided by rstpm2::stpm2 is a natural spline, such that

s(log(t); γ) =
K

∑

k=1

Bk(log(t))γk

where Bk(log(t)) is a natural spline basis with K degrees of freedom. Natural splines have the
property that the function is cubic between internal knots (fixed points that default to quantiles
of the event times) and linear outside of the knot boundaries, with continuous derivatives at
the knots. Heuristically, splines provide a flexible functional form that looks “nice”. The basis
can be defined in several ways (e.g. using a truncated power basis as used in Stata), while
we use the approach used by the splines::ns function, which uses a matrix projection of the
second derivatives at the knot boundaries.

We fit this model using maximum likelihood estimation for right censored and left truncated
data. Variance estimation assumes that the parameters are asymptotically normal, with vari-
able for predictions calculated using the multivariate delta method.

2. An example

We begin with some simple proportional hazard models using the brcancer dataset. We first fit
a Cox regression with a single indicator for whether an a breast cancer patient was randomised
to hormonal treatment. From the output, we see that hormonal treatment is associated with
improved survival (HR=0.69, 95% CI: 0.54, 0.89).

> library(survival)

> library(rstpm2)

> brcancer <- transform(brcancer, recyear=rectime / 365.24)

> fit.cox <- coxph(Surv(recyear,censrec==1)~hormon, data=brcancer)

> summary(fit.cox)

Call:

coxph(formula = Surv(recyear, censrec == 1) ~ hormon, data = brcancer)

n= 686, number of events= 299
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coef exp(coef) se(coef) z Pr(>|z|)

hormon -0.3640 0.6949 0.1250 -2.911 0.0036 **

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

exp(coef) exp(-coef) lower .95 upper .95

hormon 0.6949 1.439 0.5438 0.8879

Concordance= 0.543 (se = 0.014 )

Likelihood ratio test= 8.82 on 1 df, p=0.003

Wald test = 8.47 on 1 df, p=0.004

Score (logrank) test = 8.57 on 1 df, p=0.003

We can fit a flexible parametric survival model with rstpm2::stpm2 using very similar syntax,
with an additional argument df=4 to specify four degrees of freedom for the baseline smoother
(typical values for the degrees of freedom are 2–6). From the output, the model parameters
include an intercept term, time-invariant log-hazard ratios, and parameters for the baseline
smoother. The hazard ratio for hormonal treatment is 0.69 (95% CI: 0.56, 0.84), which is a
similar point estimate and a more narrow confidence interval than Cox regression.

> fit <- stpm2(Surv(recyear,censrec==1)~hormon, data=brcancer, df=4)

> summary(fit)

Maximum likelihood estimation

Call:

stpm2(formula = Surv(recyear, censrec == 1) ~ hormon, data = brcancer,

df = 4)

Coefficients:

Estimate Std. Error z value Pr(z)

(Intercept) -6.79773 0.72642 -9.3578 < 2.2e-16 ***

hormon -0.36406 0.12491 -2.9144 0.003563 **

nsx(log(recyear), df = 4)1 5.69995 0.71677 7.9523 1.830e-15 ***

nsx(log(recyear), df = 4)2 4.85614 0.48002 10.1166 < 2.2e-16 ***

nsx(log(recyear), df = 4)3 10.13327 1.41267 7.1731 7.331e-13 ***

nsx(log(recyear), df = 4)4 4.70626 0.33016 14.2545 < 2.2e-16 ***

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

-2 log L: 1684.412

> eform(fit)[2,]

exp(beta) 2.5 % 97.5 %

0.6948520 0.5636727 0.8449352

The flexible parametric survival models can be used to estimate a variety of parameters. For
example, we can easily estimate survival and compare with predictions with the non-parametric
Kaplan-Meier curves. From the output, we note that. . .
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> plot(fit, newdata=data.frame(hormon=0), xlab="Time since diagnosis (years)")

> lines(fit, newdata=data.frame(hormon=1), lty=2)

> lines(survfit(Surv(recyear,censrec==1)~hormon, data=brcancer), col="blue", lty=1:2)

> legend("topright", c("PH hormon=0","PH hormon=1","KM hormon=0","KM hormon=1"),

+ lty=1:2, col=c("black","black","blue","blue"))
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We can also plot the hazards using ggplot2. This requires that we predict using grid=TRUE to
get a time grid, with full=TRUE to include the covariates from newdata, and with se.fit=TRUE

to get the confidence intervals.

> library(ggplot2)

> predHormon <- predict(fit, newdata=data.frame(hormon=0:1),

+ type="hazard", grid=TRUE, full=TRUE, se.fit=TRUE)

> predHormon <- transform(predHormon,Hormone=factor(hormon,labels=c("No","Yes")))

> ggplot(predHormon,

+ aes(x=recyear,y=Estimate,ymin=lower,ymax=upper,fill=Hormone)) +

+ facet_grid(~Hormone) +

+ xlab("Time since diagnosis (years)") +

+ ylab("Hazard") +

+ geom_ribbon() +

+ geom_line()
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> ggplot(predHormon,

+ aes(x=recyear,y=Estimate,ymin=lower,ymax=upper,fill=Hormone)) +

+ xlab("Time since diagnosis (years)") +

+ ylab("Hazard") +

+ geom_ribbon(alpha=0.6) +

+ geom_line()
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Usefully, we can also estimate survival differences and hazard differences. We define the survival
differences using a reference covariate pattern using the newdata argument, and then define an
exposed function which takes the newdata and transforms for the ’exposed’ covariate pattern.
As an example:

> par(mfrow=1:2)

> plot(fit,newdata=data.frame(hormon=0), type="hdiff",
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+ exposed=function(data) transform(data, hormon=1),

+ xlab="Time since diagnosis (years)")

> plot(fit,newdata=data.frame(hormon=0), type="sdiff",

+ var="hormon",

+ xlab="Time since diagnosis (years)")

> mtext("Effect of hormonal treatment", outer = TRUE, line=-3, cex=1.5, font=2)
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