
Package ‘rstanarm’
January 19, 2024

Type Package

Title Bayesian Applied Regression Modeling via Stan

Version 2.32.1

Date 2024-01-15

Encoding UTF-8

Description Estimates previously compiled regression models using the 'rstan'
package, which provides the R interface to the Stan C++ library for Bayesian
estimation. Users specify models via the customary R syntax with a formula and
data.frame plus some additional arguments for priors.

License GPL (>= 3)

Depends R (>= 3.4.0), Rcpp (>= 0.12.0), methods

Imports bayesplot (>= 1.7.0), ggplot2 (>= 2.2.1), lme4 (>= 1.1-8), loo
(>= 2.1.0), Matrix (>= 1.2-13), nlme (>= 3.1-124), posterior,
rstan (>= 2.32.0), rstantools (>= 2.1.0), shinystan (>= 2.3.0),
stats, survival (>= 2.40.1), RcppParallel (>= 5.0.1), utils

Suggests biglm, betareg, data.table (>= 1.10.0), digest, gridExtra,
HSAUR3, knitr (>= 1.15.1), MASS, mgcv (>= 1.8-13), rmarkdown,
roxygen2, StanHeaders (>= 2.21.0), testthat (>= 1.0.2), gamm4,
shiny, V8

LinkingTo StanHeaders (>= 2.32.0), rstan (>= 2.32.0), BH (>=
1.72.0-2), Rcpp (>= 0.12.0), RcppEigen (>= 0.3.3.3.0),
RcppParallel (>= 5.0.1)

SystemRequirements GNU make, pandoc (>= 1.12.3), pandoc-citeproc

VignetteBuilder knitr

LazyData true

UseLTO true

NeedsCompilation yes

URL https://mc-stan.org/rstanarm/, https://discourse.mc-stan.org

BugReports https://github.com/stan-dev/rstanarm/issues

RoxygenNote 7.2.3

1

https://mc-stan.org/rstanarm/
https://discourse.mc-stan.org
https://github.com/stan-dev/rstanarm/issues

2 R topics documented:

Author Jonah Gabry [aut],
Imad Ali [ctb],
Sam Brilleman [ctb],
Jacqueline Buros Novik [ctb] (R/stan_jm.R),
AstraZeneca [ctb] (R/stan_jm.R),
Trustees of Columbia University [cph],
Simon Wood [cph] (R/stan_gamm4.R),
R Core Deveopment Team [cph] (R/stan_aov.R),
Douglas Bates [cph] (R/pp_data.R),
Martin Maechler [cph] (R/pp_data.R),
Ben Bolker [cph] (R/pp_data.R),
Steve Walker [cph] (R/pp_data.R),
Brian Ripley [cph] (R/stan_aov.R, R/stan_polr.R),
William Venables [cph] (R/stan_polr.R),
Paul-Christian Burkner [cph] (R/misc.R),
Ben Goodrich [cre, aut]

Maintainer Ben Goodrich <benjamin.goodrich@columbia.edu>

Repository CRAN

Date/Publication 2024-01-18 23:00:03 UTC

R topics documented:
rstanarm-package . 3
adapt_delta . 7
as.matrix.stanreg . 7
available-algorithms . 9
available-models . 10
bayes_R2.stanreg . 11
example_jm . 12
example_model . 13
kfold.stanreg . 14
launch_shinystan.stanreg . 16
logit . 18
log_lik.stanreg . 19
loo.stanreg . 20
loo_predict.stanreg . 24
neg_binomial_2 . 26
nobs.stanmvreg . 27
pairs.stanreg . 29
plot.predict.stanjm . 31
plot.stanreg . 33
plot.survfit.stanjm . 37
posterior_interval.stanreg . 39
posterior_linpred.stanreg . 41
posterior_predict.stanreg . 43
posterior_survfit . 46
posterior_traj . 51

rstanarm-package 3

posterior_vs_prior . 57
pp_check.stanreg . 59
pp_validate . 62
predict.stanreg . 64
predictive_error.stanreg . 65
predictive_interval.stanreg . 66
print.stanreg . 68
priors . 69
prior_summary.stanreg . 77
ps_check . 79
QR-argument . 80
rstanarm-datasets . 81
rstanarm-deprecated . 84
stanmvreg-methods . 84
stanreg-draws-formats . 87
stanreg-objects . 88
stanreg_list . 90
stan_aov . 91
stan_betareg . 94
stan_biglm . 99
stan_clogit . 102
stan_gamm4 . 105
stan_glm . 109
stan_glmer . 117
stan_jm . 121
stan_mvmer . 131
stan_nlmer . 135
stan_polr . 138
summary.stanreg . 141

Index 144

rstanarm-package Applied Regression Modeling via RStan

Description

The rstanarm package is an appendage to the rstan package that enables many of the most common
applied regression models to be estimated using Markov Chain Monte Carlo, variational approxi-
mations to the posterior distribution, or optimization. The rstanarm package allows these models
to be specified using the customary R modeling syntax (e.g., like that of glm with a formula and a
data.frame).

The sections below provide an overview of the modeling functions and estimation algorithms used
by rstanarm.

4 rstanarm-package

Details

The set of models supported by rstanarm is large (and will continue to grow), but also limited
enough so that it is possible to integrate them tightly with the pp_check function for graphical
posterior predictive checks with bayesplot and the posterior_predict function to easily estimate
the effect of specific manipulations of predictor variables or to predict the outcome in a training set.

The objects returned by the rstanarm modeling functions are called stanreg objects. In addition
to all of the typical methods defined for fitted model objects, stanreg objects can be passed to the
loo function in the loo package for model comparison or to the launch_shinystan function in
the shinystan package in order to visualize the posterior distribution using the ShinyStan graphical
user interface. See the rstanarm vignettes for more details about the entire process.

Prior distributions

See priors help page and the vignette Prior Distributions for rstanarm Models for an overview of the
various choices the user can make for prior distributions. The package vignettes for the modeling
functions also provide examples of using many of the available priors as well as more detailed
descriptions of some of the novel priors used by rstanarm.

Modeling functions

The model estimating functions are described in greater detail in their individual help pages and
vignettes. Here we provide a very brief overview:

stan_lm, stan_aov, stan_biglm Similar to lm or aov but with novel regularizing priors on the
model parameters that are driven by prior beliefs about R2, the proportion of variance in the
outcome attributable to the predictors in a linear model.

stan_glm, stan_glm.nb Similar to glm but with various possible prior distributions for the coef-
ficients and, if applicable, a prior distribution for any auxiliary parameter in a Generalized
Linear Model (GLM) that is characterized by a family object (e.g. the shape parameter in
Gamma models). It is also possible to estimate a negative binomial model in a similar way to
the glm.nb function in the MASS package.

stan_glmer, stan_glmer.nb, stan_lmer Similar to the glmer, glmer.nb and lmer functions in
the lme4 package in that GLMs are augmented to have group-specific terms that deviate from
the common coefficients according to a mean-zero multivariate normal distribution with a
highly-structured but unknown covariance matrix (for which rstanarm introduces an innova-
tive prior distribution). MCMC provides more appropriate estimates of uncertainty for models
that consist of a mix of common and group-specific parameters.

stan_nlmer Similar to nlmer in the lme4 package for nonlinear "mixed-effects" models, but the
group-specific coefficients have flexible priors on their unknown covariance matrices.

stan_gamm4 Similar to gamm4 in the gamm4 package, which augments a GLM (possibly with
group-specific terms) with nonlinear smooth functions of the predictors to form a Generalized
Additive Mixed Model (GAMM). Rather than calling glmer like gamm4 does, stan_gamm4
essentially calls stan_glmer, which avoids the optimization issues that often crop up with
GAMMs and provides better estimates for the uncertainty of the parameter estimates.

stan_polr Similar to polr in the MASS package in that it models an ordinal response, but the
Bayesian model also implies a prior distribution on the unknown cutpoints. Can also be used

https://mc-stan.org/rstanarm/articles/priors.html

rstanarm-package 5

to model binary outcomes, possibly while estimating an unknown exponent governing the
probability of success.

stan_betareg Similar to betareg in that it models an outcome that is a rate (proportion) but,
rather than performing maximum likelihood estimation, full Bayesian estimation is performed
by default, with customizable prior distributions for all parameters.

stan_clogit Similar to clogit in that it models an binary outcome where the number of suc-
cesses and failures is fixed within each stratum by the research design. There are some minor
syntactical differences relative to clogit that allow stan_clogit to accept group-specific
terms as in stan_glmer.

stan_mvmer A multivariate form of stan_glmer, whereby the user can specify one or more sub-
models each consisting of a GLM with group-specific terms. If more than one submodel is
specified (i.e. there is more than one outcome variable) then a dependence is induced by as-
suming that the group-specific terms for each grouping factor are correlated across submodels.

stan_jm Estimates shared parameter joint models for longitudinal and time-to-event (i.e. survival)
data. The joint model can be univariate (i.e. one longitudinal outcome) or multivariate (i.e.
more than one longitudinal outcome). A variety of parameterisations are available for linking
the longitudinal and event processes (i.e. a variety of association structures).

Estimation algorithms

The modeling functions in the rstanarm package take an algorithm argument that can be one of
the following:

Sampling (algorithm="sampling") Uses Markov Chain Monte Carlo (MCMC) — in particular,
Hamiltonian Monte Carlo (HMC) with a tuned but diagonal mass matrix — to draw from
the posterior distribution of the parameters. See sampling (rstan) for more details. This is
the slowest but most reliable of the available estimation algorithms and it is the default and
recommended algorithm for statistical inference.

Mean-field (algorithm="meanfield") Uses mean-field variational inference to draw from an ap-
proximation to the posterior distribution. In particular, this algorithm finds the set of inde-
pendent normal distributions in the unconstrained space that — when transformed into the
constrained space — most closely approximate the posterior distribution. Then it draws re-
peatedly from these independent normal distributions and transforms them into the constrained
space. The entire process is much faster than HMC and yields independent draws but is not
recommended for final statistical inference. It can be useful to narrow the set of candidate
models in large problems, particularly when specifying QR=TRUE in stan_glm, stan_glmer,
and stan_gamm4, but is only an approximation to the posterior distribution.

Full-rank (algorithm="fullrank") Uses full-rank variational inference to draw from an approx-
imation to the posterior distribution by finding the multivariate normal distribution in the un-
constrained space that — when transformed into the constrained space — most closely ap-
proximates the posterior distribution. Then it draws repeatedly from this multivariate normal
distribution and transforms the draws into the constrained space. This process is slower than
meanfield variational inference but is faster than HMC. Although still an approximation to the
posterior distribution and thus not recommended for final statistical inference, the approx-
imation is more realistic than that of mean-field variational inference because the parameters
are not assumed to be independent in the unconstrained space. Nevertheless, fullrank varia-
tional inference is a more difficult optimization problem and the algorithm is more prone to
non-convergence or convergence to a local optimum.

6 rstanarm-package

Optimizing (algorithm="optimizing") Finds the posterior mode using a C++ implementation
of the LBGFS algorithm. See optimizing for more details. If there is no prior information,
then this is equivalent to maximum likelihood, in which case there is no great reason to use the
functions in the rstanarm package over the emulated functions in other packages. However,
if priors are specified, then the estimates are penalized maximum likelihood estimates, which
may have some redeeming value. Currently, optimization is only supported for stan_glm.

References

Bates, D., Maechler, M., Bolker, B., and Walker, S. (2015). Fitting linear mixed-Effects models
using lme4. Journal of Statistical Software. 67(1), 1–48.

Gelman, A., Carlin, J. B., Stern, H. S., Dunson, D. B., Vehtari, A., and Rubin, D. B. (2013).
Bayesian Data Analysis. Chapman & Hall/CRC Press, London, third edition. https://stat.
columbia.edu/~gelman/book/

Gelman, A. and Hill, J. (2007). Data Analysis Using Regression and Multilevel/Hierarchical Mod-
els. Cambridge University Press, Cambridge, UK. https://stat.columbia.edu/~gelman/arm/

Stan Development Team. Stan Modeling Language Users Guide and Reference Manual. https:
//mc-stan.org/users/documentation/.

Vehtari, A., Gelman, A., and Gabry, J. (2017). Practical Bayesian model evaluation using leave-one-
out cross-validation and WAIC. Statistics and Computing. 27(5), 1413–1432. doi:10.1007/s11222-
016-9696-4. arXiv preprint: https://arxiv.org/abs/1507.04544

Yao, Y., Vehtari, A., Simpson, D., and Gelman, A. (2018) Using stacking to average Bayesian
predictive distributions. Bayesian Analysis, advance publication, doi:10.1214/17BA1091.

Gabry, J. , Simpson, D. , Vehtari, A. , Betancourt, M. and Gelman, A. (2019), Visualization in
Bayesian workflow. J. R. Stat. Soc. A, 182: 389-402. doi:10.1111/rssa.12378, arXiv preprint, code
on GitHub)

Muth, C., Oravecz, Z., and Gabry, J. (2018) User-friendly Bayesian regression modeling: A tutorial
with rstanarm and shinystan. The Quantitative Methods for Psychology. 14(2), 99–119. https:
//www.tqmp.org/RegularArticles/vol14-2/p099/p099.pdf

See Also

• https://mc-stan.org/ for more information on the Stan C++ package used by rstanarm
for model fitting.

• https://github.com/stan-dev/rstanarm/issues/ to submit a bug report or feature re-
quest.

• https://discourse.mc-stan.org to ask a question about rstanarm on the Stan-users fo-
rum.

https://stat.columbia.edu/~gelman/book/
https://stat.columbia.edu/~gelman/book/
https://stat.columbia.edu/~gelman/arm/
https://mc-stan.org/users/documentation/
https://mc-stan.org/users/documentation/
https://arxiv.org/abs/1507.04544
https://doi.org/10.1214/17-BA1091
https://arxiv.org/abs/1709.01449
https://github.com/jgabry/bayes-vis-paper
https://github.com/jgabry/bayes-vis-paper
https://www.tqmp.org/RegularArticles/vol14-2/p099/p099.pdf
https://www.tqmp.org/RegularArticles/vol14-2/p099/p099.pdf
https://mc-stan.org/
https://github.com/stan-dev/rstanarm/issues/
https://discourse.mc-stan.org

adapt_delta 7

adapt_delta adapt_delta: Target average acceptance probability

Description

Details about the adapt_delta argument to rstanarm’s modeling functions.

Details

For the No-U-Turn Sampler (NUTS), the variant of Hamiltonian Monte Carlo used used by rstan-
arm, adapt_delta is the target average proposal acceptance probability during Stan’s adaptation
period. adapt_delta is ignored by rstanarm if the algorithm argument is not set to "sampling".

The default value of adapt_delta is 0.95, except when the prior for the regression coefficients is
R2, hs, or hs_plus, in which case the default is 0.99.

These defaults are higher (more conservative) than the default of adapt_delta=0.8 used in the
rstan package, which may result in slower sampling speeds but will be more robust to posterior
distributions with high curvature.

In general you should not need to change adapt_delta unless you see a warning message about
divergent transitions, in which case you can increase adapt_delta from the default to a value
closer to 1 (e.g. from 0.95 to 0.99, or from 0.99 to 0.999, etc). The step size used by the numerical
integrator is a function of adapt_delta in that increasing adapt_delta will result in a smaller step
size and fewer divergences. Increasing adapt_delta will typically result in a slower sampler, but
it will always lead to a more robust sampler.

References

Stan Development Team. Stan Modeling Language Users Guide and Reference Manual. https:
//mc-stan.org/users/documentation/.

Brief Guide to Stan’s Warnings: https://mc-stan.org/misc/warnings.html#divergent-transitions-after-warmup

as.matrix.stanreg Extract the posterior sample

Description

For models fit using MCMC (algorithm="sampling"), the posterior sample —the post-warmup
draws from the posterior distribution— can be extracted from a fitted model object as a matrix, data
frame, or array. The as.matrix and as.data.frame methods merge all chains together, whereas
the as.array method keeps the chains separate. For models fit using optimization ("optimizing")
or variational inference ("meanfield" or "fullrank"), there is no posterior sample but rather a
matrix (or data frame) of 1000 draws from either the asymptotic multivariate Gaussian sampling
distribution of the parameters or the variational approximation to the posterior distribution.

https://mc-stan.org/users/documentation/
https://mc-stan.org/users/documentation/
https://mc-stan.org/misc/warnings.html#divergent-transitions-after-warmup

8 as.matrix.stanreg

Usage

S3 method for class 'stanreg'
as.matrix(x, ..., pars = NULL, regex_pars = NULL)

S3 method for class 'stanreg'
as.array(x, ..., pars = NULL, regex_pars = NULL)

S3 method for class 'stanreg'
as.data.frame(x, ..., pars = NULL, regex_pars = NULL)

Arguments

x A fitted model object returned by one of the rstanarm modeling functions. See
stanreg-objects.

... Ignored.

pars An optional character vector of parameter names.

regex_pars An optional character vector of regular expressions to use for parameter selec-
tion. regex_pars can be used in place of pars or in addition to pars. Currently,
all functions that accept a regex_pars argument ignore it for models fit using
optimization.

Value

A matrix, data.frame, or array, the dimensions of which depend on pars and regex_pars, as well
as the model and estimation algorithm (see the Description section above).

See Also

stanreg-draws-formats, stanreg-methods

Examples

if (.Platform$OS.type != "windows" || .Platform$r_arch != "i386") {

if (!exists("example_model")) example(example_model)
Extract posterior sample after MCMC
draws <- as.matrix(example_model)
print(dim(draws))

For example, we can see that the median of the draws for the intercept
is the same as the point estimate rstanarm uses
print(median(draws[, "(Intercept)"]))
print(example_model$coefficients[["(Intercept)"]])

The as.array method keeps the chains separate
draws_array <- as.array(example_model)
print(dim(draws_array)) # iterations x chains x parameters

Extract draws from asymptotic Gaussian sampling distribution

available-algorithms 9

after optimization
fit <- stan_glm(mpg ~ wt, data = mtcars, algorithm = "optimizing")
draws <- as.data.frame(fit)
print(colnames(draws))
print(nrow(draws)) # 1000 draws are taken

Extract draws from variational approximation to the posterior distribution
fit2 <- update(fit, algorithm = "meanfield")
draws <- as.data.frame(fit2, pars = "wt")
print(colnames(draws))
print(nrow(draws)) # 1000 draws are taken

}

available-algorithms Estimation algorithms available for rstanarm models

Description

Estimation algorithms available for rstanarm models

Estimation algorithms

The modeling functions in the rstanarm package take an algorithm argument that can be one of
the following:

Sampling (algorithm="sampling") Uses Markov Chain Monte Carlo (MCMC) — in particular,
Hamiltonian Monte Carlo (HMC) with a tuned but diagonal mass matrix — to draw from
the posterior distribution of the parameters. See sampling (rstan) for more details. This is
the slowest but most reliable of the available estimation algorithms and it is the default and
recommended algorithm for statistical inference.

Mean-field (algorithm="meanfield") Uses mean-field variational inference to draw from an ap-
proximation to the posterior distribution. In particular, this algorithm finds the set of inde-
pendent normal distributions in the unconstrained space that — when transformed into the
constrained space — most closely approximate the posterior distribution. Then it draws re-
peatedly from these independent normal distributions and transforms them into the constrained
space. The entire process is much faster than HMC and yields independent draws but is not
recommended for final statistical inference. It can be useful to narrow the set of candidate
models in large problems, particularly when specifying QR=TRUE in stan_glm, stan_glmer,
and stan_gamm4, but is only an approximation to the posterior distribution.

Full-rank (algorithm="fullrank") Uses full-rank variational inference to draw from an approx-
imation to the posterior distribution by finding the multivariate normal distribution in the un-
constrained space that — when transformed into the constrained space — most closely ap-
proximates the posterior distribution. Then it draws repeatedly from this multivariate normal
distribution and transforms the draws into the constrained space. This process is slower than
meanfield variational inference but is faster than HMC. Although still an approximation to the
posterior distribution and thus not recommended for final statistical inference, the approx-
imation is more realistic than that of mean-field variational inference because the parameters

10 available-models

are not assumed to be independent in the unconstrained space. Nevertheless, fullrank varia-
tional inference is a more difficult optimization problem and the algorithm is more prone to
non-convergence or convergence to a local optimum.

Optimizing (algorithm="optimizing") Finds the posterior mode using a C++ implementation
of the LBGFS algorithm. See optimizing for more details. If there is no prior information,
then this is equivalent to maximum likelihood, in which case there is no great reason to use the
functions in the rstanarm package over the emulated functions in other packages. However,
if priors are specified, then the estimates are penalized maximum likelihood estimates, which
may have some redeeming value. Currently, optimization is only supported for stan_glm.

See Also

https://mc-stan.org/rstanarm/

available-models Modeling functions available in rstanarm

Description

Modeling functions available in rstanarm

Modeling functions

The model estimating functions are described in greater detail in their individual help pages and
vignettes. Here we provide a very brief overview:

stan_lm, stan_aov, stan_biglm Similar to lm or aov but with novel regularizing priors on the
model parameters that are driven by prior beliefs about R2, the proportion of variance in the
outcome attributable to the predictors in a linear model.

stan_glm, stan_glm.nb Similar to glm but with various possible prior distributions for the coef-
ficients and, if applicable, a prior distribution for any auxiliary parameter in a Generalized
Linear Model (GLM) that is characterized by a family object (e.g. the shape parameter in
Gamma models). It is also possible to estimate a negative binomial model in a similar way to
the glm.nb function in the MASS package.

stan_glmer, stan_glmer.nb, stan_lmer Similar to the glmer, glmer.nb and lmer functions in
the lme4 package in that GLMs are augmented to have group-specific terms that deviate from
the common coefficients according to a mean-zero multivariate normal distribution with a
highly-structured but unknown covariance matrix (for which rstanarm introduces an innova-
tive prior distribution). MCMC provides more appropriate estimates of uncertainty for models
that consist of a mix of common and group-specific parameters.

stan_nlmer Similar to nlmer in the lme4 package for nonlinear "mixed-effects" models, but the
group-specific coefficients have flexible priors on their unknown covariance matrices.

stan_gamm4 Similar to gamm4 in the gamm4 package, which augments a GLM (possibly with
group-specific terms) with nonlinear smooth functions of the predictors to form a Generalized
Additive Mixed Model (GAMM). Rather than calling glmer like gamm4 does, stan_gamm4
essentially calls stan_glmer, which avoids the optimization issues that often crop up with
GAMMs and provides better estimates for the uncertainty of the parameter estimates.

https://mc-stan.org/rstanarm/

bayes_R2.stanreg 11

stan_polr Similar to polr in the MASS package in that it models an ordinal response, but the
Bayesian model also implies a prior distribution on the unknown cutpoints. Can also be used
to model binary outcomes, possibly while estimating an unknown exponent governing the
probability of success.

stan_betareg Similar to betareg in that it models an outcome that is a rate (proportion) but,
rather than performing maximum likelihood estimation, full Bayesian estimation is performed
by default, with customizable prior distributions for all parameters.

stan_clogit Similar to clogit in that it models an binary outcome where the number of suc-
cesses and failures is fixed within each stratum by the research design. There are some minor
syntactical differences relative to clogit that allow stan_clogit to accept group-specific
terms as in stan_glmer.

stan_mvmer A multivariate form of stan_glmer, whereby the user can specify one or more sub-
models each consisting of a GLM with group-specific terms. If more than one submodel is
specified (i.e. there is more than one outcome variable) then a dependence is induced by as-
suming that the group-specific terms for each grouping factor are correlated across submodels.

stan_jm Estimates shared parameter joint models for longitudinal and time-to-event (i.e. survival)
data. The joint model can be univariate (i.e. one longitudinal outcome) or multivariate (i.e.
more than one longitudinal outcome). A variety of parameterisations are available for linking
the longitudinal and event processes (i.e. a variety of association structures).

See Also

https://mc-stan.org/rstanarm/

bayes_R2.stanreg Compute a Bayesian version of R-squared or LOO-adjusted R-squared
for regression models.

Description

Compute a Bayesian version of R-squared or LOO-adjusted R-squared for regression models.

Usage

S3 method for class 'stanreg'
bayes_R2(object, ..., re.form = NULL)

S3 method for class 'stanreg'
loo_R2(object, ...)

Arguments

object A fitted model object returned by one of the rstanarm modeling functions. See
stanreg-objects.

... Currently ignored.
re.form For models with group-level terms, re.form is passed to posterior_epred if

specified.

https://mc-stan.org/rstanarm/

12 example_jm

Value

A vector of R-squared values with length equal to the posterior sample size (the posterior distribu-
tion of R-squared).

References

Andrew Gelman, Ben Goodrich, Jonah Gabry, and Aki Vehtari (2018). R-squared for Bayesian
regression models. The American Statistician, to appear. doi:10.1080/00031305.2018.1549100
(Preprint, Notebook)

Examples

if (.Platform$OS.type != "windows" || .Platform$r_arch != "i386") {
fit <- stan_glm(

mpg ~ wt + cyl,
data = mtcars,
QR = TRUE,
chains = 2,
refresh = 0

)
rsq <- bayes_R2(fit)
print(median(rsq))
hist(rsq)

loo_rsq <- loo_R2(fit)
print(median(loo_rsq))

multilevel binomial model
if (!exists("example_model")) example(example_model)
print(example_model)
median(bayes_R2(example_model))
median(bayes_R2(example_model, re.form = NA)) # exclude group-level
}

example_jm Example joint longitudinal and time-to-event model

Description

A model for use in the rstanarm examples related to stan_jm.

Format

Calling example("example_jm") will run the model in the Examples section, below, and the re-
sulting stanmvreg object will then be available in the global environment. The chains and iter
arguments are specified to make this example be small in size. In practice, we recommend that they
be left unspecified in order to use the default values or increased if there are convergence problems.
The cores argument is optional and on a multicore system, the user may well want to set that equal
to the number of chains being executed.

https://doi.org/10.1080/00031305.2018.1549100
http://www.stat.columbia.edu/~gelman/research/published/bayes_R2_v3.pdf
https://avehtari.github.io/bayes_R2/bayes_R2.html

example_model 13

Examples

set.seed(123)
if (.Platform$OS.type != "windows" || .Platform$r_arch !="i386")
example_jm <-

stan_jm(formulaLong = logBili ~ year + (1 | id),
dataLong = pbcLong[1:101,],
formulaEvent = survival::Surv(futimeYears, death) ~ sex + trt,
dataEvent = pbcSurv[1:15,],
time_var = "year",
this next line is only to keep the example small in size!
chains = 1, seed = 12345, iter = 100, refresh = 0)

example_model Example model

Description

A model for use in rstanarm examples.

Format

Calling example("example_model") will run the model in the Examples section, below, and the
resulting stanreg object will then be available in the global environment. The chains and iter
arguments are specified to make this example be small in size. In practice, we recommend that they
be left unspecified in order to use the default values (4 and 2000 respectively) or increased if there
are convergence problems. The cores argument is optional and on a multicore system, the user
may well want to set that equal to the number of chains being executed.

See Also

cbpp for a description of the data.

Examples

if (.Platform$OS.type != "windows" || .Platform$r_arch != "i386") {
example_model <-

stan_glmer(cbind(incidence, size - incidence) ~ size + period + (1|herd),
data = lme4::cbpp, family = binomial, QR = TRUE,
this next line is only to keep the example small in size!
chains = 2, cores = 1, seed = 12345, iter = 1000, refresh = 0)

example_model
}

14 kfold.stanreg

kfold.stanreg K-fold cross-validation

Description

The kfold method performs exact K-fold cross-validation. First the data are randomly partitioned
into K subsets of equal size (or as close to equal as possible), or the user can specify the folds
argument to determine the partitioning. Then the model is refit K times, each time leaving out
one of the K subsets. If K is equal to the total number of observations in the data then K-fold
cross-validation is equivalent to exact leave-one-out cross-validation (to which loo is an efficient
approximation).

Usage

S3 method for class 'stanreg'
kfold(
x,
K = 10,
...,
folds = NULL,
save_fits = FALSE,
cores = getOption("mc.cores", 1)

)

Arguments

x A fitted model object returned by one of the rstanarm modeling functions. See
stanreg-objects.

K For kfold, the number of subsets (folds) into which the data will be partitioned
for performing K-fold cross-validation. The model is refit K times, each time
leaving out one of the K folds. If the folds argument is specified then K will
automatically be set to length(unique(folds)), otherwise the specified value
of K is passed to loo::kfold_split_random to randomly partition the data into
K subsets of equal (or as close to equal as possible) size.

... Currently ignored.

folds For kfold, an optional integer vector with one element per observation in the
data used to fit the model. Each element of the vector is an integer in 1:K
indicating to which of the K folds the corresponding observation belongs. There
are some convenience functions available in the loo package that create integer
vectors to use for this purpose (see the Examples section below and also the
kfold-helpers page).

save_fits For kfold, if TRUE, a component 'fits' is added to the returned object to store
the cross-validated stanreg objects and the indices of the omitted observations
for each fold. Defaults to FALSE.

kfold.stanreg 15

cores The number of cores to use for parallelization. Instead fitting separate Markov
chains for the same model on different cores, by default kfold will distribute the
K models to be fit across the cores (using parLapply on Windows and mclapply
otherwise). The Markov chains for each model will be run sequentially. This
will often be the most efficient option, especially if many cores are available,
but in some cases it may be preferable to fit the K models sequentially and in-
stead use the cores for the Markov chains. This can be accomplished by setting
options(mc.cores) to be the desired number of cores to use for the Markov
chains and also manually specifying cores=1 when calling the kfold function.
See the end of the Examples section for a demonstration.

Value

An object with classes ’kfold’ and ’loo’ that has a similar structure as the objects returned by the
loo and waic methods and is compatible with the loo_compare function for comparing models.

References

Vehtari, A., Gelman, A., and Gabry, J. (2017). Practical Bayesian model evaluation using leave-one-
out cross-validation and WAIC. Statistics and Computing. 27(5), 1413–1432. doi:10.1007/s11222-
016-9696-4. arXiv preprint: https://arxiv.org/abs/1507.04544

Yao, Y., Vehtari, A., Simpson, D., and Gelman, A. (2018) Using stacking to average Bayesian
predictive distributions. Bayesian Analysis, advance publication, doi:10.1214/17BA1091.

Examples

if (.Platform$OS.type != "windows" || .Platform$r_arch != "i386") {

fit1 <- stan_glm(mpg ~ wt, data = mtcars, refresh = 0)
fit2 <- stan_glm(mpg ~ wt + cyl, data = mtcars, refresh = 0)
fit3 <- stan_glm(mpg ~ disp * as.factor(cyl), data = mtcars, refresh = 0)

10-fold cross-validation
(if possible also specify the 'cores' argument to use multiple cores)
(kfold1 <- kfold(fit1, K = 10))
kfold2 <- kfold(fit2, K = 10)
kfold3 <- kfold(fit3, K = 10)
loo_compare(kfold1, kfold2, kfold3)

stratifying by a grouping variable
(note: might get some divergences warnings with this model but
this is just intended as a quick example of how to code this)
fit4 <- stan_lmer(mpg ~ disp + (1|cyl), data = mtcars, refresh = 0)
table(mtcars$cyl)
folds_cyl <- loo::kfold_split_stratified(K = 3, x = mtcars$cyl)
table(cyl = mtcars$cyl, fold = folds_cyl)
kfold4 <- kfold(fit4, folds = folds_cyl, cores = 2)
print(kfold4)

}
Example code demonstrating the different ways to specify the number

https://arxiv.org/abs/1507.04544
https://doi.org/10.1214/17-BA1091

16 launch_shinystan.stanreg

of cores and how the cores are used
#
options(mc.cores = NULL)
#
spread the K models over N_CORES cores (method 1)
kfold(fit, K, cores = N_CORES)
#
spread the K models over N_CORES cores (method 2)
options(mc.cores = N_CORES)
kfold(fit, K)
#
fit K models sequentially using N_CORES cores for the Markov chains each time
options(mc.cores = N_CORES)
kfold(fit, K, cores = 1)

launch_shinystan.stanreg

Using the ShinyStan GUI with rstanarm models

Description

The ShinyStan interface provides visual and numerical summaries of model parameters and con-
vergence diagnostics.

Usage

S3 method for class 'stanreg'
launch_shinystan(
object,
ppd = TRUE,
seed = 1234,
model_name = NULL,
note = NULL,
rstudio = getOption("shinystan.rstudio"),
...

)

Arguments

object A fitted model object returned by one of the rstanarm modeling functions. See
stanreg-objects.

ppd Should rstanarm draw from the posterior predictive distribution before launch-
ing ShinyStan? The default is TRUE, although for very large objects it can be
convenient to set it to FALSE as drawing from the posterior predictive distribu-
tion can be time consuming. If ppd is TRUE then graphical posterior predictive
checks are available when ShinyStan is launched.

seed Passed to pp_check if ppd is TRUE.

launch_shinystan.stanreg 17

model_name, note

Optional arguments passed to as.shinystan.

rstudio Only relevant for ’RStudio’ users. The default (FALSE) is to launch the app
in the user’s default web browser rather than the pop-up Viewer provided by
’RStudio’. Users can change the default to TRUE by setting the global option
options(shinystan.rstudio = TRUE).

... Optional arguments passed to runApp.

Details

The launch_shinystan function will accept a stanreg object as input. Currently, almost any
model fit using one of rstanarm’s model-fitting functions can be used with ShinyStan. The only ex-
ception is that ShinyStan does not currently support rstanarm models fit using algorithm='optimizing'.
See the shinystan package documentation for more information.

Faster launch times

For some rstanarm models ShinyStan may take a very long time to launch. If this is the case with
one of your models you may be able to speed up launch_shinystan in one of several ways:

Prevent ShinyStan from preparing graphical posterior predictive checks: When used with a stanreg
object (rstanarm model object) ShinyStan will draw from the posterior predictive distribution
and prepare graphical posterior predictive checks before launching. That way when you go to
the PPcheck page the plots are immediately available. This can be time consuming for mod-
els fit to very large datasets and you can prevent this behavior by creating a shinystan object
before calling launch_shinystan. To do this use as.shinystan with optional argument ppd
set to FALSE (see the Examples section below). When you then launch ShinyStan and go to the
PPcheck page the plots will no longer be automatically generated and you will be presented
with the standard interface requiring you to first specify the appropriate y and yrep, which
can be done for many but not all rstanarm models.

Use a shinystan object: Even if you don’t want to prevent ShinyStan from preparing graphical
posterior predictive checks, first creating a shinystan object using as.shinystan can reduce
future launch times. That is, launch_shinystan(sso) will be faster than launch_shinystan(fit),
where sso is a shinystan object and fit is a stanreg object. It still may take some time for
as.shinystan to create sso initially, but each time you subsequently call launch_shinystan(sso)
it will reuse sso instead of internally creating a shinystan object every time. See the Examples
section below.

References

Gabry, J. , Simpson, D. , Vehtari, A. , Betancourt, M. and Gelman, A. (2019), Visualization in
Bayesian workflow. J. R. Stat. Soc. A, 182: 389-402. doi:10.1111/rssa.12378, arXiv preprint, code
on GitHub)

Muth, C., Oravecz, Z., and Gabry, J. (2018) User-friendly Bayesian regression modeling: A tutorial
with rstanarm and shinystan. The Quantitative Methods for Psychology. 14(2), 99–119. https:
//www.tqmp.org/RegularArticles/vol14-2/p099/p099.pdf

https://arxiv.org/abs/1709.01449
https://github.com/jgabry/bayes-vis-paper
https://github.com/jgabry/bayes-vis-paper
https://www.tqmp.org/RegularArticles/vol14-2/p099/p099.pdf
https://www.tqmp.org/RegularArticles/vol14-2/p099/p099.pdf

18 logit

Examples

if (.Platform$OS.type != "windows" || .Platform$r_arch != "i386") {
Not run:
if (!exists("example_model")) example(example_model)

Launch the ShinyStan app without saving the resulting shinystan object
if (interactive()) launch_shinystan(example_model)

Launch the ShinyStan app (saving resulting shinystan object as sso)
if (interactive()) sso <- launch_shinystan(example_model)

First create shinystan object then call launch_shinystan
sso <- shinystan::as.shinystan(example_model)
if (interactive()) launch_shinystan(sso)

Prevent ShinyStan from preparing graphical posterior predictive checks that
can be time consuming. example_model is small enough that it won't matter
much here but in general this can help speed up launch_shinystan
sso <- shinystan::as.shinystan(example_model, ppd = FALSE)
if (interactive()) launch_shinystan(sso)

End(Not run)
}

logit Logit and inverse logit

Description

Logit and inverse logit

Usage

logit(x)

invlogit(x)

Arguments

x Numeric vector.

Value

A numeric vector the same length as x.

log_lik.stanreg 19

log_lik.stanreg Pointwise log-likelihood matrix

Description

For models fit using MCMC only, the log_lik method returns the S byN pointwise log-likelihood
matrix, where S is the size of the posterior sample and N is the number of data points, or in the
case of the stanmvreg method (when called on stan_jm model objects) an S byNpatmatrix where
Npat is the number of individuals.

Usage

S3 method for class 'stanreg'
log_lik(object, newdata = NULL, offset = NULL, ...)

S3 method for class 'stanmvreg'
log_lik(object, m = 1, newdata = NULL, ...)

S3 method for class 'stanjm'
log_lik(object, newdataLong = NULL, newdataEvent = NULL, ...)

Arguments

object A fitted model object returned by one of the rstanarm modeling functions. See
stanreg-objects.

newdata An optional data frame of new data (e.g. holdout data) to use when evaluating
the log-likelihood. See the description of newdata for posterior_predict.

offset A vector of offsets. Only required if newdata is specified and an offset was
specified when fitting the model.

... Currently ignored.

m Integer specifying the number or name of the submodel
newdataLong, newdataEvent

Optional data frames containing new data (e.g. holdout data) to use when evalu-
ating the log-likelihood for a model estimated using stan_jm. If the fitted model
was a multivariate joint model (i.e. more than one longitudinal outcome), then
newdataLong is allowed to be a list of data frames. If supplying new data, then
newdataEvent should also include variables corresponding to the event time
and event indicator as these are required for evaluating the log likelihood for
the event submodel. For more details, see the description of newdataLong and
newdataEvent for posterior_survfit.

Value

For the stanreg and stanmvreg methods an S by N matrix, where S is the size of the posterior
sample and N is the number of data points. For the stanjm method an S by Npat matrix where
Npat is the number of individuals.

20 loo.stanreg

Examples

if (.Platform$OS.type != "windows" || .Platform$r_arch != "i386") {

roaches$roach100 <- roaches$roach1 / 100
fit <- stan_glm(

y ~ roach100 + treatment + senior,
offset = log(exposure2),
data = roaches,
family = poisson(link = "log"),
prior = normal(0, 2.5),
prior_intercept = normal(0, 10),
iter = 500, # just to speed up example,
refresh = 0

)
ll <- log_lik(fit)
dim(ll)
all.equal(ncol(ll), nobs(fit))

using newdata argument
nd <- roaches[1:2,]
nd$treatment[1:2] <- c(0, 1)
ll2 <- log_lik(fit, newdata = nd, offset = c(0, 0))
head(ll2)
dim(ll2)
all.equal(ncol(ll2), nrow(nd))

}

loo.stanreg Information criteria and cross-validation

Description

For models fit using MCMC, compute approximate leave-one-out cross-validation (LOO, LOOIC)
or, less preferably, the Widely Applicable Information Criterion (WAIC) using the loo package.
(For K-fold cross-validation see kfold.stanreg.) Functions for model comparison, and model
weighting/averaging are also provided.

Note: these functions are not guaranteed to work properly unless the data argument was specified
when the model was fit. Also, as of loo version 2.0.0 the default number of cores is now only
1, but we recommend using as many (or close to as many) cores as possible by setting the cores
argument or using options(mc.cores = VALUE) to set it for an entire session.

Usage

S3 method for class 'stanreg'
loo(
x,
...,

loo.stanreg 21

cores = getOption("mc.cores", 1),
save_psis = FALSE,
k_threshold = NULL

)

S3 method for class 'stanreg'
waic(x, ...)

S3 method for class 'stanreg'
loo_compare(x, ..., criterion = c("loo", "kfold", "waic"), detail = FALSE)

S3 method for class 'stanreg_list'
loo_compare(x, ..., criterion = c("loo", "kfold", "waic"), detail = FALSE)

S3 method for class 'stanreg_list'
loo_model_weights(x, ..., cores = getOption("mc.cores", 1), k_threshold = NULL)

compare_models(..., loos = list(), detail = FALSE)

Arguments

x For loo and waic, a fitted model object returned by one of the rstanarm modeling
functions. See stanreg-objects.

For the loo_model_weights method, x should be a "stanreg_list" object, which
is a list of fitted model objects created by stanreg_list. loo_compare also
allows x to be a single stanreg object, with the remaining objects passed via
..., or a single stanreg_list object.

... For loo_compare.stanreg, ... can contain objects returned by the loo, kfold,
or waic method (see the Examples section, below).

For loo_model_weights, ... should contain arguments (e.g. method) to pass
to the default loo_model_weights method from the loo package.

cores, save_psis

Passed to loo.

k_threshold Threshold for flagging estimates of the Pareto shape parameters k estimated
by loo. See the How to proceed when loo gives warnings section, below, for
details.

criterion For loo_compare.stanreg and loo_compare.stanreg_list, should the com-
parison be based on LOO-CV (criterion="loo"), K-fold-CV (criterion="kfold"),
or WAIC (criterion="waic"). The default is LOO-CV. See the Comparing
models and Examples sections below.

detail For loo_compare.stanreg and loo_compare.stanreg_list, if TRUE then ex-
tra information about each model (currently just the model formulas) will be
printed with the output.

loos a list of objects produced by the loo function

22 loo.stanreg

Value

The structure of the objects returned by loo and waic methods are documented in detail in the
Value section in loo and waic (from the loo package).

loo_compare returns a matrix with class ’compare.loo’. See the Comparing models section below
for more details.

Approximate LOO CV

The loo method for stanreg objects provides an interface to the loo package for approximate leave-
one-out cross-validation (LOO). The LOO Information Criterion (LOOIC) has the same purpose as
the Akaike Information Criterion (AIC) that is used by frequentists. Both are intended to estimate
the expected log predictive density (ELPD) for a new dataset. However, the AIC ignores priors and
assumes that the posterior distribution is multivariate normal, whereas the functions from the loo
package do not make this distributional assumption and integrate over uncertainty in the parameters.
This only assumes that any one observation can be omitted without having a major effect on the
posterior distribution, which can be judged using the diagnostic plot provided by the plot.loo
method and the warnings provided by the print.loo method (see the How to Use the rstanarm
Package vignette for an example of this process).

How to proceed when loo gives warnings (k_threshold): The k_threshold argument to the
loo method for rstanarm models is provided as a possible remedy when the diagnostics reveal
problems stemming from the posterior’s sensitivity to particular observations. Warnings about
Pareto k estimates indicate observations for which the approximation to LOO is problematic (this
is described in detail in Vehtari, Gelman, and Gabry (2017) and the loo package documentation).
The k_threshold argument can be used to set the k value above which an observation is flagged.
If k_threshold is not NULL and there are J observations with k estimates above k_threshold
then when loo is called it will refit the original model J times, each time leaving out one of the
J problematic observations. The pointwise contributions of these observations to the total ELPD
are then computed directly and substituted for the previous estimates from these J observations
that are stored in the object created by loo. Another option to consider is K-fold cross-validation,
which is documented on a separate page (see kfold).
Note: in the warning messages issued by loo about large Pareto k estimates we recommend
setting k_threshold to at least 0.7. There is a theoretical reason, explained in Vehtari, Gelman,
and Gabry (2017), for setting the threshold to the stricter value of 0.5, but in practice they find
that errors in the LOO approximation start to increase non-negligibly when k > 0.7.

Comparing models

"loo" (or "waic" or "kfold") objects can be passed to the loo_compare function in the loo package
to perform model comparison. rstanarm also provides a loo_compare.stanreg method that can
be used if the "loo" (or "waic" or "kfold") object has been added to the fitted model object (see
the Examples section below for how to do this). This second method allows rstanarm to perform
some extra checks that can’t be done by the loo package itself (e.g., verifying that all models to be
compared were fit using the same outcome variable).

loo_compare will return a matrix with one row per model and columns containing the ELPD differ-
ence and the standard error of the difference. In the first row of the matrix will be the model with the
largest ELPD (smallest LOOIC) and will contain zeros (there is no difference between this model
and itself). For each of the remaining models the ELPD difference and SE are reported relative to

loo.stanreg 23

the model with the best ELPD (the first row). See the Details section at the loo_compare page in
the loo package for more information.

Model weights

The loo_model_weights method can be used to compute model weights for a "stanreg_list"
object, which is a list of fitted model objects made with stanreg_list. The end of the Examples
section has a demonstration. For details see the loo_model_weights documentation in the loo
package.

References

Vehtari, A., Gelman, A., and Gabry, J. (2017). Practical Bayesian model evaluation using leave-one-
out cross-validation and WAIC. Statistics and Computing. 27(5), 1413–1432. doi:10.1007/s11222-
016-9696-4. arXiv preprint: https://arxiv.org/abs/1507.04544

Yao, Y., Vehtari, A., Simpson, D., and Gelman, A. (2018) Using stacking to average Bayesian
predictive distributions. Bayesian Analysis, advance publication, doi:10.1214/17BA1091.

Gabry, J. , Simpson, D. , Vehtari, A. , Betancourt, M. and Gelman, A. (2019), Visualization in
Bayesian workflow. J. R. Stat. Soc. A, 182: 389-402. doi:10.1111/rssa.12378, arXiv preprint, code
on GitHub)

See Also

• The new loo package vignettes and various rstanarm vignettes for more examples using loo
and related functions with rstanarm models.

• pareto-k-diagnostic in the loo package for more on Pareto k diagnostics.

• log_lik.stanreg to directly access the pointwise log-likelihood matrix.

Examples

if (.Platform$OS.type != "windows" || .Platform$r_arch != "i386") {

fit1 <- stan_glm(mpg ~ wt, data = mtcars, refresh = 0)
fit2 <- stan_glm(mpg ~ wt + cyl, data = mtcars, refresh = 0)

(for bigger models use as many cores as possible)
loo1 <- loo(fit1, cores = 1)
print(loo1)
loo2 <- loo(fit2, cores = 1)
print(loo2)

when comparing models the loo objects can be passed to loo_compare
as individual arguments or as a list of loo objects
loo_compare(loo1, loo2)
loo_compare(list(loo1, loo2))

if the fitted model objects contain a loo object in the component "loo"
then the model objects can be passed directly or as a stanreg_list
fit1$loo <- loo1
fit2$loo <- loo2

https://arxiv.org/abs/1507.04544
https://doi.org/10.1214/17-BA1091
https://arxiv.org/abs/1709.01449
https://github.com/jgabry/bayes-vis-paper
https://github.com/jgabry/bayes-vis-paper
https://mc-stan.org/loo/articles/
https://mc-stan.org/rstanarm/articles/

24 loo_predict.stanreg

loo_compare(fit1, fit2)

if the fitted model objects contain a loo object _and_ a waic or kfold
object, then the criterion argument determines which of them the comparison
is based on
fit1$waic <- waic(fit1)
fit2$waic <- waic(fit2)
loo_compare(fit1, fit2, criterion = "waic")

the models can also be combined into a stanreg_list object, and more
informative model names can be provided to use when printing
model_list <- stanreg_list(fit1, fit2, model_names = c("Fewer predictors", "More predictors"))
loo_compare(model_list)

fit3 <- stan_glm(mpg ~ disp * as.factor(cyl), data = mtcars, refresh = 0)
loo3 <- loo(fit3, cores = 2, k_threshold = 0.7)
loo_compare(loo1, loo2, loo3)

setting detail=TRUE will also print model formulas if used with
loo_compare.stanreg or loo_compare.stanreg_list
fit3$loo <- loo3
model_list <- stanreg_list(fit1, fit2, fit3)
loo_compare(model_list, detail=TRUE)

Computing model weights
#
if the objects in model_list already have 'loo' components then those
will be used. otherwise loo will be computed for each model internally
(in which case the 'cores' argument may also be used and is passed to loo())
loo_model_weights(model_list) # defaults to method="stacking"
loo_model_weights(model_list, method = "pseudobma")
loo_model_weights(model_list, method = "pseudobma", BB = FALSE)

you can also pass precomputed loo objects directly to loo_model_weights
loo_list <- list(A = loo1, B = loo2, C = loo3) # names optional (affects printing)
loo_model_weights(loo_list)

}

loo_predict.stanreg Compute weighted expectations using LOO

Description

These functions are wrappers around the E_loo function (loo package) that provide compatibility
for rstanarm models.

Usage

S3 method for class 'stanreg'

loo_predict.stanreg 25

loo_predict(
object,
type = c("mean", "var", "quantile"),
probs = 0.5,
...,
psis_object = NULL

)

S3 method for class 'stanreg'
loo_linpred(
object,
type = c("mean", "var", "quantile"),
probs = 0.5,
transform = FALSE,
...,
psis_object = NULL

)

S3 method for class 'stanreg'
loo_predictive_interval(object, prob = 0.9, ..., psis_object = NULL)

Arguments

object A fitted model object returned by one of the rstanarm modeling functions. See
stanreg-objects.

type The type of expectation to compute. The options are "mean", "variance", and
"quantile".

probs For computing quantiles, a vector of probabilities.

... Currently unused.

psis_object An object returned by psis. If missing then psis will be run internally, which
may be time consuming for models fit to very large datasets.

transform Passed to posterior_linpred.

prob For loo_predictive_interval, a scalar in (0, 1) indicating the desired proba-
bility mass to include in the intervals. The default is prob=0.9 (90% intervals).

Value

A list with elements value and pareto_k.

For loo_predict and loo_linpred the value component is a vector with one element per obser-
vation.

For loo_predictive_interval the value component is a matrix with one row per observation and
two columns (like predictive_interval). loo_predictive_interval(..., prob = p) is equiv-
alent to loo_predict(..., type = "quantile", probs = c(a, 1-a)) with a = (1 - p)/2, except
it transposes the result and adds informative column names.

See E_loo and pareto-k-diagnostic for details on the pareto_k diagnostic.

26 neg_binomial_2

References

Vehtari, A., Gelman, A., and Gabry, J. (2017). Practical Bayesian model evaluation using leave-one-
out cross-validation and WAIC. Statistics and Computing. 27(5), 1413–1432. doi:10.1007/s11222-
016-9696-4. arXiv preprint: https://arxiv.org/abs/1507.04544

Yao, Y., Vehtari, A., Simpson, D., and Gelman, A. (2018) Using stacking to average Bayesian
predictive distributions. Bayesian Analysis, advance publication, doi:10.1214/17BA1091.

Gabry, J. , Simpson, D. , Vehtari, A. , Betancourt, M. and Gelman, A. (2019), Visualization in
Bayesian workflow. J. R. Stat. Soc. A, 182: 389-402. doi:10.1111/rssa.12378, arXiv preprint, code
on GitHub)

Examples

if (.Platform$OS.type != "windows" || .Platform$r_arch != "i386") {
Not run:
if (!exists("example_model")) example(example_model)

optionally, log-weights can be pre-computed and reused
psis_result <- loo::psis(log_ratios = -log_lik(example_model))

loo_probs <- loo_linpred(example_model, type = "mean", transform = TRUE, psis_object = psis_result)
str(loo_probs)

loo_pred_var <- loo_predict(example_model, type = "var", psis_object = psis_result)
str(loo_pred_var)

loo_pred_ints <- loo_predictive_interval(example_model, prob = 0.8, psis_object = psis_result)
str(loo_pred_ints)

End(Not run)
}

neg_binomial_2 Family function for negative binomial GLMs

Description

Specifies the information required to fit a Negative Binomial GLM in a similar way to negative.binomial.
However, here the overdispersion parameter theta is not specified by the user and always esti-
mated (really the reciprocal of the dispersion parameter is estimated). A call to this function can
be passed to the family argument of stan_glm or stan_glmer to estimate a Negative Binomial
model. Alternatively, the stan_glm.nb and stan_glmer.nb wrapper functions may be used, which
call neg_binomial_2 internally.

Usage

neg_binomial_2(link = "log")

https://arxiv.org/abs/1507.04544
https://doi.org/10.1214/17-BA1091
https://arxiv.org/abs/1709.01449
https://github.com/jgabry/bayes-vis-paper
https://github.com/jgabry/bayes-vis-paper

nobs.stanmvreg 27

Arguments

link The same as for poisson, typically a character vector of length one among
"log", "identity", and "sqrt".

Value

An object of class family very similar to that of poisson but with a different family name.

Examples

if (.Platform$OS.type != "windows" || .Platform$r_arch != "i386")
stan_glm(Days ~ Sex/(Age + Eth*Lrn), data = MASS::quine, seed = 123,

family = neg_binomial_2, QR = TRUE, algorithm = "optimizing")

or, equivalently, call stan_glm.nb() without specifying the family

nobs.stanmvreg Methods for stanreg objects

Description

The methods documented on this page are actually some of the least important methods defined for
stanreg objects. The most important methods are documented separately, each with its own page.
Links to those pages are provided in the See Also section, below.

Usage

S3 method for class 'stanmvreg'
nobs(object, ...)

S3 method for class 'stanreg'
coef(object, ...)

S3 method for class 'stanreg'
confint(object, parm, level = 0.95, ...)

S3 method for class 'stanreg'
fitted(object, ...)

S3 method for class 'stanreg'
nobs(object, ...)

S3 method for class 'stanreg'
residuals(object, ...)

S3 method for class 'stanreg'

28 nobs.stanmvreg

se(object, ...)

S3 method for class 'stanreg'
update(object, formula., ..., evaluate = TRUE)

S3 method for class 'stanreg'
vcov(object, correlation = FALSE, ...)

S3 method for class 'stanreg'
fixef(object, ...)

S3 method for class 'stanreg'
ngrps(object, ...)

S3 method for class 'stanreg'
nsamples(object, ...)

S3 method for class 'stanreg'
ranef(object, ...)

S3 method for class 'stanreg'
sigma(object, ...)

S3 method for class 'stanreg'
VarCorr(x, sigma = 1, ...)

Arguments

object, x A fitted model object returned by one of the rstanarm modeling functions. See
stanreg-objects.

... Ignored, except by the update method. See update.

parm For confint, an optional character vector of parameter names.

level For confint, a scalar between 0 and 1 indicating the confidence level to use.
formula., evaluate

See update.

correlation For vcov, if FALSE (the default) the covariance matrix is returned. If TRUE, the
correlation matrix is returned instead.

sigma Ignored (included for compatibility with VarCorr).

Details

The methods documented on this page are similar to the methods defined for objects of class ’lm’,
’glm’, ’glmer’, etc. However there are a few key differences:

residuals Residuals are always of type "response" (not "deviance" residuals or any other type).
However, in the case of stan_polr with more than two response categories, the residuals are
the difference between the latent utility and its linear predictor.

pairs.stanreg 29

coef Medians are used for point estimates. See the Point estimates section in print.stanreg for
more details.

se The se function returns standard errors based on mad. See the Uncertainty estimates section in
print.stanreg for more details.

confint For models fit using optimization, confidence intervals are returned via a call to confint.default.
If algorithm is "sampling", "meanfield", or "fullrank", the confint will throw an error
because the posterior_interval function should be used to compute Bayesian uncertainty
intervals.

nsamples The number of draws from the posterior distribution obtained

See Also

• The print, summary, and prior_summary methods for stanreg objects for information on the
fitted model.

• launch_shinystan to use the ShinyStan GUI to explore a fitted rstanarm model.

• The plot method to plot estimates and diagnostics.

• The pp_check method for graphical posterior predictive checking.

• The posterior_predict and predictive_error methods for predictions and predictive er-
rors.

• The posterior_interval and predictive_interval methods for uncertainty intervals for
model parameters and predictions.

• The loo, kfold, and log_lik methods for leave-one-out or K-fold cross-validation, model
comparison, and computing the log-likelihood of (possibly new) data.

• The as.matrix, as.data.frame, and as.array methods to access posterior draws.

pairs.stanreg Pairs method for stanreg objects

Description

Interface to bayesplot’s mcmc_pairs function for use with rstanarm models. Be careful not to
specify too many parameters to include or the plot will be both hard to read and slow to render.

Usage

S3 method for class 'stanreg'
pairs(
x,
pars = NULL,
regex_pars = NULL,
condition = pairs_condition(nuts = "accept_stat__"),
...

)

30 pairs.stanreg

Arguments

x A fitted model object returned by one of the rstanarm modeling functions. See
stanreg-objects.

pars An optional character vector of parameter names. All parameters are included
by default, but for models with more than just a few parameters it may be far too
many to visualize on a small computer screen and also may require substantial
computing time.

regex_pars An optional character vector of regular expressions to use for parameter selec-
tion. regex_pars can be used in place of pars or in addition to pars. Currently,
all functions that accept a regex_pars argument ignore it for models fit using
optimization.

condition Same as the condition argument to mcmc_pairs except the default is different
for rstanarm models. By default, the mcmc_pairs function in the bayesplot
package plots some of the Markov chains (half, in the case of an even number of
chains) in the panels above the diagonal and the other half in the panels below
the diagonal. However since we know that rstanarm models were fit using
Stan (which bayesplot doesn’t assume) we can make the default more useful by
splitting the draws according to the accept_stat__ diagnostic. The plots below
the diagonal will contain realizations that are below the median accept_stat__
and the plots above the diagonal will contain realizations that are above the
median accept_stat__. To change this behavior see the documentation of the
condition argument at mcmc_pairs.

... Optional arguments passed to mcmc_pairs. The np, lp, and max_treedepth
arguments to mcmc_pairs are handled automatically by rstanarm and do not
need to be specified by the user in The arguments that can be speci-
fied in ... include transformations, diag_fun, off_diag_fun, diag_args,
off_diag_args, and np_style. These arguments are documented thoroughly
on the help page for mcmc_pairs.

Examples

if (.Platform$OS.type != "windows" || .Platform$r_arch != "i386") {

if (!exists("example_model")) example(example_model)

bayesplot::color_scheme_set("purple")

see 'condition' argument above for details on the plots below and
above the diagonal. default is to split by accept_stat__.
pairs(example_model, pars = c("(Intercept)", "log-posterior"))

for demonstration purposes, intentionally fit a model that
will (almost certainly) have some divergences
fit <- stan_glm(
mpg ~ ., data = mtcars,
iter = 1000,
this combo of prior and adapt_delta should lead to some divergences
prior = hs(),

plot.predict.stanjm 31

adapt_delta = 0.9,
refresh = 0

)

pairs(fit, pars = c("wt", "sigma", "log-posterior"))

requires hexbin package
pairs(
fit,
pars = c("wt", "sigma", "log-posterior"),
transformations = list(sigma = "log"), # show log(sigma) instead of sigma
off_diag_fun = "hex" # use hexagonal heatmaps instead of scatterplots
)

bayesplot::color_scheme_set("brightblue")
pairs(

fit,
pars = c("(Intercept)", "wt", "sigma", "log-posterior"),
transformations = list(sigma = "log"),
off_diag_args = list(size = 3/4, alpha = 1/3), # size and transparency of scatterplot points
np_style = pairs_style_np(div_color = "black", div_shape = 2) # color and shape of the divergences

)

Using the condition argument to show divergences above the diagonal
pairs(

fit,
pars = c("(Intercept)", "wt", "log-posterior"),
condition = pairs_condition(nuts = "divergent__")

)

}

plot.predict.stanjm Plot the estimated subject-specific or marginal longitudinal trajectory

Description

This generic plot method for predict.stanjm objects will plot the estimated subject-specific or
marginal longitudinal trajectory using the data frame returned by a call to posterior_traj. To
ensure that enough data points are available to plot the longitudinal trajectory, it is assumed that
the call to posterior_traj would have used the default interpolate = TRUE, and perhaps also
extrapolate = TRUE (the latter being optional, depending on whether or not the user wants to see
extrapolation of the longitudinal trajectory beyond the last observation time).

Usage

S3 method for class 'predict.stanjm'
plot(
x,

32 plot.predict.stanjm

ids = NULL,
limits = c("ci", "pi", "none"),
xlab = NULL,
ylab = NULL,
vline = FALSE,
plot_observed = FALSE,
facet_scales = "free_x",
ci_geom_args = NULL,
grp_overlay = FALSE,
...

)

Arguments

x A data frame and object of class predict.stanjm returned by a call to the
function posterior_traj. The object contains point estimates and uncertainty
interval limits for the fitted values of the longitudinal response.

ids An optional vector providing a subset of subject IDs for whom the predicted
curves should be plotted.

limits A quoted character string specifying the type of limits to include in the plot. Can
be one of: "ci" for the Bayesian posterior uncertainty interval for the estimated
mean longitudinal response (often known as a credible interval); "pi" for the
prediction interval for the estimated (raw) longitudinal response; or "none" for
no interval limits.

xlab, ylab An optional axis label passed to labs.

vline A logical. If TRUE then a vertical dashed line is added to the plot indicating the
event or censoring time for the individual. Can only be used if each plot within
the figure is for a single individual.

plot_observed A logical. If TRUE then the observed longitudinal measurements are overlaid on
the plot.

facet_scales A character string passed to the scales argument of facet_wrap when plotting
the longitudinal trajectory for more than one individual.

ci_geom_args Optional arguments passed to geom_ribbon and used to control features of the
plotted interval limits. They should be supplied as a named list.

grp_overlay Only relevant if the model had lower level units clustered within an individual.
If TRUE, then the fitted trajectories for the lower level units will be overlaid in
the same plot region (that is, all lower level units for a single individual will be
shown within a single facet). If FALSE, then the fitted trajectories for each lower
level unit will be shown in a separate facet.

... Optional arguments passed to geom_smooth and used to control features of the
plotted longitudinal trajectory.

Value

A ggplot object, also of class plot.predict.stanjm. This object can be further customised using
the ggplot2 package. It can also be passed to the function plot_stack_jm.

plot.stanreg 33

See Also

posterior_traj, plot_stack_jm, posterior_survfit, plot.survfit.stanjm

Examples

if (.Platform$OS.type != "windows" || .Platform$r_arch != "i386") {

Run example model if not already loaded
if (!exists("example_jm")) example(example_jm)

For a subset of individuals in the estimation dataset we will
obtain subject-specific predictions for the longitudinal submodel
at evenly spaced times between 0 and their event or censoring time.
pt1 <- posterior_traj(example_jm, ids = c(7,13,15), interpolate = TRUE)
plot(pt1) # credible interval for mean response
plot(pt1, limits = "pi") # prediction interval for raw response
plot(pt1, limits = "none") # no uncertainty interval

We can also extrapolate the longitudinal trajectories.
pt2 <- posterior_traj(example_jm, ids = c(7,13,15), interpolate = TRUE,

extrapolate = TRUE)
plot(pt2)
plot(pt2, vline = TRUE) # add line indicating event or censoring time
plot(pt2, vline = TRUE, plot_observed = TRUE) # overlay observed longitudinal data

We can change or add attributes to the plot
plot1 <- plot(pt2, ids = c(7,13,15), xlab = "Follow up time",

vline = TRUE, plot_observed = TRUE,
facet_scales = "fixed", color = "blue", linetype = 2,
ci_geom_args = list(fill = "red"))

plot1

Since the returned plot is also a ggplot object, we can
modify some of its attributes after it has been returned
plot1 +
ggplot2::theme(strip.background = ggplot2::element_blank()) +
ggplot2::labs(title = "Some plotted longitudinal trajectories")

}

plot.stanreg Plot method for stanreg objects

Description

The plot method for stanreg-objects provides a convenient interface to the MCMC module in the
bayesplot package for plotting MCMC draws and diagnostics. It is also straightforward to use the
functions from the bayesplot package directly rather than via the plot method. Examples of both
methods of plotting are given below.

34 plot.stanreg

Usage

S3 method for class 'stanreg'
plot(x, plotfun = "intervals", pars = NULL, regex_pars = NULL, ...)

Arguments

x A fitted model object returned by one of the rstanarm modeling functions. See
stanreg-objects.

plotfun A character string naming the bayesplot MCMC function to use. The default
is to call mcmc_intervals. plotfun can be specified either as the full name of
a bayesplot plotting function (e.g. "mcmc_hist") or can be abbreviated to the
part of the name following the "mcmc_" prefix (e.g. "hist"). To get the names
of all available MCMC functions see available_mcmc.

pars An optional character vector of parameter names.

regex_pars An optional character vector of regular expressions to use for parameter selec-
tion. regex_pars can be used in place of pars or in addition to pars. Currently,
all functions that accept a regex_pars argument ignore it for models fit using
optimization.

... Additional arguments to pass to plotfun for customizing the plot. These are
described on the help pages for the individual plotting functions. For example,
the arguments accepted for the default plotfun="intervals" can be found at
mcmc_intervals.

Value

Either a ggplot object that can be further customized using the ggplot2 package, or an object created
from multiple ggplot objects (e.g. a gtable object created by arrangeGrob).

References

Gabry, J. , Simpson, D. , Vehtari, A. , Betancourt, M. and Gelman, A. (2019), Visualization in
Bayesian workflow. J. R. Stat. Soc. A, 182: 389-402. doi:10.1111/rssa.12378, arXiv preprint, code
on GitHub)

See Also

• The vignettes in the bayesplot package for many examples.

• MCMC-overview (bayesplot) for links to the documentation for all the available plotting func-
tions.

• color_scheme_set (bayesplot) to change the color scheme used for plotting.

• pp_check for graphical posterior predictive checks.

• plot_nonlinear for models with nonlinear smooth functions fit using stan_gamm4.

https://arxiv.org/abs/1709.01449
https://github.com/jgabry/bayes-vis-paper
https://github.com/jgabry/bayes-vis-paper

plot.stanreg 35

Examples

if (.Platform$OS.type != "windows" || .Platform$r_arch != "i386") {

Use rstanarm example model
if (!exists("example_model")) example(example_model)
fit <- example_model

#####################################
Intervals and point estimates
#####################################
plot(fit) # same as plot(fit, "intervals"), plot(fit, "mcmc_intervals")

p <- plot(fit, pars = "size", regex_pars = "period",
prob = 0.5, prob_outer = 0.9)

p + ggplot2::ggtitle("Posterior medians \n with 50% and 90% intervals")

Shaded areas under densities
bayesplot::color_scheme_set("brightblue")
plot(fit, "areas", regex_pars = "period",

prob = 0.5, prob_outer = 0.9)

Make the same plot by extracting posterior draws and calling
bayesplot::mcmc_areas directly
x <- as.array(fit, regex_pars = "period")
bayesplot::mcmc_areas(x, prob = 0.5, prob_outer = 0.9)

Ridgelines version of the areas plot
bayesplot::mcmc_areas_ridges(x, regex_pars = "period", prob = 0.9)

##################################
Histograms & density plots
##################################
plot_title <- ggplot2::ggtitle("Posterior Distributions")
plot(fit, "hist", regex_pars = "period") + plot_title
plot(fit, "dens_overlay", pars = "(Intercept)",

regex_pars = "period") + plot_title

####################
Scatterplots
####################
bayesplot::color_scheme_set("teal")
plot(fit, "scatter", pars = paste0("period", 2:3))
plot(fit, "scatter", pars = c("(Intercept)", "size"),

size = 3, alpha = 0.5) +
ggplot2::stat_ellipse(level = 0.9)

##
Rhat, effective sample size, autocorrelation
##
bayesplot::color_scheme_set("red")

36 plot.stanreg

rhat
plot(fit, "rhat")
plot(fit, "rhat_hist")

ratio of effective sample size to total posterior sample size
plot(fit, "neff")
plot(fit, "neff_hist")

autocorrelation by chain
plot(fit, "acf", pars = "(Intercept)", regex_pars = "period")
plot(fit, "acf_bar", pars = "(Intercept)", regex_pars = "period")

##################
Traceplots
##################
NOTE: rstanarm doesn't store the warmup draws (to save space because they
are not so essential for diagnosing the particular models implemented in
rstanarm) so the iterations in the traceplot are post-warmup iterations

bayesplot::color_scheme_set("pink")
(trace <- plot(fit, "trace", pars = "(Intercept)"))

change traceplot colors to ggplot defaults or custom values
trace + ggplot2::scale_color_discrete()
trace + ggplot2::scale_color_manual(values = c("maroon", "skyblue2"))

changing facet layout
plot(fit, "trace", pars = c("(Intercept)", "period2"),

facet_args = list(nrow = 2))
same plot by calling bayesplot::mcmc_trace directly
x <- as.array(fit, pars = c("(Intercept)", "period2"))
bayesplot::mcmc_trace(x, facet_args = list(nrow = 2))

############
More
############

regex_pars examples
plot(fit, regex_pars = "herd:1\\]")
plot(fit, regex_pars = "herd:[279]")
plot(fit, regex_pars = "herd:[279]|period2")
plot(fit, regex_pars = c("herd:[279]", "period2"))

For graphical posterior predictive checks see
help("pp_check.stanreg")
}

plot.survfit.stanjm 37

plot.survfit.stanjm Plot the estimated subject-specific or marginal survival function

Description

This generic plot method for survfit.stanjm objects will plot the estimated subject-specific or
marginal survival function using the data frame returned by a call to posterior_survfit. The call
to posterior_survfit should ideally have included an "extrapolation" of the survival function,
obtained by setting the extrapolate argument to TRUE.

The plot_stack_jm function takes arguments containing the plots of the estimated subject-specific
longitudinal trajectory (or trajectories if a multivariate joint model was estimated) and the plot of
the estimated subject-specific survival function and combines them into a single figure. This is most
easily understood by running the Examples below.

Usage

S3 method for class 'survfit.stanjm'
plot(
x,
ids = NULL,
limits = c("ci", "none"),
xlab = NULL,
ylab = NULL,
facet_scales = "free",
ci_geom_args = NULL,
...

)

plot_stack_jm(yplot, survplot)

Arguments

x A data frame and object of class survfit.stanjm returned by a call to the func-
tion posterior_survfit. The object contains point estimates and uncertainty
interval limits for estimated values of the survival function.

ids An optional vector providing a subset of subject IDs for whom the predicted
curves should be plotted.

limits A quoted character string specifying the type of limits to include in the plot.
Can be one of: "ci" for the Bayesian posterior uncertainty interval for the es-
timated survival probability (often known as a credible interval); or "none" for
no interval limits.

xlab, ylab An optional axis label passed to labs.

facet_scales A character string passed to the scales argument of facet_wrap when plotting
the longitudinal trajectory for more than one individual.

38 plot.survfit.stanjm

ci_geom_args Optional arguments passed to geom_ribbon and used to control features of the
plotted interval limits. They should be supplied as a named list.

... Optional arguments passed to geom_line and used to control features of the
plotted survival function.

yplot An object of class plot.predict.stanjm, returned by a call to the generic
plot method for objects of class predict.stanjm. If there is more than one
longitudinal outcome, then a list of such objects can be provided.

survplot An object of class plot.survfit.stanjm, returned by a call to the generic plot
method for objects of class survfit.stanjm.

Value

The plot method returns a ggplot object, also of class plot.survfit.stanjm. This object can be
further customised using the ggplot2 package. It can also be passed to the function plot_stack_jm.

plot_stack_jm returns an object of class bayesplot_grid that includes plots of the estimated
subject-specific longitudinal trajectories stacked on top of the associated subject-specific survival
curve.

See Also

posterior_survfit, plot_stack_jm, posterior_traj, plot.predict.stanjm

plot.predict.stanjm, plot.survfit.stanjm, posterior_predict, posterior_survfit

Examples

if (.Platform$OS.type != "windows" || .Platform$r_arch != "i386") {

Run example model if not already loaded
if (!exists("example_jm")) example(example_jm)

Obtain subject-specific conditional survival probabilities
for all individuals in the estimation dataset.
ps1 <- posterior_survfit(example_jm, extrapolate = TRUE)

We then plot the conditional survival probabilities for
a subset of individuals
plot(ps1, ids = c(7,13,15))
We can change or add attributes to the plot
plot(ps1, ids = c(7,13,15), limits = "none")
plot(ps1, ids = c(7,13,15), xlab = "Follow up time")
plot(ps1, ids = c(7,13,15), ci_geom_args = list(fill = "red"),

color = "blue", linetype = 2)
plot(ps1, ids = c(7,13,15), facet_scales = "fixed")

Since the returned plot is also a ggplot object, we can
modify some of its attributes after it has been returned
plot1 <- plot(ps1, ids = c(7,13,15))
plot1 +

ggplot2::theme(strip.background = ggplot2::element_blank()) +
ggplot2::coord_cartesian(xlim = c(0, 15)) +

posterior_interval.stanreg 39

ggplot2::labs(title = "Some plotted survival functions")

We can also combine the plot(s) of the estimated
subject-specific survival functions, with plot(s)
of the estimated longitudinal trajectories for the
same individuals
ps1 <- posterior_survfit(example_jm, ids = c(7,13,15))
pt1 <- posterior_traj(example_jm, , ids = c(7,13,15))
plot_surv <- plot(ps1)
plot_traj <- plot(pt1, vline = TRUE, plot_observed = TRUE)
plot_stack_jm(plot_traj, plot_surv)

Lastly, let us plot the standardised survival function
based on all individuals in our estimation dataset
ps2 <- posterior_survfit(example_jm, standardise = TRUE, times = 0,

control = list(epoints = 20))
plot(ps2)

}
if (.Platform$OS.type != "windows" || .Platform$r_arch != "i386") {

if (!exists("example_jm")) example(example_jm)
ps1 <- posterior_survfit(example_jm, ids = c(7,13,15))
pt1 <- posterior_traj(example_jm, ids = c(7,13,15), extrapolate = TRUE)
plot_surv <- plot(ps1)
plot_traj <- plot(pt1, vline = TRUE, plot_observed = TRUE)
plot_stack_jm(plot_traj, plot_surv)

}

posterior_interval.stanreg

Posterior uncertainty intervals

Description

For models fit using MCMC (algorithm="sampling") or one of the variational approximations
("meanfield" or "fullrank"), the posterior_interval function computes Bayesian posterior
uncertainty intervals. These intervals are often referred to as credible intervals, but we use the term
uncertainty intervals to highlight the fact that wider intervals correspond to greater uncertainty.

Usage

S3 method for class 'stanreg'
posterior_interval(
object,
prob = 0.9,
type = "central",
pars = NULL,

40 posterior_interval.stanreg

regex_pars = NULL,
...

)

Arguments

object A fitted model object returned by one of the rstanarm modeling functions. See
stanreg-objects.

prob A number p ∈ (0, 1) indicating the desired probability mass to include in the
intervals. The default is to report 90% intervals (prob=0.9) rather than the tra-
ditionally used 95% (see Details).

type The type of interval to compute. Currently the only option is "central" (see
Details). A central 100p% interval is defined by the α/2 and 1− α/2 quantiles,
where α = 1− p.

pars An optional character vector of parameter names.

regex_pars An optional character vector of regular expressions to use for parameter selec-
tion. regex_pars can be used in place of pars or in addition to pars. Currently,
all functions that accept a regex_pars argument ignore it for models fit using
optimization.

... Currently ignored.

Details

Interpretation: Unlike for a frenquentist confidence interval, it is valid to say that, conditional
on the data and model, we believe that with probability p the value of a parameter is in its 100p%
posterior interval. This intuitive interpretation of Bayesian intervals is often erroneously applied
to frequentist confidence intervals. See Morey et al. (2015) for more details on this issue and the
advantages of using Bayesian posterior uncertainty intervals (also known as credible intervals).

Default 90% intervals: We default to reporting 90% intervals rather than 95% intervals for
several reasons:

• Computational stability: 90% intervals are more stable than 95% intervals (for which each
end relies on only 2.5% of the posterior draws).

• Relation to Type-S errors (Gelman and Carlin, 2014): 95% of the mass in a 90% central
interval is above the lower value (and 95% is below the upper value). For a parameter θ, it
is therefore easy to see if the posterior probability that θ > 0 (or θ < 0) is larger or smaller
than 95%.

Of course, if 95% intervals are desired they can be computed by specifying prob=0.95.

Types of intervals: Currently posterior_interval only computes central intervals because
other types of intervals are rarely useful for the models that rstanarm can estimate. Additional
possibilities may be provided in future releases as more models become available.

Value

A matrix with two columns and as many rows as model parameters (or the subset of parameters
specified by pars and/or regex_pars). For a given value of prob, p, the columns correspond to the

posterior_linpred.stanreg 41

lower and upper 100p% interval limits and have the names 100α/2% and 100(1 − α/2)%, where
α = 1− p. For example, if prob=0.9 is specified (a 90% interval), then the column names will be
"5%" and "95%", respectively.

References

Gelman, A. and Carlin, J. (2014). Beyond power calculations: assessing Type S (sign) and Type M
(magnitude) errors. Perspectives on Psychological Science. 9(6), 641–51.

Morey, R. D., Hoekstra, R., Rouder, J., Lee, M. D., and Wagenmakers, E. (2016). The fallacy of
placing confidence in confidence intervals. Psychonomic Bulletin & Review. 23(1), 103–123.

See Also

confint.stanreg, which, for models fit using optimization, can be used to compute traditional
confidence intervals.

predictive_interval for predictive intervals.

Examples

if (.Platform$OS.type != "windows" || .Platform$r_arch != "i386") {
if (!exists("example_model")) example(example_model)
posterior_interval(example_model)
posterior_interval(example_model, regex_pars = "herd")
posterior_interval(example_model, pars = "period2", prob = 0.5)
}

posterior_linpred.stanreg

Posterior distribution of the (possibly transformed) linear predictor

Description

Extract the posterior draws of the linear predictor, possibly transformed by the inverse-link func-
tion. This function is occasionally useful, but it should be used sparingly: inference and model
checking should generally be carried out using the posterior predictive distribution (i.e., using
posterior_predict).

Usage

S3 method for class 'stanreg'
posterior_linpred(
object,
transform = FALSE,
newdata = NULL,
draws = NULL,
re.form = NULL,
offset = NULL,

42 posterior_linpred.stanreg

XZ = FALSE,
...

)

S3 method for class 'stanreg'
posterior_epred(
object,
newdata = NULL,
draws = NULL,
re.form = NULL,
offset = NULL,
XZ = FALSE,
...

)

Arguments

object A fitted model object returned by one of the rstanarm modeling functions. See
stanreg-objects.

transform Should the linear predictor be transformed using the inverse-link function? The
default is FALSE. This argument is still allowed but not recommended because
the posterior_epred function now provides the equivalent of posterior_linpred(...,
transform=TRUE). See Examples.

newdata, draws, re.form, offset

Same as for posterior_predict.

XZ If TRUE then instead of computing the linear predictor the design matrix X (or
cbind(X,Z) for models with group-specific terms) constructed from newdata
is returned. The default is FALSE.

... Currently ignored.

Details

The posterior_linpred function returns the posterior distribution of the linear predictor, while
the posterior_epred function returns the posterior distribution of the conditional expectation. In
the special case of a Gaussian likelihood with an identity link function, these two concepts are the
same. The posterior_epred function is a less noisy way to obtain expectations over the output of
posterior_predict.

Value

The default is to return a draws by nrow(newdata) matrix of simulations from the posterior distri-
bution of the (possibly transformed) linear predictor. The exception is if the argument XZ is set to
TRUE (see the XZ argument description above).

Note

For models estimated with stan_clogit, the number of successes per stratum is ostensibly fixed
by the research design. Thus, when calling posterior_linpred with new data and transform =

posterior_predict.stanreg 43

TRUE, the data.frame passed to the newdata argument must contain an outcome variable and a
stratifying factor, both with the same name as in the original data.frame. Then, the probabilities
will condition on this outcome in the new data.

See Also

posterior_predict to draw from the posterior predictive distribution of the outcome, which is
typically preferable.

Examples

if (.Platform$OS.type != "windows" || .Platform$r_arch != "i386") {
if (!exists("example_model")) example(example_model)
print(family(example_model))

linear predictor on log-odds scale
linpred <- posterior_linpred(example_model)
colMeans(linpred)

probabilities
same as posterior_linpred(example_model, transform = TRUE)
probs <- posterior_epred(example_model)
colMeans(probs)

not conditioning on any group-level parameters
probs2 <- posterior_epred(example_model, re.form = NA)
apply(probs2, 2, median)
}

posterior_predict.stanreg

Draw from posterior predictive distribution

Description

The posterior predictive distribution is the distribution of the outcome implied by the model after
using the observed data to update our beliefs about the unknown parameters in the model. Sim-
ulating data from the posterior predictive distribution using the observed predictors is useful for
checking the fit of the model. Drawing from the posterior predictive distribution at interesting val-
ues of the predictors also lets us visualize how a manipulation of a predictor affects (a function of)
the outcome(s). With new observations of predictor variables we can use the posterior predictive
distribution to generate predicted outcomes.

Usage

S3 method for class 'stanreg'
posterior_predict(
object,
newdata = NULL,

44 posterior_predict.stanreg

draws = NULL,
re.form = NULL,
fun = NULL,
seed = NULL,
offset = NULL,
...

)

S3 method for class 'stanmvreg'
posterior_predict(
object,
m = 1,
newdata = NULL,
draws = NULL,
re.form = NULL,
fun = NULL,
seed = NULL,
offset = NULL,
...

)

Arguments

object A fitted model object returned by one of the rstanarm modeling functions. See
stanreg-objects.

newdata Optionally, a data frame in which to look for variables with which to predict.
If omitted, the model matrix is used. If newdata is provided and any variables
were transformed (e.g. rescaled) in the data used to fit the model, then these vari-
ables must also be transformed in newdata. This only applies if variables were
transformed before passing the data to one of the modeling functions and not
if transformations were specified inside the model formula. Also see the Note
section below for a note about using the newdata argument with with binomial
models.

draws An integer indicating the number of draws to return. The default and maximum
number of draws is the size of the posterior sample.

re.form If object contains group-level parameters, a formula indicating which group-
level parameters to condition on when making predictions. re.form is specified
in the same form as for predict.merMod. The default, NULL, indicates that all
estimated group-level parameters are conditioned on. To refrain from condition-
ing on any group-level parameters, specify NA or ~0. The newdata argument
may include new levels of the grouping factors that were specified when the
model was estimated, in which case the resulting posterior predictions marginal-
ize over the relevant variables.

fun An optional function to apply to the results. fun is found by a call to match.fun
and so can be specified as a function object, a string naming a function, etc.

seed An optional seed to use.
offset A vector of offsets. Only required if newdata is specified and an offset argu-

ment was specified when fitting the model.

posterior_predict.stanreg 45

... For stanmvreg objects, argument m can be specified indicating the submodel for
which you wish to obtain predictions.

m Integer specifying the number or name of the submodel

Value

A draws by nrow(newdata) matrix of simulations from the posterior predictive distribution. Each
row of the matrix is a vector of predictions generated using a single draw of the model parameters
from the posterior distribution.

Note

For binomial models with a number of trials greater than one (i.e., not Bernoulli models), if newdata
is specified then it must include all variables needed for computing the number of binomial trials to
use for the predictions. For example if the left-hand side of the model formula is cbind(successes,
failures) then both successes and failures must be in newdata. The particular values of
successes and failures in newdata do not matter so long as their sum is the desired number of
trials. If the left-hand side of the model formula were cbind(successes, trials - successes)
then both trials and successes would need to be in newdata, probably with successes set to 0
and trials specifying the number of trials. See the Examples section below and the How to Use
the rstanarm Package for examples.

For models estimated with stan_clogit, the number of successes per stratum is ostensibly fixed by
the research design. Thus, when doing posterior prediction with new data, the data.frame passed
to the newdata argument must contain an outcome variable and a stratifying factor, both with the
same name as in the original data.frame. Then, the posterior predictions will condition on this
outcome in the new data.

See Also

pp_check for graphical posterior predictive checks. Examples of posterior predictive checking can
also be found in the rstanarm vignettes and demos.

predictive_error and predictive_interval.

Examples

if (.Platform$OS.type != "windows" || .Platform$r_arch != "i386") {
if (!exists("example_model")) example(example_model)
yrep <- posterior_predict(example_model)
table(yrep)

Using newdata
counts <- c(18,17,15,20,10,20,25,13,12)
outcome <- gl(3,1,9)
treatment <- gl(3,3)
dat <- data.frame(counts, treatment, outcome)
fit3 <- stan_glm(

counts ~ outcome + treatment,
data = dat,
family = poisson(link="log"),

46 posterior_survfit

prior = normal(0, 1, autoscale = FALSE),
prior_intercept = normal(0, 5, autoscale = FALSE),
refresh = 0

)
nd <- data.frame(treatment = factor(rep(1,3)), outcome = factor(1:3))
ytilde <- posterior_predict(fit3, nd, draws = 500)
print(dim(ytilde)) # 500 by 3 matrix (draws by nrow(nd))

ytilde <- data.frame(
count = c(ytilde),
outcome = rep(nd$outcome, each = 500)

)
ggplot2::ggplot(ytilde, ggplot2::aes(x=outcome, y=count)) +

ggplot2::geom_boxplot() +
ggplot2::ylab("predicted count")

Using newdata with a binomial model.
example_model is binomial so we need to set
the number of trials to use for prediction.
This could be a different number for each
row of newdata or the same for all rows.
Here we'll use the same value for all.
nd <- lme4::cbpp
print(formula(example_model)) # cbind(incidence, size - incidence) ~ ...
nd$size <- max(nd$size) + 1L # number of trials
nd$incidence <- 0 # set to 0 so size - incidence = number of trials
ytilde <- posterior_predict(example_model, newdata = nd)

Using fun argument to transform predictions
mtcars2 <- mtcars
mtcars2$log_mpg <- log(mtcars2$mpg)
fit <- stan_glm(log_mpg ~ wt, data = mtcars2, refresh = 0)
ytilde <- posterior_predict(fit, fun = exp)

}

posterior_survfit Estimate subject-specific or standardised survival probabilities

Description

This function allows us to generate estimated survival probabilities based on draws from the poste-
rior predictive distribution. By default the survival probabilities are conditional on an individual’s
group-specific coefficients (i.e. their individual-level random effects). If prediction data is provided
via the newdataLong and newdataEvent arguments, then the default behaviour is to sample new
group-specific coefficients for the individuals in the new data using a Monte Carlo scheme that
conditions on their longitudinal outcome data provided in newdataLong (sometimes referred to as

posterior_survfit 47

"dynamic predictions", see Rizopoulos (2011)). This default behaviour can be stopped by specify-
ing dynamic = FALSE, in which case the predicted survival probabilities will be marginalised over
the distribution of the group-specific coefficients. This has the benefit that the user does not need
to provide longitudinal outcome measurements for the new individuals, however, it does mean that
the predictions will incorporate all the uncertainty associated with between-individual variation,
since the predictions aren’t conditional on any observed data for the individual. In addition, by
default, the predicted subject-specific survival probabilities are conditional on observed values of
the fixed effect covariates (ie, the predictions will be obtained using either the design matrices used
in the original stan_jm model call, or using the covariate values provided in the newdataLong
and newdataEvent arguments). However, if you wish to average over the observed distribution
of the fixed effect covariates then this is possible – such predictions are sometimes referred to as
standardised survival probabilties – see the standardise argument below.

Usage

posterior_survfit(
object,
newdataLong = NULL,
newdataEvent = NULL,
extrapolate = TRUE,
control = list(),
condition = NULL,
last_time = NULL,
prob = 0.95,
ids,
times = NULL,
standardise = FALSE,
dynamic = TRUE,
scale = 1.5,
draws = NULL,
seed = NULL,
...

)

Arguments

object A fitted model object returned by the stan_jm modelling function. See stanreg-objects.
newdataLong, newdataEvent

Optionally, a data frame (or in the case of newdataLong this can be a list of
data frames) in which to look for variables with which to predict. If omitted,
the model matrices are used. If new data is provided, then it should also con-
tain the longitudinal outcome data on which to condition when drawing the new
group-specific coefficients for individuals in the new data. Note that there is only
allowed to be one row of data for each individual in newdataEvent, that is, time-
varying covariates are not allowed in the prediction data for the event submodel.
Also, newdataEvent can optionally include a variable with information about
the last known survival time for the new individuals – see the description for the
last_time argument below – however also note that when generating the sur-
vival probabilities it is of course assumed that all individuals in newdataEvent

48 posterior_survfit

have not yet experienced the event (that is, any variable in newdataEvent that
corresponds to the event indicator will be ignored).

extrapolate A logical specifying whether to extrapolate the estimated survival probabilities
beyond the times specified in the times argument. If TRUE then the extrapolation
can be further controlled using the control argument.

control A named list with parameters controlling extrapolation of the estimated survival
function when extrapolate = TRUE. The list can contain one or more of the fol-
lowing named elements:

epoints a positive integer specifying the number of discrete time points at
which to calculate the forecasted survival probabilities. The default is 10.

edist a positive scalar specifying the amount of time across which to forecast
the estimated survival function, represented in units of the time variable
time_var (from fitting the model). The default is to extrapolate between
the times specified in the times argument and the maximum event or cen-
soring time in the original data. If edist leads to times that are beyond the
maximum event or censoring time in the original data then the estimated
survival probabilities will be truncated at that point, since the estimate for
the baseline hazard is not available beyond that time.

condition A logical specifying whether the estimated subject-specific survival probabili-
ties at time t should be conditioned on survival up to a fixed time point u. The
default is for condition to be set to TRUE, unless standardised survival proba-
bilities have been requested (by specifying standardise = TRUE), in which case
condition must (and will) be set to FALSE. When conditional survival proba-
bilities are requested, the fixed time point u will be either: (i) the value specified
via the last_time argument; or if the last_time argument is NULL then the
latest observation time for each individual (taken to be the value in the times
argument if newdataEvent is specified, or the observed event or censoring time
if newdataEvent is NULL.

last_time A scalar, character string, or NULL. This argument specifies the last known sur-
vival time for each individual when conditional predictions are being obtained.
If newdataEvent is provided and conditional survival predictions are being ob-
tained, then the last_time argument can be one of the following: (i) a scalar,
this will use the same last time for each individual in newdataEvent; (ii) a char-
acter string, naming a column in newdataEvent in which to look for the last
time for each individual; (iii) NULL, in which case the default is to use the time
of the latest longitudinal observation in newdataLong. If newdataEvent is NULL
then the last_time argument cannot be specified directly; instead it will be
set equal to the event or censoring time for each individual in the dataset that
was used to estimate the model. If standardised survival probabilities are re-
quested (i.e. standardise = TRUE) then conditional survival probabilities are
not allowed and therefore the last_time argument is ignored.

prob A scalar between 0 and 1 specifying the width to use for the uncertainty interval
(sometimes called credible interval) for the predictions. For example prob =
0.95 (the default) means that the 2.5th and 97.5th percentiles will be provided.

ids An optional vector specifying a subset of IDs for whom the predictions should
be obtained. The default is to predict for all individuals who were used in esti-

posterior_survfit 49

mating the model or, if newdataLong and newdataEvent are specified, then all
individuals contained in the new data.

times A scalar, a character string, or NULL. Specifies the times at which the estimated
survival probabilities should be calculated. It can be either: (i) NULL, in which
case it will default to the last known survival time for each individual, as deter-
mined by the last_time argument; (ii) a scalar, specifying a time to estimate
the survival probability for each of the individuals; or (iii) if newdataEvent is
provided, it can be the name of a variable in newdataEvent that indicates the
time at which the survival probabilities should be calculated for each individual.

standardise A logical specifying whether the estimated subject-specific survival probabili-
ties should be averaged across all individuals for whom the subject-specific pre-
dictions are being obtained. This can be used to average over the covariate and
random effects distributions of the individuals used in estimating the model, or
the individuals included in the newdata arguments. This approach of averaging
across the observed distribution of the covariates is sometimes referred to as a
"standardised" survival curve. If standardise = TRUE, then the times argument
must be specified and it must be constant across individuals, that is, the survival
probabilities must be calculated at the same time for all individuals.

dynamic A logical that is only relevant if new data is provided via the newdataLong and
newdataEvent arguments. If dynamic = TRUE, then new group-specific param-
eters are drawn for the individuals in the new data, conditional on their longitu-
dinal biomarker data contained in newdataLong. These group-specific parame-
ters are then used to generate individual-specific survival probabilities for these
individuals. These are often referred to as "dynamic predictions" in the joint
modelling context, because the predictions can be updated each time additional
longitudinal biomarker data is collected on the individual. On the other hand, if
dynamic = FALSE then the survival probabilities will just be marginalised over
the distribution of the group-specific coefficients; this will mean that the pre-
dictions will incorporate all uncertainty due to between-individual variation so
there will likely be very wide credible intervals on the predicted survival proba-
bilities.

scale A scalar, specifying how much to multiply the asymptotic variance-covariance
matrix for the random effects by, which is then used as the "width" (ie. variance-
covariance matrix) of the multivariate Student-t proposal distribution in the Metropolis-
Hastings algorithm. This is only relevant when newdataEvent is supplied and
dynamic = TRUE, in which case new random effects are simulated for the indi-
viduals in the new data using the Metropolis-Hastings algorithm.

draws An integer indicating the number of MCMC draws to return. The default is to
set the number of draws equal to 200, or equal to the size of the posterior sample
if that is less than 200.

seed An optional seed to use.

... Currently unused.

Value

A data frame of class survfit.stanjm. The data frame includes columns for each of the follow-
ing: (i) the median of the posterior predictions of the estimated survival probabilities (survpred);

50 posterior_survfit

(ii) each of the lower and upper limits of the corresponding uncertainty interval for the estimated
survival probabilities (ci_lb and ci_ub); (iii) a subject identifier (id_var), unless standardised sur-
vival probabilities were estimated; (iv) the time that the estimated survival probability is calculated
for (time_var). The returned object also includes a number of additional attributes.

Note

Note that if any variables were transformed (e.g. rescaled) in the data used to fit the model, then
these variables must also be transformed in newdataLong and newdataEvent. This only applies
if variables were transformed before passing the data to one of the modeling functions and not if
transformations were specified inside the model formula.

References

Rizopoulos, D. (2011). Dynamic predictions and prospective accuracy in joint models for longitu-
dinal and time-to-event data. Biometrics 67, 819.

See Also

plot.survfit.stanjm for plotting the estimated survival probabilities, ps_check for for graphical
checks of the estimated survival function, and posterior_traj for estimating the marginal or
subject-specific longitudinal trajectories, and plot_stack_jm for combining plots of the estimated
subject-specific longitudinal trajectory and survival function.

Examples

if (.Platform$OS.type != "windows" || .Platform$r_arch != "i386") {

Run example model if not already loaded
if (!exists("example_jm")) example(example_jm)

Obtain subject-specific survival probabilities for a few
selected individuals in the estimation dataset who were
known to survive up until their censoring time. By default
the posterior_survfit function will estimate the conditional
survival probabilities, that is, conditional on having survived
until the event or censoring time, and then by default will
extrapolate the survival predictions forward from there.
ps1 <- posterior_survfit(example_jm, ids = c(7,13,15))
We can plot the estimated survival probabilities using the
associated plot function
plot(ps1)

If we wanted to estimate the survival probabilities for the
same three individuals as the previous example, but this time
we won't condition on them having survived up until their
censoring time. Instead, we will estimate their probability
of having survived between 0 and 5 years given their covariates
and their estimated random effects.
The easiest way to achieve the time scale we want (ie, 0 to 5 years)
is to specify that we want the survival time estimated at time 0

posterior_traj 51

and then extrapolated forward 5 years. We also specify that we
do not want to condition on their last known survival time.
ps2 <- posterior_survfit(example_jm, ids = c(7,13,15), times = 0,

extrapolate = TRUE, condition = FALSE, control = list(edist = 5))

Instead we may want to estimate subject-specific survival probabilities
for a set of new individuals. To demonstrate this, we will simply take
the first two individuals in the estimation dataset, but pass their data
via the newdata arguments so that posterior_survfit will assume we are
predicting survival for new individuals and draw new random effects
under a Monte Carlo scheme (see Rizopoulos (2011)).
ndL <- pbcLong[pbcLong$id %in% c(1,2),]
ndE <- pbcSurv[pbcSurv$id %in% c(1,2),]
ps3 <- posterior_survfit(example_jm,

newdataLong = ndL, newdataEvent = ndE,
last_time = "futimeYears", seed = 12345)

head(ps3)
We can then compare the estimated random effects for these
individuals based on the fitted model and the Monte Carlo scheme
ranef(example_jm)$Long1$id[1:2,,drop=FALSE] # from fitted model
colMeans(attr(ps3, "b_new")) # from Monte Carlo scheme

Lastly, if we wanted to obtain "standardised" survival probabilities,
(by averaging over the observed distribution of the fixed effect
covariates, as well as averaging over the estimated random effects
for individuals in our estimation sample or new data) then we can
specify 'standardise = TRUE'. We can then plot the resulting
standardised survival curve.
ps4 <- posterior_survfit(example_jm, standardise = TRUE,

times = 0, extrapolate = TRUE)
plot(ps4)

}

posterior_traj Estimate the subject-specific or marginal longitudinal trajectory

Description

This function allows us to generate an estimated longitudinal trajectory (either subject-specific, or
by marginalising over the distribution of the group-specific parameters) based on draws from the
posterior predictive distribution.

Usage

posterior_traj(
object,
m = 1,
newdata = NULL,
newdataLong = NULL,

52 posterior_traj

newdataEvent = NULL,
interpolate = TRUE,
extrapolate = FALSE,
control = list(),
last_time = NULL,
prob = 0.95,
ids,
dynamic = TRUE,
scale = 1.5,
draws = NULL,
seed = NULL,
return_matrix = FALSE,
...

)

Arguments

object A fitted model object returned by the stan_jm modelling function. See stanreg-objects.
m Integer specifying the number or name of the submodel
newdata Deprecated: please use newdataLong instead. Optionally, a data frame in which

to look for variables with which to predict. If omitted, the model matrix is used.
If newdata is provided and any variables were transformed (e.g. rescaled) in
the data used to fit the model, then these variables must also be transformed in
newdata. This only applies if variables were transformed before passing the
data to one of the modeling functions and not if transformations were specified
inside the model formula.

newdataLong, newdataEvent

Optionally, a data frame (or in the case of newdataLong this can be a list of
data frames) in which to look for variables with which to predict. If omitted, the
model matrices are used. If new data is provided, then two options are available.
Either one can provide observed covariate and outcome data, collected up to
some time t, and use this data to draw new individual-specific coefficients (i.e.
individual-level random effects). This is the default behaviour when new data
is provided, determined by the argument dynamic = TRUE, and requiring both
newdataLong and newdataEvent to be specified. Alternatively, one can spec-
ify dynamic = FALSE, and then predict using just covariate data, by marginal-
ising over the distribution of the group-specific coefficients; in this case, only
newdataLong needs to be specified and it only needs to be a single data frame
with the covariate data for the predictions for the one longitudinal submodel.

interpolate A logical specifying whether to interpolate the estimated longitudinal trajectory
in between the observation times. This can be used to achieve a smooth estimate
of the longitudinal trajectory across the entire follow up time. If TRUE then the
interpolation can be further controlled using the control argument.

extrapolate A logical specifying whether to extrapolate the estimated longitudinal trajectory
beyond the time of the last known observation time. If TRUE then the extrapola-
tion can be further controlled using the control argument.

control A named list with parameters controlling the interpolation or extrapolation of the
estimated longitudinal trajectory when either interpolate = TRUE or extrapolate

posterior_traj 53

= TRUE. The list can contain one or more of the following named elements:

ipoints a positive integer specifying the number of discrete time points at
which to calculate the estimated longitudinal response for interpolate =
TRUE. These time points are evenly spaced starting at 0 and ending at the last
known observation time for each individual. The last observation time for
each individual is taken to be either: the event or censoring time if no new
data is provided; the time specified in the "last_time" column if provided in
the new data (see Details section below); or the time of the last longitudinal
measurement if new data is provided but no "last_time" column is included.
The default is 15.

epoints a positive integer specifying the number of discrete time points at
which to calculate the estimated longitudinal response for extrapolate
= TRUE. These time points are evenly spaced between the last known ob-
servation time for each individual and the extrapolation distance specifed
using either edist or eprop. The default is 15.

eprop a positive scalar between 0 and 1 specifying the amount of time across
which to extrapolate the longitudinal trajectory, represented as a proportion
of the total observed follow up time for each individual. For example spec-
ifying eprop = 0.2 means that for an individual for whom the latest of their
measurement, event or censoring times was 10 years, their estimated longi-
tudinal trajectory will be extrapolated out to 12 years (i.e. 10 + (0.2 * 10)).
The default value is 0.2.

edist a positive scalar specifying the amount of time across which to extrap-
olate the longitudinal trajectory for each individual, represented in units of
the time variable time_var (from fitting the model). This cannot be speci-
fied if eprop is specified.

last_time A scalar, character string, or NULL. This argument specifies the last known sur-
vival time for each individual when conditional predictions are being obtained.
If newdataEvent is provided and conditional survival predictions are being ob-
tained, then the last_time argument can be one of the following: (i) a scalar,
this will use the same last time for each individual in newdataEvent; (ii) a char-
acter string, naming a column in newdataEvent in which to look for the last
time for each individual; (iii) NULL, in which case the default is to use the time
of the latest longitudinal observation in newdataLong. If newdataEvent is NULL
then the last_time argument cannot be specified directly; instead it will be
set equal to the event or censoring time for each individual in the dataset that
was used to estimate the model. If standardised survival probabilities are re-
quested (i.e. standardise = TRUE) then conditional survival probabilities are
not allowed and therefore the last_time argument is ignored.

prob A scalar between 0 and 1 specifying the width to use for the uncertainty interval
(sometimes called credible interval) for the predicted mean response and the
prediction interval for the predicted (raw) response. For example prob = 0.95
(the default) means that the 2.5th and 97.5th percentiles will be provided. Only
relevant when return_matrix is FALSE.

ids An optional vector specifying a subset of subject IDs for whom the predictions
should be obtained. The default is to predict for all individuals who were used in

54 posterior_traj

estimating the model or, if newdata is specified, then all individuals contained
in newdata.

dynamic A logical that is only relevant if new data is provided via the newdata argument.
If dynamic = TRUE, then new group-specific parameters are drawn for the indi-
viduals in the new data, conditional on their longitudinal biomarker data con-
tained in newdata. These group-specific parameters are then used to generate
individual-specific survival probabilities for these individuals. These are often
referred to as "dynamic predictions" in the joint modelling context, because the
predictions can be updated each time additional longitudinal biomarker data is
collected on the individual. On the other hand, if dynamic = FALSE then the sur-
vival probabilities will just be marginalised over the distribution of the group-
specific coefficients; this will mean that the predictions will incorporate all un-
certainty due to between-individual variation so there will likely be very wide
credible intervals on the predicted survival probabilities.

scale A scalar, specifying how much to multiply the asymptotic variance-covariance
matrix for the random effects by, which is then used as the "width" (ie. variance-
covariance matrix) of the multivariate Student-t proposal distribution in the Metropolis-
Hastings algorithm. This is only relevant when newdataEvent is supplied and
dynamic = TRUE, in which case new random effects are simulated for the indi-
viduals in the new data using the Metropolis-Hastings algorithm.

draws An integer indicating the number of MCMC draws to return. The default is to
set the number of draws equal to 200, or equal to the size of the posterior sample
if that is less than 200.

seed An optional seed to use.

return_matrix A logical. If TRUE then a draws by nrow(newdata) matrix is returned which
contains all the actual simulations or draws from the posterior predictive distri-
bution. Otherwise if return_matrix is set to FALSE (the default) then a data
frame is returned, as described in the Value section below.

... Other arguments passed to posterior_predict, for example draws, re.form,
seed, etc.

Details

The posterior_traj function acts as a wrapper to the posterior_predict function, but allows
predictions to be easily generated at time points that are interpolated and/or extrapolated between
time zero (baseline) and the last known survival time for the individual, thereby providing predic-
tions that correspond to a smooth estimate of the longitudinal trajectory (useful for the plotting
via the associated plot.predict.stanjm method). In addition it returns a data frame by default,
whereas the posterior_predict function returns a matrix; see the Value section below for details.
Also, posterior_traj allows predictions to only be generated for a subset of individuals, via the
ids argument.

Value

When return_matrix = FALSE, a data frame of class predict.stanjm. The data frame includes
a column for the median of the posterior predictions of the mean longitudinal response (yfit),
a column for each of the lower and upper limits of the uncertainty interval corresponding to the

posterior_traj 55

posterior predictions of the mean longitudinal response (ci_lb and ci_ub), and a column for each
of the lower and upper limits of the prediction interval corresponding to the posterior predictions of
the (raw) longitudinal response. The data frame also includes columns for the subject ID variable,
and each of the predictor variables. The returned object also includes a number of attributes.

When return_matrix = TRUE, the returned object is the same as that described for posterior_predict.

See Also

plot.predict.stanjm, posterior_predict, posterior_survfit

Examples

if (.Platform$OS.type != "windows" || .Platform$r_arch != "i386") {

Run example model if not already loaded
if (!exists("example_jm")) example(example_jm)

Obtain subject-specific predictions for all individuals
in the estimation dataset
pt1 <- posterior_traj(example_jm, interpolate = FALSE, extrapolate = FALSE)
head(pt1)

Obtain subject-specific predictions only for a few selected individuals
pt2 <- posterior_traj(example_jm, ids = c(1,3,8))

If we wanted to obtain subject-specific predictions in order to plot the
longitudinal trajectories, then we might want to ensure a full trajectory
is obtained by interpolating and extrapolating time. We can then use the
generic plot function to plot the subject-specific predicted trajectories
for the first three individuals. Interpolation and extrapolation is
carried out by default.
pt3 <- posterior_traj(example_jm)
head(pt3) # predictions at additional time points compared with pt1
plot(pt3, ids = 1:3)

If we wanted to extrapolate further in time, but decrease the number of
discrete time points at which we obtain predictions for each individual,
then we could specify a named list in the 'control' argument
pt4 <- posterior_traj(example_jm, control = list(ipoints = 10, epoints = 10, eprop = 0.5))

If we have prediction data for a new individual, and we want to
estimate the longitudinal trajectory for that individual conditional
on this new data (perhaps extrapolating forward from our last
longitudinal measurement) then we can do that. It requires drawing
new individual-specific parameters, based on the full likelihood,
so we must supply new data for both the longitudinal and event
submodels. These are sometimes known as dynamic predictions.
ndL <- pbcLong[pbcLong$id == 8, , drop = FALSE]
ndE <- pbcSurv[pbcSurv$id == 8, , drop = FALSE]
ndL$id <- "new_subject" # new id can't match one used in training data
ndE$id <- "new_subject"
pt5 <- posterior_traj(example_jm,

56 posterior_traj

newdataLong = ndL,
newdataEvent = ndE)

By default it is assumed that the last known survival time for
the individual is the time of their last biomarker measurement,
but if we know they survived to some later time then we can
condition on that information using the last_time argument
pt6 <- posterior_traj(example_jm,

newdataLong = ndL,
newdataEvent = ndE,
last_time = "futimeYears")

Alternatively we may want to estimate the marginal longitudinal
trajectory for a given set of covariates. To do this, we can pass
the desired covariate values in a new data frame (however the only
covariate in our fitted model was the time variable, year). To make sure
that we marginalise over the random effects, we need to specify an ID value
which does not correspond to any of the individuals who were used in the
model estimation and specify the argument dynamic=FALSE.
The marginal prediction is obtained by generating subject-specific
predictions using a series of random draws from the random
effects distribution, and then integrating (ie, averaging) over these.
Our marginal prediction will therefore capture the between-individual
variation associated with the random effects.

nd <- data.frame(id = rep("new1", 11), year = (0:10 / 2))
pt7 <- posterior_traj(example_jm, newdataLong = nd, dynamic = FALSE)
head(pt7) # note the greater width of the uncertainty interval compared

with the subject-specific predictions in pt1, pt2, etc

Alternatively, we could have estimated the "marginal" trajectory by
ignoring the random effects (ie, assuming the random effects were set
to zero). This will generate a predicted longitudinal trajectory only
based on the fixed effect component of the model. In essence, for a
linear mixed effects model (ie, a model that uses an identity link
function), we should obtain a similar point estimate ("yfit") to the
estimates obtained in pt5 (since the mean of the estimated random effects
distribution will be approximately 0). However, it is important to note that
the uncertainty interval will be much more narrow, since it completely
ignores the between-individual variability captured by the random effects.
Further, if the model uses a non-identity link function, then the point
estimate ("yfit") obtained only using the fixed effect component of the
model will actually provide a biased estimate of the marginal prediction.
Nonetheless, to demonstrate how we can obtain the predictions only using
the fixed effect component of the model, we simply specify 're.form = NA'.
(We will use the same covariate values as used in the prediction for
example for pt5).

pt8 <- posterior_traj(example_jm, newdataLong = nd, dynamic = FALSE,
re.form = NA)

head(pt8) # note the much narrower ci, compared with pt5

}

posterior_vs_prior 57

posterior_vs_prior Juxtapose prior and posterior

Description

Plot medians and central intervals comparing parameter draws from the prior and posterior dis-
tributions. If the plotted priors look different than the priors you think you specified it is likely
either because of internal rescaling or the use of the QR argument (see the documentation for the
prior_summary method for details on these special cases).

Usage

posterior_vs_prior(object, ...)

S3 method for class 'stanreg'
posterior_vs_prior(
object,
pars = NULL,
regex_pars = NULL,
prob = 0.9,
color_by = c("parameter", "vs", "none"),
group_by_parameter = FALSE,
facet_args = list(),
...

)

Arguments

object A fitted model object returned by one of the rstanarm modeling functions. See
stanreg-objects.

... The S3 generic uses ... to pass arguments to any defined methods. For the
method for stanreg objects, ... is for arguments (other than color) passed to
geom_pointrange in the ggplot2 package to control the appearance of the plot-
ted intervals.

pars An optional character vector specifying a subset of parameters to display. Pa-
rameters can be specified by name or several shortcuts can be used. Using
pars="beta" will restrict the displayed parameters to only the regression co-
efficients (without the intercept). "alpha" can also be used as a shortcut for
"(Intercept)". If the model has varying intercepts and/or slopes they can be
selected using pars = "varying".
In addition, for stanmvreg objects there are some additional shortcuts available.
Using pars = "long" will display the parameter estimates for the longitudinal
submodels only (excluding group-specific pparameters, but including auxiliary
parameters). Using pars = "event" will display the parameter estimates for
the event submodel only, including any association parameters. Using pars =
"assoc" will display only the association parameters. Using pars = "fixef"

58 posterior_vs_prior

will display all fixed effects, but not the random effects or the auxiliary param-
eters. pars and regex_pars are set to NULL then all fixed effect regression
coefficients are selected, as well as any auxiliary parameters and the log poste-
rior.
If pars is NULL all parameters are selected for a stanreg object, while for a
stanmvreg object all fixed effect regression coefficients are selected as well as
any auxiliary parameters and the log posterior. See Examples.

regex_pars An optional character vector of regular expressions to use for parameter selec-
tion. regex_pars can be used in place of pars or in addition to pars. Currently,
all functions that accept a regex_pars argument ignore it for models fit using
optimization.

prob A number p ∈ (0, 1) indicating the desired posterior probability mass to include
in the (central posterior) interval estimates displayed in the plot. The default is
0.9.

color_by How should the estimates be colored? Use "parameter" to color by param-
eter name, "vs" to color the prior one color and the posterior another, and
"none" to use no color. Except when color_by="none", a variable is mapped
to the color aesthetic and it is therefore also possible to change the default
colors by adding one of the various discrete color scales available in ggplot2
(scale_color_manual, scale_colour_brewer, etc.). See Examples.

group_by_parameter

Should estimates be grouped together by parameter (TRUE) or by posterior and
prior (FALSE, the default)?

facet_args A named list of arguments passed to facet_wrap (other than the facets argu-
ment), e.g., nrow or ncol to change the layout, scales to allow axis scales to
vary across facets, etc. See Examples.

Value

A ggplot object that can be further customized using the ggplot2 package.

References

Gabry, J. , Simpson, D. , Vehtari, A. , Betancourt, M. and Gelman, A. (2019), Visualization in
Bayesian workflow. J. R. Stat. Soc. A, 182: 389-402. doi:10.1111/rssa.12378, arXiv preprint, code
on GitHub)

Examples

if (.Platform$OS.type != "windows" || .Platform$r_arch != "i386") {
Not run:
if (!exists("example_model")) example(example_model)
display non-varying (i.e. not group-level) coefficients
posterior_vs_prior(example_model, pars = "beta")

show group-level (varying) parameters and group by parameter
posterior_vs_prior(example_model, pars = "varying",

group_by_parameter = TRUE, color_by = "vs")

https://arxiv.org/abs/1709.01449
https://github.com/jgabry/bayes-vis-paper
https://github.com/jgabry/bayes-vis-paper

pp_check.stanreg 59

group by parameter and allow axis scales to vary across facets
posterior_vs_prior(example_model, regex_pars = "period",

group_by_parameter = TRUE, color_by = "none",
facet_args = list(scales = "free"))

assign to object and customize with functions from ggplot2
(gg <- posterior_vs_prior(example_model, pars = c("beta", "varying"), prob = 0.8))

gg +
ggplot2::geom_hline(yintercept = 0, size = 0.3, linetype = 3) +
ggplot2::coord_flip() +
ggplot2::ggtitle("Comparing the prior and posterior")

compare very wide and very narrow priors using roaches example
(see help(roaches, "rstanarm") for info on the dataset)
roaches$roach100 <- roaches$roach1 / 100
wide_prior <- normal(0, 10)
narrow_prior <- normal(0, 0.1)
fit_pois_wide_prior <- stan_glm(y ~ treatment + roach100 + senior,

offset = log(exposure2),
family = "poisson", data = roaches,
prior = wide_prior)

posterior_vs_prior(fit_pois_wide_prior, pars = "beta", prob = 0.5,
group_by_parameter = TRUE, color_by = "vs",
facet_args = list(scales = "free"))

fit_pois_narrow_prior <- update(fit_pois_wide_prior, prior = narrow_prior)
posterior_vs_prior(fit_pois_narrow_prior, pars = "beta", prob = 0.5,

group_by_parameter = TRUE, color_by = "vs",
facet_args = list(scales = "free"))

look at cutpoints for ordinal model
fit_polr <- stan_polr(tobgp ~ agegp, data = esoph, method = "probit",

prior = R2(0.2, "mean"), init_r = 0.1)
(gg_polr <- posterior_vs_prior(fit_polr, regex_pars = "\\|", color_by = "vs",

group_by_parameter = TRUE))
flip the x and y axes
gg_polr + ggplot2::coord_flip()

End(Not run)
}

pp_check.stanreg Graphical posterior predictive checks

Description

Interface to the PPC (posterior predictive checking) module in the bayesplot package, provid-
ing various plots comparing the observed outcome variable y to simulated datasets yrep from

60 pp_check.stanreg

the posterior predictive distribution. The pp_check method for stanreg-objects prepares the ar-
guments required for the specified bayesplot PPC plotting function and then calls that function. It
is also straightforward to use the functions from the bayesplot package directly rather than via the
pp_check method. Examples of both are given below.

Usage

S3 method for class 'stanreg'
pp_check(object, plotfun = "dens_overlay", nreps = NULL, seed = NULL, ...)

Arguments

object A fitted model object returned by one of the rstanarm modeling functions. See
stanreg-objects.

plotfun A character string naming the bayesplot PPC function to use. The default is to
call ppc_dens_overlay. plotfun can be specified either as the full name of a
bayesplot plotting function (e.g. "ppc_hist") or can be abbreviated to the part
of the name following the "ppc_" prefix (e.g. "hist"). To get the names of all
available PPC functions see available_ppc.

nreps The number of yrep datasets to generate from the posterior predictive distribu-
tion and show in the plots. The default depends on plotfun. For functions that
plot each yrep dataset separately (e.g. ppc_hist), nreps defaults to a small
value to make the plots readable. For functions that overlay many yrep datasets
(e.g., ppc_dens_overlay) a larger number is used by default, and for other func-
tions (e.g. ppc_stat) the default is to set nreps equal to the posterior sample
size.

seed An optional seed to pass to posterior_predict.

... Additonal arguments passed to the bayesplot function called. For many plotting
functions ... is optional, however for functions that require a group or x argu-
ment, these arguments should be specified in If specifying group and/or x,
they can be provided as either strings naming variables (in which case they are
searched for in the model frame) or as vectors containing the actual values of
the variables. See the Examples section, below.

Value

pp_check returns a ggplot object that can be further customized using the ggplot2 package.

Note

For binomial data, plots of y and yrep show the proportion of ’successes’ rather than the raw count.
Also for binomial models see ppc_error_binned for binned residual plots.

References

Gelman, A., Carlin, J. B., Stern, H. S., Dunson, D. B., Vehtari, A., and Rubin, D. B. (2013).
Bayesian Data Analysis. Chapman & Hall/CRC Press, London, third edition. (Ch. 6)

pp_check.stanreg 61

Gabry, J. , Simpson, D. , Vehtari, A. , Betancourt, M. and Gelman, A. (2019), Visualization in
Bayesian workflow. J. R. Stat. Soc. A, 182: 389-402. doi:10.1111/rssa.12378, arXiv preprint, code
on GitHub)

See Also

• The vignettes in the bayesplot package for many examples. Examples of posterior predictive
checks can also be found in the rstanarm vignettes and demos.

• PPC-overview (bayesplot) for links to the documentation for all the available plotting func-
tions.

• posterior_predict for drawing from the posterior predictive distribution.

• color_scheme_set to change the color scheme of the plots.

Examples

if (.Platform$OS.type != "windows" || .Platform$r_arch != "i386") {
fit <- stan_glmer(

mpg ~ wt + am + (1|cyl),
data = mtcars,
iter = 400, # iter and chains small just to keep example quick
chains = 2,
refresh = 0

)

Compare distribution of y to distributions of multiple yrep datasets
pp_check(fit)
pp_check(fit, plotfun = "boxplot", nreps = 10, notch = FALSE)
pp_check(fit, plotfun = "hist", nreps = 3)

Same plot (up to RNG noise) using bayesplot package directly
bayesplot::ppc_hist(y = mtcars$mpg, yrep = posterior_predict(fit, draws = 3))

Check histograms of test statistics by level of grouping variable 'cyl'
pp_check(fit, plotfun = "stat_grouped", stat = "median", group = "cyl")

Defining a custom test statistic
q25 <- function(y) quantile(y, probs = 0.25)
pp_check(fit, plotfun = "stat_grouped", stat = "q25", group = "cyl")

Scatterplot of two test statistics
pp_check(fit, plotfun = "stat_2d", stat = c("mean", "sd"))

Scatterplot of y vs. average yrep
pp_check(fit, plotfun = "scatter_avg") # y vs. average yrep
Same plot (up to RNG noise) using bayesplot package directly
bayesplot::ppc_scatter_avg(y = mtcars$mpg, yrep = posterior_predict(fit))

Scatterplots of y vs. several individual yrep datasets
pp_check(fit, plotfun = "scatter", nreps = 3)

https://arxiv.org/abs/1709.01449
https://github.com/jgabry/bayes-vis-paper
https://github.com/jgabry/bayes-vis-paper

62 pp_validate

Same plot (up to RNG noise) using bayesplot package directly
bayesplot::ppc_scatter(y = mtcars$mpg, yrep = posterior_predict(fit, draws = 3))

yrep intervals with y points overlaid
by default 1:length(y) used on x-axis but can also specify an x variable
pp_check(fit, plotfun = "intervals")
pp_check(fit, plotfun = "intervals", x = "wt") + ggplot2::xlab("wt")

Same plot (up to RNG noise) using bayesplot package directly
bayesplot::ppc_intervals(y = mtcars$mpg, yrep = posterior_predict(fit),

x = mtcars$wt) + ggplot2::xlab("wt")

predictive errors
pp_check(fit, plotfun = "error_hist", nreps = 6)
pp_check(fit, plotfun = "error_scatter_avg_vs_x", x = "wt") +

ggplot2::xlab("wt")

Example of a PPC for ordinal models (stan_polr)
fit2 <- stan_polr(tobgp ~ agegp, data = esoph, method = "probit",

prior = R2(0.2, "mean"), init_r = 0.1,
refresh = 0)

pp_check(fit2, plotfun = "bars", nreps = 500, prob = 0.5)
pp_check(fit2, plotfun = "bars_grouped", group = esoph$agegp,

nreps = 500, prob = 0.5)

}

pp_validate Model validation via simulation

Description

The pp_validate function is based on the methods described in Cook, Gelman, and Rubin (2006)
for validating software developed to fit particular Bayesian models. Here we take the perspective
that models themselves are software and thus it is useful to apply this validation approach to indi-
vidual models.

Usage

pp_validate(object, nreps = 20, seed = 12345, ...)

Arguments

object A fitted model object returned by one of the rstanarm modeling functions. See
stanreg-objects.

nreps The number of replications to be performed. nreps must be sufficiently large so
that the statistics described below in Details are meaningful. Depending on the
model and the size of the data, running pp_validate may be slow. See also the
Note section below for advice on avoiding numerical issues.

pp_validate 63

seed A seed passed to Stan to use when refitting the model.

... Currently ignored.

Details

We repeat nreps times the process of simulating parameters and data from the model and refitting
the model to this simulated data. For each of the nreps replications we do the following:

1. Refit the model but without conditioning on the data (setting prior_PD=TRUE), obtaining
draws θtrue from the prior distribution of the model parameters.

2. Given θtrue, simulate data y∗ from the prior predictive distribution (calling posterior_predict
on the fitted model object obtained in step 1).

3. Fit the model to the simulated outcome y∗, obtaining parameters θpost.

For any individual parameter, the quantile of the "true" parameter value with respect to its posterior
distribution should be uniformly distributed. The validation procedure entails looking for deviations
from uniformity by computing statistics for a test that the quantiles are uniformly distributed. The
absolute values of the computed test statistics are plotted for batches of parameters (e.g., non-
varying coefficients are grouped into a batch called "beta", parameters that vary by group level are
in batches named for the grouping variable, etc.). See Cook, Gelman, and Rubin (2006) for more
details on the validation procedure.

Value

A ggplot object that can be further customized using the ggplot2 package.

Note

In order to make it through nreps replications without running into numerical difficulties you may
have to restrict the range for randomly generating initial values for parameters when you fit the
original model. With any of rstanarm’s modeling functions this can be done by specifying the
optional argument init_r as some number less than the default of 2.

References

Cook, S., Gelman, A., and Rubin, D. (2006). Validation of software for Bayesian models using
posterior quantiles. Journal of Computational and Graphical Statistics. 15(3), 675–692.

See Also

pp_check for graphical posterior predictive checks and posterior_predict to draw from the pos-
terior predictive distribution.

color_scheme_set to change the color scheme of the plot.

64 predict.stanreg

Examples

if (.Platform$OS.type != "windows" || .Platform$r_arch != "i386") {
Not run:
if (!exists("example_model")) example(example_model)
try(pp_validate(example_model)) # fails with default seed / priors

End(Not run)
}

predict.stanreg Predict method for stanreg objects

Description

This method is primarily intended to be used only for models fit using optimization. For models fit
using MCMC or one of the variational approximations, see posterior_predict.

Usage

S3 method for class 'stanreg'
predict(
object,
...,
newdata = NULL,
type = c("link", "response"),
se.fit = FALSE

)

Arguments

object A fitted model object returned by one of the rstanarm modeling functions. See
stanreg-objects.

... Ignored.
newdata Optionally, a data frame in which to look for variables with which to predict. If

omitted, the model matrix is used.
type The type of prediction. The default 'link' is on the scale of the linear predic-

tors; the alternative 'response' is on the scale of the response variable.
se.fit A logical scalar indicating if standard errors should be returned. The default is

FALSE.

Value

A vector if se.fit is FALSE and a list if se.fit is TRUE.

See Also

posterior_predict

predictive_error.stanreg 65

predictive_error.stanreg

In-sample or out-of-sample predictive errors

Description

This is a convenience function for computing y − yrep (in-sample, for observed y) or y − ỹ (out-
of-sample, for new or held-out y). The method for stanreg objects calls posterior_predict in-
ternally, whereas the method for matrices accepts the matrix returned by posterior_predict as
input and can be used to avoid multiple calls to posterior_predict.

Usage

S3 method for class 'stanreg'
predictive_error(
object,
newdata = NULL,
draws = NULL,
re.form = NULL,
seed = NULL,
offset = NULL,
...

)

S3 method for class 'matrix'
predictive_error(object, y, ...)

S3 method for class 'ppd'
predictive_error(object, y, ...)

Arguments

object Either a fitted model object returned by one of the rstanarm modeling functions
(a stanreg object) or, for the matrix method, a matrix of draws from the posterior
predictive distribution returned by posterior_predict.

newdata, draws, seed, offset, re.form

Optional arguments passed to posterior_predict. For binomial models, please
see the Note section below if newdata will be specified.

... Currently ignored.

y For the matrix method only, a vector of y values the same length as the number
of columns in the matrix used as object. The method for stanreg objects takes
y directly from the fitted model object.

Value

A draws by nrow(newdata) matrix. If newdata is not specified then it will be draws by nobs(object).

66 predictive_interval.stanreg

Note

The Note section in posterior_predict about newdata for binomial models also applies for
predictive_error, with one important difference. For posterior_predict if the left-hand side
of the model formula is cbind(successes, failures) then the particular values of successes
and failures in newdata don’t matter, only that they add to the desired number of trials. This is
not the case for predictive_error. For predictive_error the particular value of successes
matters because it is used as y when computing the error.

See Also

posterior_predict to draw from the posterior predictive distribution without computing predic-
tive errors.

Examples

if (.Platform$OS.type != "windows" || .Platform$r_arch != "i386") {
if (!exists("example_model")) example(example_model)
err1 <- predictive_error(example_model, draws = 50)
hist(err1)

Using newdata with a binomial model
formula(example_model)
nd <- data.frame(
size = c(10, 20),
incidence = c(5, 10),
period = factor(c(1,2)),
herd = c(1, 15)
)
err2 <- predictive_error(example_model, newdata = nd, draws = 10, seed = 1234)

stanreg vs matrix methods
fit <- stan_glm(mpg ~ wt, data = mtcars, iter = 300)
preds <- posterior_predict(fit, seed = 123)
all.equal(

predictive_error(fit, seed = 123),
predictive_error(preds, y = fit$y)

)
}

predictive_interval.stanreg

Predictive intervals

Description

For models fit using MCMC (algorithm="sampling") or one of the variational approximations
("meanfield" or "fullrank"), the predictive_interval function computes Bayesian predictive
intervals. The method for stanreg objects calls posterior_predict internally, whereas the method
for matrices accepts the matrix returned by posterior_predict as input and can be used to avoid
multiple calls to posterior_predict.

predictive_interval.stanreg 67

Usage

S3 method for class 'stanreg'
predictive_interval(
object,
prob = 0.9,
newdata = NULL,
draws = NULL,
re.form = NULL,
fun = NULL,
seed = NULL,
offset = NULL,
...

)

S3 method for class 'matrix'
predictive_interval(object, prob = 0.9, ...)

S3 method for class 'ppd'
predictive_interval(object, prob = 0.9, ...)

Arguments

object Either a fitted model object returned by one of the rstanarm modeling functions
(a stanreg object) or, for the matrix method, a matrix of draws from the posterior
predictive distribution returned by posterior_predict.

prob A number p ∈ (0, 1) indicating the desired probability mass to include in the
intervals. The default is to report 90% intervals (prob=0.9) rather than the tra-
ditionally used 95% (see Details).

newdata, draws, fun, offset, re.form, seed

Passed to posterior_predict.

... Currently ignored.

Value

A matrix with two columns and as many rows as are in newdata. If newdata is not provided then
the matrix will have as many rows as the data used to fit the model. For a given value of prob, p,
the columns correspond to the lower and upper 100p% central interval limits and have the names
100α/2% and 100(1 − α/2)%, where α = 1 − p. For example, if prob=0.9 is specified (a 90%
interval), then the column names will be "5%" and "95%", respectively.

See Also

predictive_error, posterior_predict, posterior_interval

Examples

if (.Platform$OS.type != "windows" || .Platform$r_arch != "i386") {
fit <- stan_glm(mpg ~ wt, data = mtcars, iter = 300)

68 print.stanreg

predictive_interval(fit)
predictive_interval(fit, newdata = data.frame(wt = range(mtcars$wt)),

prob = 0.5)

stanreg vs matrix methods
preds <- posterior_predict(fit, seed = 123)
all.equal(

predictive_interval(fit, seed = 123),
predictive_interval(preds)

)
}

print.stanreg Print method for stanreg objects

Description

The print method for stanreg objects displays a compact summary of the fitted model. See the De-
tails section below for descriptions of the different components of the printed output. For additional
summary statistics and diagnostics use the summary method.

Usage

S3 method for class 'stanreg'
print(x, digits = 1, detail = TRUE, ...)

S3 method for class 'stanmvreg'
print(x, digits = 3, ...)

Arguments

x A fitted model object returned by one of the rstanarm modeling functions. See
stanreg-objects.

digits Number of digits to use for formatting numbers.

detail Logical, defaulting to TRUE. If FALSE a more minimal summary is printed con-
sisting only of the parameter estimates.

... Ignored.

Details

Point estimates: Regardless of the estimation algorithm, point estimates are medians com-
puted from simulations. For models fit using MCMC ("sampling") the posterior sample is used.
For optimization ("optimizing"), the simulations are generated from the asymptotic Gaussian
sampling distribution of the parameters. For the "meanfield" and "fullrank" variational ap-
proximations, draws from the variational approximation to the posterior are used. In all cases, the
point estimates reported are the same as the values returned by coef.

priors 69

Uncertainty estimates (MAD_SD): The standard deviations reported (labeled MAD_SD in the
print output) are computed from the same set of draws described above and are proportional to
the median absolute deviation (mad) from the median. Compared to the raw posterior standard
deviation, the MAD_SD will be more robust for long-tailed distributions. These are the same as
the values returned by se.

Additional output:

• For GLMs with group-specific terms (see stan_glmer) the printed output also shows point
estimates of the standard deviations of the group effects (and correlations if there are both
intercept and slopes that vary by group).

• For analysis of variance models (see stan_aov) models, an ANOVA-like table is also dis-
played.

• For joint longitudinal and time-to-event (see stan_jm) models the estimates are presented
separately for each of the distinct submodels.

Value

Returns x, invisibly.

See Also

summary.stanreg, stanreg-methods

priors Prior distributions and options

Description

The functions described on this page are used to specify the prior-related arguments of the various
modeling functions in the rstanarm package (to view the priors used for an existing model see
prior_summary).

The default priors used in the various rstanarm modeling functions are intended to be weakly in-
formative in that they provide moderate regularization and help stabilize computation. For many
applications the defaults will perform well, but prudent use of more informative priors is encour-
aged. Uniform prior distributions are possible (e.g. by setting stan_glm’s prior argument to NULL)
but, unless the data is very strong, they are not recommended and are not non-informative, giving
the same probability mass to implausible values as plausible ones.

More information on priors is available in the vignette Prior Distributions for rstanarm Models
as well as the vignettes for the various modeling functions. For details on the priors used for
multilevel models in particular see the vignette Estimating Generalized (Non-)Linear Models with
Group-Specific Terms with rstanarm and also the Covariance matrices section lower down on this
page.

https://mc-stan.org/rstanarm/articles/priors.html
https://mc-stan.org/rstanarm/articles/glmer.html
https://mc-stan.org/rstanarm/articles/glmer.html

70 priors

Usage

normal(location = 0, scale = NULL, autoscale = FALSE)

student_t(df = 1, location = 0, scale = NULL, autoscale = FALSE)

cauchy(location = 0, scale = NULL, autoscale = FALSE)

hs(df = 1, global_df = 1, global_scale = 0.01, slab_df = 4, slab_scale = 2.5)

hs_plus(
df1 = 1,
df2 = 1,
global_df = 1,
global_scale = 0.01,
slab_df = 4,
slab_scale = 2.5

)

laplace(location = 0, scale = NULL, autoscale = FALSE)

lasso(df = 1, location = 0, scale = NULL, autoscale = FALSE)

product_normal(df = 2, location = 0, scale = 1)

exponential(rate = 1, autoscale = FALSE)

decov(regularization = 1, concentration = 1, shape = 1, scale = 1)

lkj(regularization = 1, scale = 10, df = 1, autoscale = TRUE)

dirichlet(concentration = 1)

R2(location = NULL, what = c("mode", "mean", "median", "log"))

default_prior_intercept(family)

default_prior_coef(family)

Arguments

location Prior location. In most cases, this is the prior mean, but for cauchy (which is
equivalent to student_t with df=1), the mean does not exist and location is
the prior median. The default value is 0, except for R2 which has no default value
for location. For R2, location pertains to the prior location of the R2 under a
Beta distribution, but the interpretation of the location parameter depends on
the specified value of the what argument (see the R2 family section in Details).

scale Prior scale. The default depends on the family (see Details).

priors 71

autoscale If TRUE then the scales of the priors on the intercept and regression coefficients
may be additionally modified internally by rstanarm in the following cases.
First, for Gaussian models only, the prior scales for the intercept, coefficients,
and the auxiliary parameter sigma (error standard deviation) are multiplied by
sd(y). Additionally — not only for Gaussian models — if the QR argument
to the model fitting function (e.g. stan_glm) is FALSE then we also divide the
prior scale(s) by sd(x). Prior autoscaling is also discussed in the vignette Prior
Distributions for rstanarm Models

df, df1, df2 Prior degrees of freedom. The default is 1 for student_t, in which case it is
equivalent to cauchy. For the hierarchical shrinkage priors (hs and hs_plus) the
degrees of freedom parameter(s) default to 1. For the product_normal prior, the
degrees of freedom parameter must be an integer (vector) that is at least 2 (the
default).

global_df, global_scale, slab_df, slab_scale

Optional arguments for the hierarchical shrinkage priors. See the Hierarchical
shrinkage family section below.

rate Prior rate for the exponential distribution. Defaults to 1. For the exponential
distribution, the rate parameter is the reciprocal of the mean.

regularization Exponent for an LKJ prior on the correlation matrix in the decov or lkj prior.
The default is 1, implying a joint uniform prior.

concentration Concentration parameter for a symmetric Dirichlet distribution. The default is
1, implying a joint uniform prior.

shape Shape parameter for a gamma prior on the scale parameter in the decov prior. If
shape and scale are both 1 (the default) then the gamma prior simplifies to the
unit-exponential distribution.

what A character string among 'mode' (the default), 'mean', 'median', or 'log'
indicating how the location parameter is interpreted in the LKJ case. If 'log',
then location is interpreted as the expected logarithm of the R2 under a Beta
distribution. Otherwise, location is interpreted as the what of the R2 under a
Beta distribution. If the number of predictors is less than or equal to two, the
mode of this Beta distribution does not exist and an error will prompt the user to
specify another choice for what.

family Not currently used.

Details

The details depend on the family of the prior being used:

Student t family: Family members:

• normal(location, scale)

• student_t(df, location, scale)

• cauchy(location, scale)

Each of these functions also takes an argument autoscale.
For the prior distribution for the intercept, location, scale, and df should be scalars. For the
prior for the other coefficients they can either be vectors of length equal to the number of coef-
ficients (not including the intercept), or they can be scalars, in which case they will be recycled

https://mc-stan.org/rstanarm/articles/priors.html
https://mc-stan.org/rstanarm/articles/priors.html

72 priors

to the appropriate length. As the degrees of freedom approaches infinity, the Student t distribu-
tion approaches the normal distribution and if the degrees of freedom are one, then the Student t
distribution is the Cauchy distribution.
If scale is not specified it will default to 2.5, unless the probit link function is used, in which case
these defaults are scaled by a factor of dnorm(0)/dlogis(0), which is roughly 1.6.
If the autoscale argument is TRUE, then the scales will be further adjusted as described above in
the documentation of the autoscale argument in the Arguments section.

Hierarchical shrinkage family: Family members:

• hs(df, global_df, global_scale, slab_df, slab_scale)

• hs_plus(df1, df2, global_df, global_scale, slab_df, slab_scale)

The hierarchical shrinkage priors are normal with a mean of zero and a standard deviation that
is also a random variable. The traditional hierarchical shrinkage prior utilizes a standard devia-
tion that is distributed half Cauchy with a median of zero and a scale parameter that is also half
Cauchy. This is called the "horseshoe prior". The hierarchical shrinkage (hs) prior in the rstan-
arm package instead utilizes a regularized horseshoe prior, as described by Piironen and Vehtari
(2017), which recommends setting the global_scale argument equal to the ratio of the expected
number of non-zero coefficients to the expected number of zero coefficients, divided by the square
root of the number of observations.
The hierarhical shrinkpage plus (hs_plus) prior is similar except that the standard deviation that
is distributed as the product of two independent half Cauchy parameters that are each scaled in a
similar way to the hs prior.
The hierarchical shrinkage priors have very tall modes and very fat tails. Consequently, they
tend to produce posterior distributions that are very concentrated near zero, unless the predictor
has a strong influence on the outcome, in which case the prior has little influence. Hierarchical
shrinkage priors often require you to increase the adapt_delta tuning parameter in order to
diminish the number of divergent transitions. For more details on tuning parameters and divergent
transitions see the Troubleshooting section of the How to Use the rstanarm Package vignette.

Laplace family: Family members:

• laplace(location, scale)

• lasso(df, location, scale)

Each of these functions also takes an argument autoscale.
The Laplace distribution is also known as the double-exponential distribution. It is a symmetric
distribution with a sharp peak at its mean / median / mode and fairly long tails. This distribution
can be motivated as a scale mixture of normal distributions and the remarks above about the
normal distribution apply here as well.
The lasso approach to supervised learning can be expressed as finding the posterior mode when the
likelihood is Gaussian and the priors on the coefficients have independent Laplace distributions.
It is commonplace in supervised learning to choose the tuning parameter by cross-validation,
whereas a more Bayesian approach would be to place a prior on “it”, or rather its reciprocal in
our case (i.e. smaller values correspond to more shrinkage toward the prior location vector). We
use a chi-square prior with degrees of freedom equal to that specified in the call to lasso or, by
default, 1. The expectation of a chi-square random variable is equal to this degrees of freedom
and the mode is equal to the degrees of freedom minus 2, if this difference is positive.
It is also common in supervised learning to standardize the predictors before training the model.
We do not recommend doing so. Instead, it is better to specify autoscale = TRUE, which will

priors 73

adjust the scales of the priors according to the dispersion in the variables. See the documentation
of the autoscale argument above and also the prior_summary page for more information.

Product-normal family: Family members:

• product_normal(df, location, scale)

The product-normal distribution is the product of at least two independent normal variates each
with mean zero, shifted by the location parameter. It can be shown that the density of a product-
normal variate is symmetric and infinite at location, so this prior resembles a “spike-and-slab”
prior for sufficiently large values of the scale parameter. For better or for worse, this prior may
be appropriate when it is strongly believed (by someone) that a regression coefficient “is” equal
to the location, parameter even though no true Bayesian would specify such a prior.
Each element of df must be an integer of at least 2 because these “degrees of freedom” are
interpreted as the number of normal variates being multiplied and then shifted by location to
yield the regression coefficient. Higher degrees of freedom produce a sharper spike at location.
Each element of scale must be a non-negative real number that is interpreted as the standard devi-
ation of the normal variates being multiplied and then shifted by location to yield the regression
coefficient. In other words, the elements of scale may differ, but the k-th standard deviation is
presumed to hold for all the normal deviates that are multiplied together and shifted by the k-th
element of location to yield the k-th regression coefficient. The elements of scale are not the
prior standard deviations of the regression coefficients. The prior variance of the regression coef-
ficients is equal to the scale raised to the power of 2 times the corresponding element of df. Thus,
larger values of scale put more prior volume on values of the regression coefficient that are far
from zero.

Dirichlet family: Family members:

• dirichlet(concentration)

The Dirichlet distribution is a multivariate generalization of the beta distribution. It is perhaps
the easiest prior distribution to specify because the concentration parameters can be interpreted as
prior counts (although they need not be integers) of a multinomial random variable.
The Dirichlet distribution is used in stan_polr for an implicit prior on the cutpoints in an ordinal
regression model. More specifically, the Dirichlet prior pertains to the prior probability of observ-
ing each category of the ordinal outcome when the predictors are at their sample means. Given
these prior probabilities, it is straightforward to add them to form cumulative probabilities and
then use an inverse CDF transformation of the cumulative probabilities to define the cutpoints.
If a scalar is passed to the concentration argument of the dirichlet function, then it is repli-
cated to the appropriate length and the Dirichlet distribution is symmetric. If concentration is a
vector and all elements are 1, then the Dirichlet distribution is jointly uniform. If all concentration
parameters are equal but greater than 1 then the prior mode is that the categories are equiprobable,
and the larger the value of the identical concentration parameters, the more sharply peaked the
distribution is at the mode. The elements in concentration can also be given different values to
represent that not all outcome categories are a priori equiprobable.

Covariance matrices: Family members:

• decov(regularization, concentration, shape, scale)

• lkj(regularization, scale, df)

74 priors

(Also see vignette for stan_glmer, Estimating Generalized (Non-)Linear Models with Group-
Specific Terms with rstanarm)

Covariance matrices are decomposed into correlation matrices and variances. The variances are
in turn decomposed into the product of a simplex vector and the trace of the matrix. Finally, the
trace is the product of the order of the matrix and the square of a scale parameter. This prior on a
covariance matrix is represented by the decov function.

The prior for a correlation matrix is called LKJ whose density is proportional to the determinant
of the correlation matrix raised to the power of a positive regularization parameter minus one. If
regularization = 1 (the default), then this prior is jointly uniform over all correlation matrices
of that size. If regularization > 1, then the identity matrix is the mode and in the unlikely case
that regularization < 1, the identity matrix is the trough.

The trace of a covariance matrix is equal to the sum of the variances. We set the trace equal to the
product of the order of the covariance matrix and the square of a positive scale parameter. The
particular variances are set equal to the product of a simplex vector — which is non-negative and
sums to 1 — and the scalar trace. In other words, each element of the simplex vector represents
the proportion of the trace attributable to the corresponding variable.

A symmetric Dirichlet prior is used for the simplex vector, which has a single (positive) concentration
parameter, which defaults to 1 and implies that the prior is jointly uniform over the space of sim-
plex vectors of that size. If concentration > 1, then the prior mode corresponds to all variables
having the same (proportion of total) variance, which can be used to ensure the the posterior vari-
ances are not zero. As the concentration parameter approaches infinity, this mode becomes
more pronounced. In the unlikely case that concentration < 1, the variances are more polarized.

If all the variables were multiplied by a number, the trace of their covariance matrix would increase
by that number squared. Thus, it is reasonable to use a scale-invariant prior distribution for the
positive scale parameter, and in this case we utilize a Gamma distribution, whose shape and scale
are both 1 by default, implying a unit-exponential distribution. Set the shape hyperparameter to
some value greater than 1 to ensure that the posterior trace is not zero.

If regularization, concentration, shape and / or scale are positive scalars, then they are re-
cycled to the appropriate length. Otherwise, each can be a positive vector of the appropriate length,
but the appropriate length depends on the number of covariance matrices in the model and their
sizes. A one-by-one covariance matrix is just a variance and thus does not have regularization
or concentration parameters, but does have shape and scale parameters for the prior standard
deviation of that variable.

Note that for stan_mvmer and stan_jm models an additional prior distribution is provided through
the lkj function. This prior is in fact currently used as the default for those modelling func-
tions (although decov is still available as an option if the user wishes to specify it through the
prior_covariance argument). The lkj prior uses the same decomposition of the covariance
matrices into correlation matrices and variances, however, the variances are not further decom-
posed into a simplex vector and the trace; instead the standard deviations (square root of the
variances) for each of the group specific parameters are given a half Student t distribution with
the scale and df parameters specified through the scale and df arguments to the lkj function.
The scale parameter default is 10 which is then autoscaled, whilst the df parameter default is 1
(therefore equivalent to a half Cauchy prior distribution for the standard deviation of each group
specific parameter). This prior generally leads to similar results as the decov prior, but it is also
likely to be **less** diffuse compared with the decov prior; therefore it sometimes seems to lead
to faster estimation times, hence why it has been chosen as the default prior for stan_mvmer and
stan_jm where estimation times can be long.

https://mc-stan.org/rstanarm/articles/glmer.html
https://mc-stan.org/rstanarm/articles/glmer.html

priors 75

R2 family: Family members:

• R2(location, what)

The stan_lm, stan_aov, and stan_polr functions allow the user to utilize a function called R2
to convey prior information about all the parameters. This prior hinges on prior beliefs about the
location ofR2, the proportion of variance in the outcome attributable to the predictors, which has a
Beta prior with first shape hyperparameter equal to half the number of predictors and second shape
hyperparameter free. By specifying what to be the prior mode (the default), mean, median, or
expected log of R2, the second shape parameter for this Beta distribution is determined internally.
If what = 'log', location should be a negative scalar; otherwise it should be a scalar on the (0, 1)
interval.
For example, if R2 = 0.5, then the mode, mean, and median of the Beta distribution are all the
same and thus the second shape parameter is also equal to half the number of predictors. The
second shape parameter of the Beta distribution is actually the same as the shape parameter in
the LKJ prior for a correlation matrix described in the previous subsection. Thus, the smaller is
R2, the larger is the shape parameter, the smaller are the prior correlations among the outcome
and predictor variables, and the more concentrated near zero is the prior density for the regression
coefficients. Hence, the prior on the coefficients is regularizing and should yield a posterior distri-
bution with good out-of-sample predictions if the prior location of R2 is specified in a reasonable
fashion.

Value

A named list to be used internally by the rstanarm model fitting functions.

References

Gelman, A., Carlin, J. B., Stern, H. S., Dunson, D. B., Vehtari, A., and Rubin, D. B. (2013).
Bayesian Data Analysis. Chapman & Hall/CRC Press, London, third edition. https://stat.
columbia.edu/~gelman/book/

Gelman, A., Jakulin, A., Pittau, M. G., and Su, Y. (2008). A weakly informative default prior
distribution for logistic and other regression models. Annals of Applied Statistics. 2(4), 1360–1383.

Piironen, J., and Vehtari, A. (2017). Sparsity information and regularization in the horseshoe and
other shrinkage priors. https://arxiv.org/abs/1707.01694

Stan Development Team. Stan Modeling Language Users Guide and Reference Manual. https:
//mc-stan.org/users/documentation/.

See Also

The various vignettes for the rstanarm package also discuss and demonstrate the use of some of
the supported prior distributions.

Examples

if (.Platform$OS.type != "windows" || .Platform$r_arch != "i386") {
fmla <- mpg ~ wt + qsec + drat + am

Draw from prior predictive distribution (by setting prior_PD = TRUE)
prior_pred_fit <- stan_glm(fmla, data = mtcars, prior_PD = TRUE,

https://stat.columbia.edu/~gelman/book/
https://stat.columbia.edu/~gelman/book/
https://arxiv.org/abs/1707.01694
https://mc-stan.org/users/documentation/
https://mc-stan.org/users/documentation/

76 priors

chains = 1, seed = 12345, iter = 250, # for speed only
prior = student_t(df = 4, 0, 2.5),
prior_intercept = cauchy(0,10),
prior_aux = exponential(1/2))

plot(prior_pred_fit, "hist")

Can assign priors to names
N05 <- normal(0, 5)
fit <- stan_glm(fmla, data = mtcars, prior = N05, prior_intercept = N05)

Visually compare normal, student_t, cauchy, laplace, and product_normal
compare_priors <- function(scale = 1, df_t = 2, xlim = c(-10, 10)) {

dt_loc_scale <- function(x, df, location, scale) {
1/scale * dt((x - location)/scale, df)

}
dlaplace <- function(x, location, scale) {

0.5 / scale * exp(-abs(x - location) / scale)
}
dproduct_normal <- function(x, scale) {

besselK(abs(x) / scale ^ 2, nu = 0) / (scale ^ 2 * pi)
}
stat_dist <- function(dist, ...) {

ggplot2::stat_function(ggplot2::aes_(color = dist), ...)
}
ggplot2::ggplot(data.frame(x = xlim), ggplot2::aes(x)) +

stat_dist("normal", size = .75, fun = dnorm,
args = list(mean = 0, sd = scale)) +

stat_dist("student_t", size = .75, fun = dt_loc_scale,
args = list(df = df_t, location = 0, scale = scale)) +

stat_dist("cauchy", size = .75, linetype = 2, fun = dcauchy,
args = list(location = 0, scale = scale)) +

stat_dist("laplace", size = .75, linetype = 2, fun = dlaplace,
args = list(location = 0, scale = scale)) +

stat_dist("product_normal", size = .75, linetype = 2, fun = dproduct_normal,
args = list(scale = 1))

}
Cauchy has fattest tails, followed by student_t, laplace, and normal
compare_priors()

The student_t with df = 1 is the same as the cauchy
compare_priors(df_t = 1)

Even a scale of 5 is somewhat large. It gives plausibility to rather
extreme values
compare_priors(scale = 5, xlim = c(-20,20))

If you use a prior like normal(0, 1000) to be "non-informative" you are
actually saying that a coefficient value of e.g. -500 is quite plausible
compare_priors(scale = 1000, xlim = c(-1000,1000))
}

prior_summary.stanreg 77

prior_summary.stanreg Summarize the priors used for an rstanarm model

Description

The prior_summary method provides a summary of the prior distributions used for the parameters
in a given model. In some cases the user-specified prior does not correspond exactly to the prior
used internally by rstanarm (see the sections below). Especially in these cases, but also in general,
it can be much more useful to visualize the priors. Visualizing the priors can be done using the
posterior_vs_prior function, or alternatively by fitting the model with the prior_PD argument
set to TRUE (to draw from the prior predictive distribution instead of conditioning on the outcome)
and then plotting the parameters.

Usage

S3 method for class 'stanreg'
prior_summary(object, digits = 2, ...)

Arguments

object A fitted model object returned by one of the rstanarm modeling functions. See
stanreg-objects.

digits Number of digits to use for rounding.
... Currently ignored by the method for stanreg objects.

Value

A list of class "prior_summary.stanreg", which has its own print method.

Intercept (after predictors centered)

For rstanarm modeling functions that accept a prior_intercept argument, the specified prior for
the intercept term applies to the intercept after rstanarm internally centers the predictors so they
each have mean zero. The estimate of the intercept returned to the user correspond to the intercept
with the predictors as specified by the user (unmodified by rstanarm), but when specifying the prior
the intercept can be thought of as the expected outcome when the predictors are set to their means.
The only exception to this is for models fit with the sparse argument set to TRUE (which is only
possible with a subset of the modeling functions and never the default).

Adjusted scales

For some models you may see "adjusted scale" in the printed output and adjusted scales included
in the object returned by prior_summary. These adjusted scale values are the prior scales actually
used by rstanarm and are computed by adjusting the prior scales specified by the user to account
for the scales of the predictors (as described in the documentation for the autoscale argument). To
disable internal prior scale adjustments set the autoscale argument to FALSE when setting a prior
using one of the distributions that accepts an autoscale argument. For example, normal(0, 5,
autoscale=FALSE) instead of just normal(0, 5).

78 prior_summary.stanreg

Coefficients in Q-space

For the models fit with an rstanarm modeling function that supports the QR argument (see e.g,
stan_glm), if QR is set to TRUE then the prior distributions for the regression coefficients specified
using the prior argument are not relative to the original predictor variables X but rather to the
variables in the matrix Q obtained from the QR decomposition of X .

In particular, if prior = normal(location,scale), then this prior on the coefficients in Q-space
can be easily translated into a joint multivariate normal (MVN) prior on the coefficients on the
original predictors in X . Letting θ denote the coefficients on Q and β the coefficients on X then if
θ ∼ N(µ, σ) the corresponding prior on β is β ∼ MVN(Rµ,R′Rσ2), where µ and σ are vectors
of the appropriate length. Technically, rstanarm uses a scaled QR decomposition to ensure that
the columns of the predictor matrix used to fit the model all have unit scale, when the autoscale
argument to the function passed to the prior argument is TRUE (the default), in which case the
matrices actually used are Q∗ = Q

√
n− 1 and R∗ = 1√

n−1R. If autoscale = FALSE we instead
scale such that the lower-right element of R∗ is 1, which is useful if you want to specify a prior on
the coefficient of the last predictor in its original units (see the documentation for the QR argument).

If you are interested in the prior on β implied by the prior on θ, we strongly recommend visualizing
it as described above in the Description section, which is simpler than working it out analytically.

See Also

The priors help page and the Prior Distributions vignette.

Examples

if (.Platform$OS.type != "windows" || .Platform$r_arch != "i386") {
if (!exists("example_model")) example(example_model)
prior_summary(example_model)

priors <- prior_summary(example_model)
names(priors)
priors$prior$scale
priors$prior$adjusted_scale

for a glm with adjusted scales (see Details, above), compare
the default (rstanarm adjusting the scales) to setting
autoscale=FALSE for prior on coefficients
fit <- stan_glm(mpg ~ wt + am, data = mtcars,

prior = normal(0, c(2.5, 4)),
prior_intercept = normal(0, 5),
iter = 10, chains = 1) # only for demonstration

prior_summary(fit)

fit2 <- update(fit, prior = normal(0, c(2.5, 4), autoscale=FALSE),
prior_intercept = normal(0, 5, autoscale=FALSE))

prior_summary(fit2)
}

ps_check 79

ps_check Graphical checks of the estimated survival function

Description

This function plots the estimated marginal survival function based on draws from the posterior
predictive distribution of the fitted joint model, and then overlays the Kaplan-Meier curve based on
the observed data.

Usage

ps_check(
object,
check = "survival",
limits = c("ci", "none"),
draws = NULL,
seed = NULL,
xlab = NULL,
ylab = NULL,
ci_geom_args = NULL,
...

)

Arguments

object A fitted model object returned by the stan_jm modelling function. See stanreg-objects.

check The type of plot to show. Currently only "survival" is allowed, which compares
the estimated marginal survival function under the joint model to the estimated
Kaplan-Meier curve based on the observed data.

limits A quoted character string specifying the type of limits to include in the plot. Can
be one of: "ci" for the Bayesian posterior uncertainty interval (often known as
a credible interval); or "none" for no interval limits.

draws An integer indicating the number of MCMC draws to use to to estimate the
survival function. The default and maximum number of draws is the size of the
posterior sample.

seed An optional seed to use.

xlab, ylab An optional axis label passed to labs.

ci_geom_args Optional arguments passed to geom_ribbon and used to control features of the
plotted interval limits. They should be supplied as a named list.

... Optional arguments passed to geom_line and used to control features of the
plotted trajectory.

Value

A ggplot object that can be further customized using the ggplot2 package.

80 QR-argument

See Also

posterior_survfit for the estimated marginal or subject-specific survival function based on draws
of the model parameters from the posterior distribution, posterior_predict for drawing from the
posterior predictive distribution for the longitudinal submodel, and pp_check for graphical checks
of the longitudinal submodel.

Examples

if (.Platform$OS.type != "windows" || .Platform$r_arch != "i386") {

if (!exists("example_jm")) example(example_jm)
Compare estimated survival function to Kaplan-Meier curve
ps <- ps_check(example_jm)
ps +
ggplot2::scale_color_manual(values = c("red", "black")) + # change colors
ggplot2::scale_size_manual(values = c(0.5, 3)) + # change line sizes
ggplot2::scale_fill_manual(values = c(NA, NA)) # remove fill

}

QR-argument The QR argument

Description

Details about the QR argument to rstanarm’s modeling functions.

Details

The QR argument is a logical scalar defaulting to FALSE, but if TRUE applies a scaled qr decomposi-
tion to the design matrix, X = Q∗R∗. If autoscale = TRUE (the default) in the call to the function
passed to the prior argument, then Q∗ = Q

√
n− 1 and R∗ = 1√

n−1R. When autoscale =

FALSE, R is scaled such that the lower-right element of R∗ is 1.

The coefficients relative to Q∗ are obtained and then premultiplied by the inverse of R∗ to obtain
coefficients relative to the original predictors, X . Thus, when autoscale = FALSE, the coefficient
on the last column of X is the same as the coefficient on the last column of Q∗.

These transformations do not change the likelihood of the data but are recommended for computa-
tional reasons when there are multiple predictors. Importantly, while the columns of X are almost
generally correlated, the columns of Q∗ are uncorrelated by design, which often makes sampling
from the posterior easier. However, because when QR is TRUE the prior argument applies to the co-
efficients relative toQ∗ (and those are not very interpretable), setting QR=TRUE is only recommended
if you do not have an informative prior for the regression coefficients or if the only informative prior
is on the last regression coefficient (in which case you should set autoscale = FALSE when speci-
fying such priors).

For more details see the Stan case study The QR Decomposition For Regression Models at https:
//mc-stan.org/users/documentation/case-studies/qr_regression.html.

https://mc-stan.org/users/documentation/case-studies/qr_regression.html
https://mc-stan.org/users/documentation/case-studies/qr_regression.html

rstanarm-datasets 81

References

Stan Development Team. Stan Modeling Language Users Guide and Reference Manual. https:
//mc-stan.org/users/documentation/.

rstanarm-datasets Datasets for rstanarm examples

Description

Small datasets for use in rstanarm examples and vignettes.

Format

bball1970 Data on hits and at-bats from the 1970 Major League Baseball season for 18 players.
Source: Efron and Morris (1975).
18 obs. of 5 variables

• Player Player’s last name
• Hits Number of hits in the first 45 at-bats of the season
• AB Number of at-bats (45 for all players)
• RemainingAB Number of remaining at-bats (different for most players)
• RemainingHits Number of remaining hits

bball2006 Hits and at-bats for the entire 2006 American League season of Major League Baseball.
Source: Carpenter (2009)
302 obs. of 2 variables

• y Number of hits
• K Number of at-bats

kidiq Data from a survey of adult American women and their children (a subsample from the
National Longitudinal Survey of Youth).
Source: Gelman and Hill (2007)
434 obs. of 4 variables

• kid_score Child’s IQ score
• mom_hs Indicator for whether the mother has a high school degree
• mom_iq Mother’s IQ score
• mom_age Mother’s age

mortality Surgical mortality rates in 12 hospitals performing cardiac surgery in babies.
Source: Spiegelhalter et al. (1996).
12 obs. of 2 variables

• y Number of deaths
• K Number of surgeries

https://mc-stan.org/users/documentation/
https://mc-stan.org/users/documentation/

82 rstanarm-datasets

pbcLong,pbcSurv Longitudinal biomarker and time-to-event survival data for 40 patients with
primary biliary cirrhosis who participated in a randomised placebo controlled trial of D-
penicillamine conducted at the Mayo Clinic between 1974 and 1984.
Source: Therneau and Grambsch (2000)
304 obs. of 8 variables (pbcLong) and 40 obs. of 7 variables (pbcSurv)

• age in years
• albumin serum albumin (g/dl)
• logBili logarithm of serum bilirubin
• death indicator of death at endpoint
• futimeYears time (in years) between baseline and the earliest of death, transplantion or

censoring
• id numeric ID unique to each individual
• platelet platelet count
• sex gender (m = male, f = female)
• status status at endpoint (0 = censored, 1 = transplant, 2 = dead)
• trt binary treatment code (0 = placebo, 1 = D-penicillamine)
• year time (in years) of the longitudinal measurements, taken as time since baseline)

radon Data on radon levels in houses in the state of Minnesota.
Source: Gelman and Hill (2007)
919 obs. of 4 variables

• log_radon Radon measurement from the house (log scale)
• log_uranium Uranium level in the county (log scale)
• floor Indicator for radon measurement made on the first floor of the house (0 = basement,

1 = first floor)
• county County name (factor)

roaches Data on the efficacy of a pest management system at reducing the number of roaches in
urban apartments.
Source: Gelman and Hill (2007)
262 obs. of 6 variables

• y Number of roaches caught
• roach1 Pretreatment number of roaches
• treatment Treatment indicator
• senior Indicator for only elderly residents in building
• exposure2 Number of days for which the roach traps were used

tumors Tarone (1982) provides a data set of tumor incidence in historical control groups of rats;
specifically endometrial stromal polyps in female lab rats of type F344.
Source: Gelman and Hill (2007)
71 obs. of 2 variables

• y Number of rats with tumors
• K Number of rats

rstanarm-datasets 83

wells A survey of 3200 residents in a small area of Bangladesh suffering from arsenic contamina-
tion of groundwater. Respondents with elevated arsenic levels in their wells had been encour-
aged to switch their water source to a safe public or private well in the nearby area and the
survey was conducted several years later to learn which of the affected residents had switched
wells.
Souce: Gelman and Hill (2007)
3020 obs. of 5 variables

• switch Indicator for well-switching
• arsenic Arsenic level in respondent’s well
• dist Distance (meters) from the respondent’s house to the nearest well with safe drinking

water.
• assoc Indicator for member(s) of household participate in community organizations
• educ Years of education (head of household)

References

Carpenter, B. (2009) Bayesian estimators for the beta-binomial model of batting ability. https:
//web.archive.org/web/20220618114439/https://lingpipe-blog.com/2009/09/23/

Efron, B. and Morris, C. (1975) Data analysis using Stein’s estimator and its generalizations. Jour-
nal of the American Statistical Association 70(350), 311–319.

Gelman, A. and Hill, J. (2007). Data Analysis Using Regression and Multilevel/Hierarchical Mod-
els. Cambridge University Press, Cambridge, UK. https://stat.columbia.edu/~gelman/arm/

Spiegelhalter, D., Thomas, A., Best, N., & Gilks, W. (1996) BUGS 0.5 Examples. MRC Biostatis-
tics Unit, Institute of Public health, Cambridge, UK.

Tarone, R. E. (1982) The use of historical control information in testing for a trend in proportions.
Biometrics 38(1):215–220.

Therneau, T. and Grambsch, P. (2000) Modeling Survival Data: Extending the Cox Model. Springer-
Verlag, New York, US.

Examples

if (.Platform$OS.type != "windows" || .Platform$r_arch != "i386") {
Using 'kidiq' dataset
fit <- stan_lm(kid_score ~ mom_hs * mom_iq, data = kidiq,

prior = R2(location = 0.30, what = "mean"),
the next line is only to make the example go fast enough
chains = 1, iter = 500, seed = 12345)

pp_check(fit, nreps = 20)

bayesplot::color_scheme_set("brightblue")
pp_check(fit, plotfun = "stat_grouped", stat = "median",

group = factor(kidiq$mom_hs, labels = c("No HS", "HS")))

}

https://web.archive.org/web/20220618114439/https://lingpipe-blog.com/2009/09/23/
https://web.archive.org/web/20220618114439/https://lingpipe-blog.com/2009/09/23/
https://stat.columbia.edu/~gelman/arm/

84 stanmvreg-methods

rstanarm-deprecated Deprecated functions

Description

These functions are deprecated and will be removed in a future release. The Arguments section be-
low provides details on how the functionality obtained via each of the arguments has been replaced.

Usage

prior_options(
prior_scale_for_dispersion = 5,
min_prior_scale = 1e-12,
scaled = TRUE

)

Arguments

prior_scale_for_dispersion, min_prior_scale, scaled

Arguments to deprecated prior_options function. The functionality provided
by the now deprecated prior_options function has been replaced as follows:

prior_scale_for_dispersion Instead of using the prior_scale_for_dispersion
argument to prior_options, priors for these parameters can now be spec-
ified directly when calling stan_glm (or stan_glmer, etc.) using the new
prior_aux argument.

scaled Instead of setting prior_options(scaled=FALSE), internal rescaling
is now toggled using the new autoscale arguments to normal, student_t,
and cauchy (the other prior distributions do not support ’autoscale’).

min_prior_scale No replacement. min_prior_scale (the minimum possible
scale parameter value that be used for priors) is now fixed to 1e-12.

stanmvreg-methods Methods for stanmvreg objects

Description

S3 methods for stanmvreg objects. There are also several methods (listed in See Also, below)
with their own individual help pages. The main difference between these methods and the stanreg
methods is that the methods described here generally include an additional argument m which allows
the user to specify which submodel they wish to return the result for. If the argument m is set to
NULL then the result will generally be a named list with each element of the list containing the result
for one of the submodels.

stanmvreg-methods 85

Usage

S3 method for class 'stanmvreg'
coef(object, m = NULL, ...)

S3 method for class 'stanmvreg'
fitted(object, m = NULL, ...)

S3 method for class 'stanmvreg'
residuals(object, m = NULL, ...)

S3 method for class 'stanmvreg'
se(object, m = NULL, ...)

S3 method for class 'stanmvreg'
formula(x, fixed.only = FALSE, random.only = FALSE, m = NULL, ...)

S3 method for class 'stanmvreg'
update(object, formula., ..., evaluate = TRUE)

S3 method for class 'stanjm'
update(object, formulaLong., formulaEvent., ..., evaluate = TRUE)

S3 method for class 'stanmvreg'
fixef(object, m = NULL, remove_stub = TRUE, ...)

S3 method for class 'stanmvreg'
ngrps(object, ...)

S3 method for class 'stanmvreg'
ranef(object, m = NULL, ...)

S3 method for class 'stanmvreg'
sigma(object, m = NULL, ...)

Arguments

object, x A fitted model object returned by one of the multivariate rstanarm modelling
functions. See stanreg-objects.

m Integer specifying the number or name of the submodel

... Ignored, except by the update method. See update.

fixed.only A logical specifying whether to only retain the fixed effect part of the longitudi-
nal submodel formulas

random.only A logical specifying whether to only retain the random effect part of the longi-
tudinal submodel formulas

formula. An updated formula for the model. For a multivariate model formula. should
be a list of formulas, as described for the formula argument in stan_mvmer.

evaluate See update.

86 stanmvreg-methods

formulaLong., formulaEvent.

An updated formula for the longitudinal or event submodel, when object was
estimated using stan_jm. For a multivariate joint model formulaLong. should
be a list of formulas, as described for the formulaLong argument in stan_jm.

remove_stub Logical specifying whether to remove the string identifying the submodel (e.g.
y1|, y2|, Long1|, Long2|, Event|) from each of the parameter names.

Details

Most of these methods are similar to the methods defined for objects of class ’lm’, ’glm’, ’glmer’,
etc. However there are a few exceptions:

coef Medians are used for point estimates. See the Point estimates section in print.stanmvreg
for more details. coef returns a list equal to the length of the number of submodels. The first
elements of the list are the coefficients from each of the fitted longitudinal submodels and are
the same layout as those returned by coef method of the lme4 package, that is, the sum of
the random and fixed effects coefficients for each explanatory variable for each level of each
grouping factor. The final element of the returned list is a vector of fixed effect coefficients
from the event submodel.

se The se function returns standard errors based on mad. See the Uncertainty estimates section in
print.stanmvreg for more details.

confint Not supplied, since the posterior_interval function should be used instead to compute
Bayesian uncertainty intervals.

residuals Residuals are always of type "response" (not "deviance" residuals or any other type).

See Also

• The print, summary, and prior_summary methods for stanmvreg objects for information on
the fitted model.

• The plot method to plot estimates and diagnostics.

• The pp_check method for graphical posterior predictive checking of the longitudinal or glmer
submodels.

• The ps_check method for graphical posterior predictive checking of the event submodel.

• The posterior_traj for predictions for the longitudinal submodel (for models estimated
using stan_jm), as well as it’s associated plot method.

• The posterior_survfit for predictions for the event submodel, including so-called "dy-
namic" predictions (for models estimated using stan_jm), as well as it’s associated plot
method.

• The posterior_predict for predictions for the glmer submodel (for models estimated using
stan_mvmer).

• The posterior_interval for uncertainty intervals for model parameters.

• The loo, and log_lik methods for leave-one-out model comparison, and computing the log-
likelihood of (possibly new) data.

stanreg-draws-formats 87

• The as.matrix, as.data.frame, and as.array methods to access posterior draws.

Other S3 methods for stanmvreg objects, which have separate documentation, including print.stanmvreg,
and summary.stanmvreg.

Also posterior_interval for an alternative to confint, and posterior_predict, posterior_traj
and posterior_survfit for predictions based on the fitted joint model.

stanreg-draws-formats Create a draws object from a stanreg object

Description

Convert a stanreg object to a format supported by the posterior package.

Usage

S3 method for class 'stanreg'
as_draws(x, ...)

S3 method for class 'stanreg'
as_draws_matrix(x, ...)

S3 method for class 'stanreg'
as_draws_array(x, ...)

S3 method for class 'stanreg'
as_draws_df(x, ...)

S3 method for class 'stanreg'
as_draws_list(x, ...)

S3 method for class 'stanreg'
as_draws_rvars(x, ...)

Arguments

x A stanreg object returned by one of the rstanarm modeling functions.

... Arguments (e.g., pars, regex_pars) passed internally to as.matrix.stanreg
or as.array.stanreg.

Details

To subset iterations, chains, or draws, use subset_draws after making the draws object. To sub-
set variables use ... to pass the pars and/or regex_pars arguments to as.matrix.stanreg or
as.array.stanreg (these are called internally by as_draws.stanreg), or use subset_draws af-
ter making the draws object.

88 stanreg-objects

Value

A draws object from the posterior package. See the posterior package documentation and vi-
gnettes for details on working with these objects.

Examples

fit <- stan_glm(mpg ~ wt + as.factor(cyl), data = mtcars)
as_draws_matrix(fit) # matrix format combines all chains
as_draws_df(fit, regex_pars = "cyl")
posterior::summarize_draws(as_draws_array(fit))

stanreg-objects Fitted model objects

Description

The rstanarm model-fitting functions return an object of class 'stanreg', which is a list contain-
ing at a minimum the components listed below. Each stanreg object will also have additional
classes (e.g. ’aov’, ’betareg’, ’glm’, ’polr’, etc.) and several additional components depending on
the model and estimation algorithm.

Some additional details apply to models estimated using the stan_mvmer or stan_jm modelling
functions. The stan_mvmer modelling function returns an object of class 'stanmvreg', which in-
herits the 'stanreg' class, but has a number of additional elements described in the subsection
below. The stan_jm modelling function returns an object of class 'stanjm', which inherits both
the 'stanmvreg' and 'stanreg' classes, but has a number of additional elements described in the
subsection below. Both the 'stanjm' and 'stanmvreg' classes have several of their own methods
for situations in which the default 'stanreg' methods are not suitable; see the See Also section
below.

Elements for stanreg objects

coefficients Point estimates, as described in print.stanreg.

ses Standard errors based on mad, as described in print.stanreg.

residuals Residuals of type 'response'.

fitted.values Fitted mean values. For GLMs the linear predictors are transformed by the inverse
link function.

linear.predictors Linear fit on the link scale. For linear models this is the same as fitted.values.

covmat Variance-covariance matrix for the coefficients based on draws from the posterior distribu-
tion, the variational approximation, or the asymptotic sampling distribution, depending on the
estimation algorithm.

model,x,y If requested, the the model frame, model matrix and response variable used, respec-
tively.

family The family object used.

stanreg-objects 89

call The matched call.

formula The model formula.

data,offset,weights The data, offset, and weights arguments.

algorithm The estimation method used.

prior.info A list with information about the prior distributions used.

stanfit,stan_summary The object of stanfit-class returned by RStan and a matrix of various
summary statistics from the stanfit object.

rstan_version The version of the rstan package that was used to fit the model.

Elements for stanmvreg objects

The stanmvreg objects contain the majority of the elements described above for stanreg
objects, but in most cases these will be a list with each elements of the list correponding to
one of the submodels (for example, the family element of a stanmvreg object will be a list
with each element of the list containing the family object for one submodel). In addition,
stanmvreg objects contain the following additional elements:

The names of the grouping factors and group specific parameters, collapsed across the longi-
tudinal or glmer submodels.

cnmsflevels The unique factor levels for each grouping factor, collapsed across the longitudinal or
glmer submodels.

n_markers The number of longitudinal or glmer submodels.

n_yobs The number of observations for each longitudinal or glmer submodel.

n_grps The number of levels for each grouping factor (for models estimated using stan_jm, this
will be equal to n_subjects if the individual is the only grouping factor).

runtime The time taken to fit the model (in minutes).

Additional elements for stanjm objects

The stanjm objects contain the elements described above for stanmvreg objects, but also
contain the following additional elements:

The names of the variables distinguishing between individuals, and representing time in the
longitudinal submodel.

id_var,time_varn_subjects The number of individuals.

n_events The number of non-censored events.

eventtime,status The event (or censoring) time and status indicator for each individual.

basehaz A list containing information about the baseline hazard.

assoc An array containing information about the association structure.

epsilon The width of the one-sided difference used to numerically evaluate the slope of the lon-
gitudinal trajectory; only relevant if a slope-based association structure was specified (e.g.
etaslope, muslope, etc).

qnodes The number of Gauss-Kronrod quadrature nodes used to evaluate the cumulative hazard in
the joint likelihood function.

90 stanreg_list

Note

The stan_biglm function is an exception. It returns a stanfit object rather than a stanreg object.

See Also

stanreg-methods, stanmvreg-methods

stanreg_list Create lists of fitted model objects, combine them, or append new mod-
els to existing lists of models.

Description

Create lists of fitted model objects, combine them, or append new models to existing lists of models.

Usage

stanreg_list(..., model_names = NULL)

stanmvreg_list(..., model_names = NULL)

stanjm_list(..., model_names = NULL)

S3 method for class 'stanreg_list'
print(x, ...)

Arguments

... Objects to combine into a "stanreg_list", "stanmvreg_list", or "stanjm_list".
Can be fitted model objects, existing "stan*_list" objects to combine, or one
existing "stan*_list" object followed by fitted model objects to append to the
list.

model_names Optionally, a character vector of model names. If not specified then the names
are inferred from the name of the objects passed in via These model names
are used, for example, when printing the results of the loo_compare.stanreg_list
and loo_model_weights.stanreg_list methods.

x The object to print.

Value

A list of class "stanreg_list", "stanmvreg_list", or "stanjm_list", containing the fitted
model objects and some metadata stored as attributes.

See Also

loo_model_weights for usage of stanreg_list.

stan_aov 91

stan_aov Bayesian regularized linear models via Stan

Description

Bayesian inference for linear modeling with regularizing priors on the model parameters that are
driven by prior beliefs about R2, the proportion of variance in the outcome attributable to the pre-
dictors. See priors for an explanation of this critical point. stan_glm with family="gaussian"
also estimates a linear model with normally-distributed errors and allows for various other priors on
the coefficients.

Usage

stan_aov(
formula,
data,
projections = FALSE,
contrasts = NULL,
...,
prior = R2(stop("'location' must be specified")),
prior_PD = FALSE,
algorithm = c("sampling", "meanfield", "fullrank"),
adapt_delta = NULL

)

stan_lm(
formula,
data,
subset,
weights,
na.action,
model = TRUE,
x = FALSE,
y = FALSE,
singular.ok = TRUE,
contrasts = NULL,
offset,
...,
prior = R2(stop("'location' must be specified")),
prior_intercept = NULL,
prior_PD = FALSE,
algorithm = c("sampling", "meanfield", "fullrank"),
adapt_delta = NULL

)

stan_lm.wfit(
x,

92 stan_aov

y,
w,
offset = NULL,
singular.ok = TRUE,
...,
prior = R2(stop("'location' must be specified")),
prior_intercept = NULL,
prior_PD = FALSE,
algorithm = c("sampling", "meanfield", "fullrank"),
adapt_delta = NULL

)

stan_lm.fit(
x,
y,
offset = NULL,
singular.ok = TRUE,
...,
prior = R2(stop("'location' must be specified")),
prior_intercept = NULL,
prior_PD = FALSE,
algorithm = c("sampling", "meanfield", "fullrank"),
adapt_delta = NULL

)

Arguments

formula, data, subset

Same as lm, but we strongly advise against omitting the data argument. Unless
data is specified (and is a data frame) many post-estimation functions (including
update, loo, kfold) are not guaranteed to work properly.

projections For stan_aov, a logical scalar (defaulting to FALSE) indicating whether proj
should be called on the fit.

... Further arguments passed to the function in the rstan package (sampling, vb,
or optimizing), corresponding to the estimation method named by algorithm.
For example, if algorithm is "sampling" it is possible to specify iter, chains,
cores, and other MCMC controls.
Another useful argument that can be passed to rstan via ... is refresh, which
specifies how often to print updates when sampling (i.e., show the progress every
refresh iterations). refresh=0 turns off the iteration updates.

prior Must be a call to R2 with its location argument specified or NULL, which would
indicate a standard uniform prior for the R2.

prior_PD A logical scalar (defaulting to FALSE) indicating whether to draw from the prior
predictive distribution instead of conditioning on the outcome.

algorithm A string (possibly abbreviated) indicating the estimation approach to use. Can
be "sampling" for MCMC (the default), "optimizing" for optimization, "meanfield"
for variational inference with independent normal distributions, or "fullrank"

stan_aov 93

for variational inference with a multivariate normal distribution. See rstanarm-package
for more details on the estimation algorithms. NOTE: not all fitting functions
support all four algorithms.

adapt_delta Only relevant if algorithm="sampling". See the adapt_delta help page for
details.

na.action, singular.ok, contrasts

Same as lm, but rarely specified.

model, offset, weights

Same as lm, but rarely specified.

x, y In stan_lm, stan_aov, logical scalars indicating whether to return the design
matrix and response vector. In stan_lm.fit or stan_lm.wfit, a design matrix
and response vector.

prior_intercept

Either NULL (the default) or a call to normal. If a normal prior is specified
without a scale, then the standard deviation is taken to be the marginal standard
deviation of the outcome divided by the square root of the sample size, which is
legitimate because the marginal standard deviation of the outcome is a primitive
parameter being estimated.
Note: If using a dense representation of the design matrix —i.e., if the sparse
argument is left at its default value of FALSE— then the prior distribution for
the intercept is set so it applies to the value when all predictors are centered. If
you prefer to specify a prior on the intercept without the predictors being auto-
centered, then you have to omit the intercept from the formula and include a
column of ones as a predictor, in which case some element of prior specifies the
prior on it, rather than prior_intercept. Regardless of how prior_intercept
is specified, the reported estimates of the intercept always correspond to a pa-
rameterization without centered predictors (i.e., same as in glm).

w Same as in lm.wfit but rarely specified.

Details

The stan_lm function is similar in syntax to the lm function but rather than choosing the param-
eters to minimize the sum of squared residuals, samples from the posterior distribution are drawn
using MCMC (if algorithm is "sampling"). The stan_lm function has a formula-based interface
and would usually be called by users but the stan_lm.fit and stan_lm.wfit functions might be
called by other functions that parse the data themselves and are analogous to lm.fit and lm.wfit
respectively.

In addition to estimating sigma — the standard deviation of the normally-distributed errors —
this model estimates a positive parameter called log-fit_ratio. If it is positive, the marginal
posterior variance of the outcome will exceed the sample variance of the outcome by a multiplicative
factor equal to the square of fit_ratio. Conversely if log-fit_ratio is negative, then the model
underfits. Given the regularizing nature of the priors, a slight underfit is good.

Finally, the posterior predictive distribution is generated with the predictors fixed at their sample
means. This quantity is useful for checking convergence because it is reasonably normally dis-
tributed and a function of all the parameters in the model.

94 stan_betareg

The stan_aov function is similar to aov, but does a Bayesian analysis of variance that is basically
equivalent to stan_lm with dummy variables. stan_aov has a somewhat customized print method
that prints an ANOVA-like table in addition to the output printed for stan_lm models.

Value

A stanreg object is returned for stan_lm, stan_aov.

A stanfit object (or a slightly modified stanfit object) is returned if stan_lm.fit or stan_lm.wfit
is called directly.

References

Lewandowski, D., Kurowicka D., and Joe, H. (2009). Generating random correlation matrices
based on vines and extended onion method. Journal of Multivariate Analysis. 100(9), 1989–2001.

See Also

The vignettes for stan_lm and stan_aov, which have more thorough descriptions and examples.
https://mc-stan.org/rstanarm/articles/

Also see stan_glm, which — if family = gaussian(link="identity") — also estimates a linear
model with normally-distributed errors but specifies different priors.

Examples

if (.Platform$OS.type != "windows" || .Platform$r_arch != "i386") {

op <- options(contrasts = c("contr.helmert", "contr.poly"))
fit_aov <- stan_aov(yield ~ block + N*P*K, data = npk,

prior = R2(0.5), seed = 12345)
options(op)
print(fit_aov)

}
if (.Platform$OS.type != "windows" || .Platform$r_arch !="i386") {
(fit <- stan_lm(mpg ~ wt + qsec + am, data = mtcars, prior = R2(0.75),

the next line is only to make the example go fast enough
chains = 1, iter = 300, seed = 12345, refresh = 0))

plot(fit, "hist", pars = c("wt", "am", "qsec", "sigma"),
transformations = list(sigma = "log"))

}

stan_betareg Bayesian beta regression models via Stan

Description

Beta regression modeling with optional prior distributions for the coefficients, intercept, and auxil-
iary parameter phi (if applicable).

https://mc-stan.org/rstanarm/articles/

stan_betareg 95

Usage

stan_betareg(
formula,
data,
subset,
na.action,
weights,
offset,
link = c("logit", "probit", "cloglog", "cauchit", "log", "loglog"),
link.phi = NULL,
model = TRUE,
y = TRUE,
x = FALSE,
...,
prior = normal(autoscale = TRUE),
prior_intercept = normal(autoscale = TRUE),
prior_z = normal(autoscale = TRUE),
prior_intercept_z = normal(autoscale = TRUE),
prior_phi = exponential(autoscale = TRUE),
prior_PD = FALSE,
algorithm = c("sampling", "optimizing", "meanfield", "fullrank"),
adapt_delta = NULL,
QR = FALSE

)

stan_betareg.fit(
x,
y,
z = NULL,
weights = rep(1, NROW(x)),
offset = rep(0, NROW(x)),
link = c("logit", "probit", "cloglog", "cauchit", "log", "loglog"),
link.phi = NULL,
...,
prior = normal(autoscale = TRUE),
prior_intercept = normal(autoscale = TRUE),
prior_z = normal(autoscale = TRUE),
prior_intercept_z = normal(autoscale = TRUE),
prior_phi = exponential(autoscale = TRUE),
prior_PD = FALSE,
algorithm = c("sampling", "optimizing", "meanfield", "fullrank"),
adapt_delta = NULL,
QR = FALSE

)

96 stan_betareg

Arguments

formula, data, subset

Same as betareg, but we strongly advise against omitting the data argument.
Unless data is specified (and is a data frame) many post-estimation functions
(including update, loo, kfold) are not guaranteed to work properly.

na.action Same as betareg, but rarely specified.

link Character specification of the link function used in the model for mu (specified
through x). Currently, "logit", "probit", "cloglog", "cauchit", "log", and "loglog"
are supported.

link.phi If applicable, character specification of the link function used in the model for
phi (specified through z). Currently, "identity", "log" (default), and "sqrt" are
supported. Since the "sqrt" link function is known to be unstable, it is advis-
able to specify a different link function (or to model phi as a scalar parameter
instead of via a linear predictor by excluding z from the formula and excluding
link.phi).

model, offset, weights

Same as betareg.

x, y In stan_betareg, logical scalars indicating whether to return the design ma-
trix and response vector. In stan_betareg.fit, a design matrix and response
vector.

... Further arguments passed to the function in the rstan package (sampling, vb,
or optimizing), corresponding to the estimation method named by algorithm.
For example, if algorithm is "sampling" it is possible to specify iter, chains,
cores, and other MCMC controls.
Another useful argument that can be passed to rstan via ... is refresh, which
specifies how often to print updates when sampling (i.e., show the progress every
refresh iterations). refresh=0 turns off the iteration updates.

prior The prior distribution for the (non-hierarchical) regression coefficients.
The default priors are described in the vignette Prior Distributions for rstanarm
Models. If not using the default, prior should be a call to one of the various
functions provided by rstanarm for specifying priors. The subset of these func-
tions that can be used for the prior on the coefficients can be grouped into several
"families":

Family Functions
Student t family normal, student_t, cauchy
Hierarchical shrinkage family hs, hs_plus
Laplace family laplace, lasso
Product normal family product_normal

See the priors help page for details on the families and how to specify the argu-
ments for all of the functions in the table above. To omit a prior —i.e., to use a
flat (improper) uniform prior— prior can be set to NULL, although this is rarely
a good idea.

https://mc-stan.org/rstanarm/articles/priors.html
https://mc-stan.org/rstanarm/articles/priors.html

stan_betareg 97

Note: Unless QR=TRUE, if prior is from the Student t family or Laplace family,
and if the autoscale argument to the function used to specify the prior (e.g.
normal) is left at its default and recommended value of TRUE, then the default
or user-specified prior scale(s) may be adjusted internally based on the scales of
the predictors. See the priors help page and the Prior Distributions vignette for
details on the rescaling and the prior_summary function for a summary of the
priors used for a particular model.

prior_intercept

The prior distribution for the intercept (after centering all predictors, see note
below).
The default prior is described in the vignette Prior Distributions for rstanarm
Models. If not using the default, prior_intercept can be a call to normal,
student_t or cauchy. See the priors help page for details on these functions.
To omit a prior on the intercept —i.e., to use a flat (improper) uniform prior—
prior_intercept can be set to NULL.
Note: If using a dense representation of the design matrix —i.e., if the sparse
argument is left at its default value of FALSE— then the prior distribution for the
intercept is set so it applies to the value when all predictors are centered (you
don’t need to manually center them). This is explained further in [Prior Distri-
butions for rstanarm Models](https://mc-stan.org/rstanarm/articles/priors.html)
If you prefer to specify a prior on the intercept without the predictors being
auto-centered, then you have to omit the intercept from the formula and in-
clude a column of ones as a predictor, in which case some element of prior
specifies the prior on it, rather than prior_intercept. Regardless of how
prior_intercept is specified, the reported estimates of the intercept always
correspond to a parameterization without centered predictors (i.e., same as in
glm).

prior_z Prior distribution for the coefficients in the model for phi (if applicable). Same
options as for prior.

prior_intercept_z

Prior distribution for the intercept in the model for phi (if applicable). Same
options as for prior_intercept.

prior_phi The prior distribution for phi if it is not modeled as a function of predictors. If
z variables are specified then prior_phi is ignored and prior_intercept_z
and prior_z are used to specify the priors on the intercept and coefficients in
the model for phi. When applicable, prior_phi can be a call to exponential
to use an exponential distribution, or one of normal, student_t or cauchy to
use half-normal, half-t, or half-Cauchy prior. See priors for details on these
functions. To omit a prior —i.e., to use a flat (improper) uniform prior— set
prior_phi to NULL.

prior_PD A logical scalar (defaulting to FALSE) indicating whether to draw from the prior
predictive distribution instead of conditioning on the outcome.

algorithm A string (possibly abbreviated) indicating the estimation approach to use. Can
be "sampling" for MCMC (the default), "optimizing" for optimization, "meanfield"
for variational inference with independent normal distributions, or "fullrank"
for variational inference with a multivariate normal distribution. See rstanarm-package

https://mc-stan.org/rstanarm/articles/priors.html
https://mc-stan.org/rstanarm/articles/priors.html

98 stan_betareg

for more details on the estimation algorithms. NOTE: not all fitting functions
support all four algorithms.

adapt_delta Only relevant if algorithm="sampling". See the adapt_delta help page for
details.

QR A logical scalar defaulting to FALSE, but if TRUE applies a scaled qr decomposi-
tion to the design matrix. The transformation does not change the likelihood of
the data but is recommended for computational reasons when there are multiple
predictors. See the QR-argument documentation page for details on how rstan-
arm does the transformation and important information about how to interpret
the prior distributions of the model parameters when using QR=TRUE.

z For stan_betareg.fit, a regressor matrix for phi. Defaults to an intercept
only.

Details

The stan_betareg function is similar in syntax to betareg but rather than performing maximum
likelihood estimation, full Bayesian estimation is performed (if algorithm is "sampling") via
MCMC. The Bayesian model adds priors (independent by default) on the coefficients of the beta
regression model. The stan_betareg function calls the workhorse stan_betareg.fit function,
but it is also possible to call the latter directly.

Value

A stanreg object is returned for stan_betareg.

A stanfit object (or a slightly modified stanfit object) is returned if stan_betareg.fit is called
directly.

References

Ferrari, SLP and Cribari-Neto, F (2004). Beta regression for modeling rates and proportions. Jour-
nal of Applied Statistics. 31(7), 799–815.

See Also

stanreg-methods and betareg.

The vignette for stan_betareg. https://mc-stan.org/rstanarm/articles/

Examples

if (.Platform$OS.type != "windows" || .Platform$r_arch != "i386") {
Simulated data
N <- 200
x <- rnorm(N, 2, 1)
z <- rnorm(N, 2, 1)
mu <- binomial(link = "logit")$linkinv(1 + 0.2*x)
phi <- exp(1.5 + 0.4*z)
y <- rbeta(N, mu * phi, (1 - mu) * phi)
hist(y, col = "dark grey", border = FALSE, xlim = c(0,1))
fake_dat <- data.frame(y, x, z)

https://mc-stan.org/rstanarm/articles/

stan_biglm 99

fit <- stan_betareg(
y ~ x | z, data = fake_dat,
link = "logit",
link.phi = "log",
algorithm = "optimizing" # just for speed of example
)

print(fit, digits = 2)
}

stan_biglm Bayesian regularized linear but big models via Stan

Description

This is the same model as with stan_lm but it utilizes the output from biglm in the biglm package
in order to proceed when the data is too large to fit in memory.

Usage

stan_biglm(
biglm,
xbar,
ybar,
s_y,
...,
prior = R2(stop("'location' must be specified")),
prior_intercept = NULL,
prior_PD = FALSE,
algorithm = c("sampling", "meanfield", "fullrank"),
adapt_delta = NULL

)

stan_biglm.fit(
b,
R,
SSR,
N,
xbar,
ybar,
s_y,
has_intercept = TRUE,
...,
prior = R2(stop("'location' must be specified")),
prior_intercept = NULL,
prior_PD = FALSE,
algorithm = c("sampling", "meanfield", "fullrank", "optimizing"),
adapt_delta = NULL,

100 stan_biglm

importance_resampling = TRUE,
keep_every = 1

)

Arguments

biglm The list output by biglm in the biglm package.

xbar A numeric vector of column means in the implicit design matrix excluding the
intercept for the observations included in the model.

ybar A numeric scalar indicating the mean of the outcome for the observations in-
cluded in the model.

s_y A numeric scalar indicating the unbiased sample standard deviation of the out-
come for the observations included in the model.

... Further arguments passed to the function in the rstan package (sampling, vb,
or optimizing), corresponding to the estimation method named by algorithm.
For example, if algorithm is "sampling" it is possible to specify iter, chains,
cores, and other MCMC controls.
Another useful argument that can be passed to rstan via ... is refresh, which
specifies how often to print updates when sampling (i.e., show the progress every
refresh iterations). refresh=0 turns off the iteration updates.

prior Must be a call to R2 with its location argument specified or NULL, which would
indicate a standard uniform prior for the R2.

prior_intercept

Either NULL (the default) or a call to normal. If a normal prior is specified
without a scale, then the standard deviation is taken to be the marginal standard
deviation of the outcome divided by the square root of the sample size, which is
legitimate because the marginal standard deviation of the outcome is a primitive
parameter being estimated.
Note: If using a dense representation of the design matrix —i.e., if the sparse
argument is left at its default value of FALSE— then the prior distribution for
the intercept is set so it applies to the value when all predictors are centered. If
you prefer to specify a prior on the intercept without the predictors being auto-
centered, then you have to omit the intercept from the formula and include a
column of ones as a predictor, in which case some element of prior specifies the
prior on it, rather than prior_intercept. Regardless of how prior_intercept
is specified, the reported estimates of the intercept always correspond to a pa-
rameterization without centered predictors (i.e., same as in glm).

prior_PD A logical scalar (defaulting to FALSE) indicating whether to draw from the prior
predictive distribution instead of conditioning on the outcome.

algorithm A string (possibly abbreviated) indicating the estimation approach to use. Can
be "sampling" for MCMC (the default), "optimizing" for optimization, "meanfield"
for variational inference with independent normal distributions, or "fullrank"
for variational inference with a multivariate normal distribution. See rstanarm-package
for more details on the estimation algorithms. NOTE: not all fitting functions
support all four algorithms.

stan_biglm 101

adapt_delta Only relevant if algorithm="sampling". See the adapt_delta help page for
details.

b A numeric vector of OLS coefficients, excluding the intercept

R A square upper-triangular matrix from the QR decomposition of the design ma-
trix, excluding the intercept

SSR A numeric scalar indicating the sum-of-squared residuals for OLS

N A integer scalar indicating the number of included observations

has_intercept A logical scalar indicating whether to add an intercept to the model when esti-
mating it.

importance_resampling

Logical scalar indicating whether to use importance resampling when approxi-
mating the posterior distribution with a multivariate normal around the posterior
mode, which only applies when algorithm is "optimizing" but defaults to
TRUE in that case

keep_every Positive integer, which defaults to 1, but can be higher in order to thin the impor-
tance sampling realizations and also only apples when algorithm is "optimizing"
but defaults to TRUE in that case

Details

The stan_biglm function is intended to be used in the same circumstances as the biglm function
in the biglm package but with an informative prior on the R2 of the regression. Like biglm, the
memory required to estimate the model depends largely on the number of predictors rather than
the number of observations. However, stan_biglm and stan_biglm.fit have additional required
arguments that are not necessary in biglm, namely xbar, ybar, and s_y. If any observations have
any missing values on any of the predictors or the outcome, such observations do not contribute to
these statistics.

Value

The output of both stan_biglm and stan_biglm.fit is an object of stanfit-class rather than
stanreg-objects, which is more limited and less convenient but necessitated by the fact that
stan_biglm does not bring the full design matrix into memory. Without the full design matrix,some
of the elements of a stanreg-objects object cannot be calculated, such as residuals. Thus, the
functions in the rstanarm package that input stanreg-objects, such as posterior_predict can-
not be used.

Examples

if (.Platform$OS.type != "windows" || .Platform$r_arch != "i386") {
create inputs
ols <- lm(mpg ~ wt + qsec + am, data = mtcars, # all row are complete so ...

na.action = na.exclude) # not necessary in this case
b <- coef(ols)[-1]
R <- qr.R(ols$qr)[-1,-1]
SSR <- crossprod(ols$residuals)[1]
not_NA <- !is.na(fitted(ols))
N <- sum(not_NA)

102 stan_clogit

xbar <- colMeans(mtcars[not_NA,c("wt", "qsec", "am")])
y <- mtcars$mpg[not_NA]
ybar <- mean(y)
s_y <- sd(y)
post <- stan_biglm.fit(b, R, SSR, N, xbar, ybar, s_y, prior = R2(.75),

the next line is only to make the example go fast
chains = 1, iter = 500, seed = 12345)

cbind(lm = b, stan_lm = rstan::get_posterior_mean(post)[13:15,]) # shrunk
}

stan_clogit Conditional logistic (clogit) regression models via Stan

Description

A model for case-control studies with optional prior distributions for the coefficients, intercept, and
auxiliary parameters.

Usage

stan_clogit(
formula,
data,
subset,
na.action = NULL,
contrasts = NULL,
...,
strata,
prior = normal(autoscale = TRUE),
prior_covariance = decov(),
prior_PD = FALSE,
algorithm = c("sampling", "optimizing", "meanfield", "fullrank"),
adapt_delta = NULL,
QR = FALSE,
sparse = FALSE

)

Arguments

formula, data, subset, na.action, contrasts

Same as for glmer, except that any global intercept included in the formula will
be dropped. We strongly advise against omitting the data argument. Unless
data is specified (and is a data frame) many post-estimation functions (including
update, loo, kfold) are not guaranteed to work properly.

... Further arguments passed to the function in the rstan package (sampling, vb,
or optimizing), corresponding to the estimation method named by algorithm.
For example, if algorithm is "sampling" it is possible to specify iter, chains,
cores, and other MCMC controls.

stan_clogit 103

Another useful argument that can be passed to rstan via ... is refresh, which
specifies how often to print updates when sampling (i.e., show the progress every
refresh iterations). refresh=0 turns off the iteration updates.

strata A factor indicating the groups in the data where the number of successes (pos-
sibly one) is fixed by the research design. It may be useful to use interaction
or strata to create this factor. However, the strata argument must not rely on
any object besides the data data.frame.

prior The prior distribution for the (non-hierarchical) regression coefficients.
The default priors are described in the vignette Prior Distributions for rstanarm
Models. If not using the default, prior should be a call to one of the various
functions provided by rstanarm for specifying priors. The subset of these func-
tions that can be used for the prior on the coefficients can be grouped into several
"families":

Family Functions
Student t family normal, student_t, cauchy
Hierarchical shrinkage family hs, hs_plus
Laplace family laplace, lasso
Product normal family product_normal

See the priors help page for details on the families and how to specify the argu-
ments for all of the functions in the table above. To omit a prior —i.e., to use a
flat (improper) uniform prior— prior can be set to NULL, although this is rarely
a good idea.
Note: Unless QR=TRUE, if prior is from the Student t family or Laplace family,
and if the autoscale argument to the function used to specify the prior (e.g.
normal) is left at its default and recommended value of TRUE, then the default
or user-specified prior scale(s) may be adjusted internally based on the scales of
the predictors. See the priors help page and the Prior Distributions vignette for
details on the rescaling and the prior_summary function for a summary of the
priors used for a particular model.

prior_covariance

Cannot be NULL when lme4-style group-specific terms are included in the formula.
See decov for more information about the default arguments. Ignored when
there are no group-specific terms.

prior_PD A logical scalar (defaulting to FALSE) indicating whether to draw from the prior
predictive distribution instead of conditioning on the outcome.

algorithm A string (possibly abbreviated) indicating the estimation approach to use. Can
be "sampling" for MCMC (the default), "optimizing" for optimization, "meanfield"
for variational inference with independent normal distributions, or "fullrank"
for variational inference with a multivariate normal distribution. See rstanarm-package
for more details on the estimation algorithms. NOTE: not all fitting functions
support all four algorithms.

adapt_delta Only relevant if algorithm="sampling". See the adapt_delta help page for
details.

https://mc-stan.org/rstanarm/articles/priors.html
https://mc-stan.org/rstanarm/articles/priors.html

104 stan_clogit

QR A logical scalar defaulting to FALSE, but if TRUE applies a scaled qr decomposi-
tion to the design matrix. The transformation does not change the likelihood of
the data but is recommended for computational reasons when there are multiple
predictors. See the QR-argument documentation page for details on how rstan-
arm does the transformation and important information about how to interpret
the prior distributions of the model parameters when using QR=TRUE.

sparse A logical scalar (defaulting to FALSE) indicating whether to use a sparse repre-
sentation of the design (X) matrix. If TRUE, the the design matrix is not centered
(since that would destroy the sparsity) and likewise it is not possible to specify
both QR = TRUE and sparse = TRUE. Depending on how many zeros there are in
the design matrix, setting sparse = TRUE may make the code run faster and can
consume much less RAM.

Details

The stan_clogit function is mostly similar in syntax to clogit but rather than performing maxi-
mum likelihood estimation of generalized linear models, full Bayesian estimation is performed (if
algorithm is "sampling") via MCMC. The Bayesian model adds priors (independent by default)
on the coefficients of the GLM.

The data.frame passed to the data argument must be sorted by the variable passed to the strata
argument.

The formula may have group-specific terms like in stan_glmer but should not allow the intercept
to vary by the stratifying variable, since there is no information in the data with which to estimate
such deviations in the intercept.

Value

A stanreg object is returned for stan_clogit.

See Also

stanreg-methods and clogit.

The vignette for Bernoulli and binomial models, which has more details on using stan_clogit.
https://mc-stan.org/rstanarm/articles/

Examples

if (.Platform$OS.type != "windows" || .Platform$r_arch != "i386") {
dat <- infert[order(infert$stratum),] # order by strata
post <- stan_clogit(case ~ spontaneous + induced + (1 | education),

strata = stratum,
data = dat,
subset = parity <= 2,
QR = TRUE,
chains = 2, iter = 500) # for speed only

nd <- dat[dat$parity > 2, c("case", "spontaneous", "induced", "education", "stratum")]
next line would fail without case and stratum variables
pr <- posterior_epred(post, newdata = nd) # get predicted probabilities

https://mc-stan.org/rstanarm/articles/

stan_gamm4 105

not a random variable b/c probabilities add to 1 within strata
all.equal(rep(sum(nd$case), nrow(pr)), rowSums(pr))
}

stan_gamm4 Bayesian generalized linear additive models with optional group-
specific terms via Stan

Description

Bayesian inference for GAMMs with flexible priors.

Usage

stan_gamm4(
formula,
random = NULL,
family = gaussian(),
data,
weights = NULL,
subset = NULL,
na.action,
knots = NULL,
drop.unused.levels = TRUE,
...,
prior = default_prior_coef(family),
prior_intercept = default_prior_intercept(family),
prior_smooth = exponential(autoscale = FALSE),
prior_aux = exponential(autoscale = TRUE),
prior_covariance = decov(),
prior_PD = FALSE,
algorithm = c("sampling", "meanfield", "fullrank"),
adapt_delta = NULL,
QR = FALSE,
sparse = FALSE

)

plot_nonlinear(
x,
smooths,
...,
prob = 0.9,
facet_args = list(),
alpha = 1,
size = 0.75

)

106 stan_gamm4

Arguments

formula, random, family, data, knots, drop.unused.levels

Same as for gamm4. We strongly advise against omitting the data argument.
Unless data is specified (and is a data frame) many post-estimation functions
(including update, loo, kfold) are not guaranteed to work properly.

subset, weights, na.action

Same as glm, but rarely specified.

... Further arguments passed to sampling (e.g. iter, chains, cores, etc.) or to vb
(if algorithm is "meanfield" or "fullrank").

prior The prior distribution for the (non-hierarchical) regression coefficients.
The default priors are described in the vignette Prior Distributions for rstanarm
Models. If not using the default, prior should be a call to one of the various
functions provided by rstanarm for specifying priors. The subset of these func-
tions that can be used for the prior on the coefficients can be grouped into several
"families":

Family Functions
Student t family normal, student_t, cauchy
Hierarchical shrinkage family hs, hs_plus
Laplace family laplace, lasso
Product normal family product_normal

See the priors help page for details on the families and how to specify the argu-
ments for all of the functions in the table above. To omit a prior —i.e., to use a
flat (improper) uniform prior— prior can be set to NULL, although this is rarely
a good idea.
Note: Unless QR=TRUE, if prior is from the Student t family or Laplace family,
and if the autoscale argument to the function used to specify the prior (e.g.
normal) is left at its default and recommended value of TRUE, then the default
or user-specified prior scale(s) may be adjusted internally based on the scales of
the predictors. See the priors help page and the Prior Distributions vignette for
details on the rescaling and the prior_summary function for a summary of the
priors used for a particular model.

prior_intercept

The prior distribution for the intercept (after centering all predictors, see note
below).
The default prior is described in the vignette Prior Distributions for rstanarm
Models. If not using the default, prior_intercept can be a call to normal,
student_t or cauchy. See the priors help page for details on these functions.
To omit a prior on the intercept —i.e., to use a flat (improper) uniform prior—
prior_intercept can be set to NULL.
Note: If using a dense representation of the design matrix —i.e., if the sparse
argument is left at its default value of FALSE— then the prior distribution for the
intercept is set so it applies to the value when all predictors are centered (you
don’t need to manually center them). This is explained further in [Prior Distri-
butions for rstanarm Models](https://mc-stan.org/rstanarm/articles/priors.html)

https://mc-stan.org/rstanarm/articles/priors.html
https://mc-stan.org/rstanarm/articles/priors.html
https://mc-stan.org/rstanarm/articles/priors.html
https://mc-stan.org/rstanarm/articles/priors.html

stan_gamm4 107

If you prefer to specify a prior on the intercept without the predictors being
auto-centered, then you have to omit the intercept from the formula and in-
clude a column of ones as a predictor, in which case some element of prior
specifies the prior on it, rather than prior_intercept. Regardless of how
prior_intercept is specified, the reported estimates of the intercept always
correspond to a parameterization without centered predictors (i.e., same as in
glm).

prior_smooth The prior distribution for the hyperparameters in GAMs, with lower values
yielding less flexible smooth functions.
prior_smooth can be a call to exponential to use an exponential distribution,
or normal, student_t or cauchy, which results in a half-normal, half-t, or half-
Cauchy prior. See priors for details on these functions. To omit a prior —i.e.,
to use a flat (improper) uniform prior— set prior_smooth to NULL. The number
of hyperparameters depends on the model specification but a scalar prior will be
recylced as necessary to the appropriate length.

prior_aux The prior distribution for the "auxiliary" parameter (if applicable). The "auxil-
iary" parameter refers to a different parameter depending on the family. For
Gaussian models prior_aux controls "sigma", the error standard deviation.
For negative binomial models prior_aux controls "reciprocal_dispersion",
which is similar to the "size" parameter of rnbinom: smaller values of "reciprocal_dispersion"
correspond to greater dispersion. For gamma models prior_aux sets the prior
on to the "shape" parameter (see e.g., rgamma), and for inverse-Gaussian mod-
els it is the so-called "lambda" parameter (which is essentially the reciprocal of
a scale parameter). Binomial and Poisson models do not have auxiliary param-
eters.
The default prior is described in the vignette Prior Distributions for rstanarm
Models. If not using the default, prior_aux can be a call to exponential to
use an exponential distribution, or normal, student_t or cauchy, which results
in a half-normal, half-t, or half-Cauchy prior. See priors for details on these
functions. To omit a prior —i.e., to use a flat (improper) uniform prior— set
prior_aux to NULL.

prior_covariance

Cannot be NULL; see decov for more information about the default arguments.

prior_PD A logical scalar (defaulting to FALSE) indicating whether to draw from the prior
predictive distribution instead of conditioning on the outcome.

algorithm A string (possibly abbreviated) indicating the estimation approach to use. Can
be "sampling" for MCMC (the default), "optimizing" for optimization, "meanfield"
for variational inference with independent normal distributions, or "fullrank"
for variational inference with a multivariate normal distribution. See rstanarm-package
for more details on the estimation algorithms. NOTE: not all fitting functions
support all four algorithms.

adapt_delta Only relevant if algorithm="sampling". See the adapt_delta help page for
details.

QR A logical scalar defaulting to FALSE, but if TRUE applies a scaled qr decomposi-
tion to the design matrix. The transformation does not change the likelihood of
the data but is recommended for computational reasons when there are multiple

https://mc-stan.org/rstanarm/articles/priors.html
https://mc-stan.org/rstanarm/articles/priors.html

108 stan_gamm4

predictors. See the QR-argument documentation page for details on how rstan-
arm does the transformation and important information about how to interpret
the prior distributions of the model parameters when using QR=TRUE.

sparse A logical scalar (defaulting to FALSE) indicating whether to use a sparse repre-
sentation of the design (X) matrix. If TRUE, the the design matrix is not centered
(since that would destroy the sparsity) and likewise it is not possible to specify
both QR = TRUE and sparse = TRUE. Depending on how many zeros there are in
the design matrix, setting sparse = TRUE may make the code run faster and can
consume much less RAM.

x An object produced by stan_gamm4.
smooths An optional character vector specifying a subset of the smooth functions speci-

fied in the call to stan_gamm4. The default is include all smooth terms.
prob For univarite smooths, a scalar between 0 and 1 governing the width of the

uncertainty interval.
facet_args An optional named list of arguments passed to facet_wrap (other than the

facets argument).
alpha, size For univariate smooths, passed to geom_ribbon. For bivariate smooths, size/2

is passed to geom_contour.

Details

The stan_gamm4 function is similar in syntax to gamm4 in the gamm4 package. But rather than
performing (restricted) maximum likelihood estimation with the lme4 package, the stan_gamm4
function utilizes MCMC to perform Bayesian estimation. The Bayesian model adds priors on the
common regression coefficients (in the same way as stan_glm), priors on the standard deviations of
the smooth terms, and a prior on the decomposition of the covariance matrices of any group-specific
parameters (as in stan_glmer). Estimating these models via MCMC avoids the optimization issues
that often crop up with GAMMs and provides better estimates for the uncertainty in the parameter
estimates.

See gamm4 for more information about the model specicification and priors for more information
about the priors on the main coefficients. The formula should include at least one smooth term,
which can be specified in any way that is supported by the jagam function in the mgcv package.
The prior_smooth argument should be used to specify a prior on the unknown standard deviations
that govern how smooth the smooth function is. The prior_covariance argument can be used to
specify the prior on the components of the covariance matrix for any (optional) group-specific terms.
The gamm4 function in the gamm4 package uses group-specific terms to implement the departure
from linearity in the smooth terms, but that is not the case for stan_gamm4 where the group-specific
terms are exactly the same as in stan_glmer.

The plot_nonlinear function creates a ggplot object with one facet for each smooth function
specified in the call to stan_gamm4 in the case where all smooths are univariate. A subset of the
smooth functions can be specified using the smooths argument, which is necessary to plot a bivari-
ate smooth or to exclude the bivariate smooth and plot the univariate ones. In the bivariate case,
a plot is produced using geom_contour. In the univariate case, the resulting plot is conceptually
similar to plot.gam except the outer lines here demark the edges of posterior uncertainty intervals
(credible intervals) rather than confidence intervals and the inner line is the posterior median of the
function rather than the function implied by a point estimate. To change the colors used in the plot
see color_scheme_set.

stan_glm 109

Value

A stanreg object is returned for stan_gamm4.

plot_nonlinear returns a ggplot object.

References

Crainiceanu, C., Ruppert D., and Wand, M. (2005). Bayesian analysis for penalized spline regres-
sion using WinBUGS. Journal of Statistical Software. 14(14), 1–22. https://www.jstatsoft.
org/article/view/v014i14

See Also

stanreg-methods and gamm4.

The vignette for stan_glmer, which also discusses stan_gamm4. https://mc-stan.org/rstanarm/
articles/

Examples

if (.Platform$OS.type != "windows" || .Platform$r_arch != "i386") {
from example(gamm4, package = "gamm4"), prefixing gamm4() call with stan_

dat <- mgcv::gamSim(1, n = 400, scale = 2) ## simulate 4 term additive truth
Now add 20 level random effect `fac'...
dat$fac <- fac <- as.factor(sample(1:20, 400, replace = TRUE))
dat$y <- dat$y + model.matrix(~ fac - 1) %*% rnorm(20) * .5

br <- stan_gamm4(y ~ s(x0) + x1 + s(x2), data = dat, random = ~ (1 | fac),
chains = 1, iter = 500) # for example speed

print(br)
plot_nonlinear(br)
plot_nonlinear(br, smooths = "s(x0)", alpha = 2/3)

}

stan_glm Bayesian generalized linear models via Stan

Description

Generalized linear modeling with optional prior distributions for the coefficients, intercept, and
auxiliary parameters.

https://www.jstatsoft.org/article/view/v014i14
https://www.jstatsoft.org/article/view/v014i14
https://mc-stan.org/rstanarm/articles/
https://mc-stan.org/rstanarm/articles/

110 stan_glm

Usage

stan_glm(
formula,
family = gaussian(),
data,
weights,
subset,
na.action = NULL,
offset = NULL,
model = TRUE,
x = FALSE,
y = TRUE,
contrasts = NULL,
...,
prior = default_prior_coef(family),
prior_intercept = default_prior_intercept(family),
prior_aux = exponential(autoscale = TRUE),
prior_PD = FALSE,
algorithm = c("sampling", "optimizing", "meanfield", "fullrank"),
mean_PPD = algorithm != "optimizing" && !prior_PD,
adapt_delta = NULL,
QR = FALSE,
sparse = FALSE

)

stan_glm.nb(
formula,
data,
weights,
subset,
na.action = NULL,
offset = NULL,
model = TRUE,
x = FALSE,
y = TRUE,
contrasts = NULL,
link = "log",
...,
prior = default_prior_coef(family),
prior_intercept = default_prior_intercept(family),
prior_aux = exponential(autoscale = TRUE),
prior_PD = FALSE,
algorithm = c("sampling", "optimizing", "meanfield", "fullrank"),
mean_PPD = algorithm != "optimizing",
adapt_delta = NULL,
QR = FALSE

)

stan_glm 111

stan_glm.fit(
x,
y,
weights = rep(1, NROW(y)),
offset = rep(0, NROW(y)),
family = gaussian(),
...,
prior = default_prior_coef(family),
prior_intercept = default_prior_intercept(family),
prior_aux = exponential(autoscale = TRUE),
prior_smooth = exponential(autoscale = FALSE),
prior_ops = NULL,
group = list(),
prior_PD = FALSE,
algorithm = c("sampling", "optimizing", "meanfield", "fullrank"),
mean_PPD = algorithm != "optimizing" && !prior_PD,
adapt_delta = NULL,
QR = FALSE,
sparse = FALSE,
importance_resampling = algorithm != "sampling",
keep_every = algorithm != "sampling"

)

Arguments

formula, data, subset

Same as glm, but we strongly advise against omitting the data argument. Unless
data is specified (and is a data frame) many post-estimation functions (including
update, loo, kfold) are not guaranteed to work properly.

family Same as glm, except negative binomial GLMs are also possible using the neg_binomial_2
family object.

na.action, contrasts

Same as glm, but rarely specified.
model, offset, weights

Same as glm.

x In stan_glm, logical scalar indicating whether to return the design matrix. In
stan_glm.fit, usually a design matrix but can also be a list of design matrices
with the same number of rows, in which case the first element of the list is inter-
preted as the primary design matrix and the remaining list elements collectively
constitute a basis for a smooth nonlinear function of the predictors indicated by
the formula argument to stan_gamm4.

y In stan_glm, logical scalar indicating whether to return the response vector. In
stan_glm.fit, a response vector.

... Further arguments passed to the function in the rstan package (sampling, vb,
or optimizing), corresponding to the estimation method named by algorithm.
For example, if algorithm is "sampling" it is possible to specify iter, chains,
cores, and other MCMC controls.

112 stan_glm

Another useful argument that can be passed to rstan via ... is refresh, which
specifies how often to print updates when sampling (i.e., show the progress every
refresh iterations). refresh=0 turns off the iteration updates.

prior The prior distribution for the (non-hierarchical) regression coefficients.
The default priors are described in the vignette Prior Distributions for rstanarm
Models. If not using the default, prior should be a call to one of the various
functions provided by rstanarm for specifying priors. The subset of these func-
tions that can be used for the prior on the coefficients can be grouped into several
"families":

Family Functions
Student t family normal, student_t, cauchy
Hierarchical shrinkage family hs, hs_plus
Laplace family laplace, lasso
Product normal family product_normal

See the priors help page for details on the families and how to specify the argu-
ments for all of the functions in the table above. To omit a prior —i.e., to use a
flat (improper) uniform prior— prior can be set to NULL, although this is rarely
a good idea.
Note: Unless QR=TRUE, if prior is from the Student t family or Laplace family,
and if the autoscale argument to the function used to specify the prior (e.g.
normal) is left at its default and recommended value of TRUE, then the default
or user-specified prior scale(s) may be adjusted internally based on the scales of
the predictors. See the priors help page and the Prior Distributions vignette for
details on the rescaling and the prior_summary function for a summary of the
priors used for a particular model.

prior_intercept

The prior distribution for the intercept (after centering all predictors, see note
below).
The default prior is described in the vignette Prior Distributions for rstanarm
Models. If not using the default, prior_intercept can be a call to normal,
student_t or cauchy. See the priors help page for details on these functions.
To omit a prior on the intercept —i.e., to use a flat (improper) uniform prior—
prior_intercept can be set to NULL.
Note: If using a dense representation of the design matrix —i.e., if the sparse
argument is left at its default value of FALSE— then the prior distribution for the
intercept is set so it applies to the value when all predictors are centered (you
don’t need to manually center them). This is explained further in [Prior Distri-
butions for rstanarm Models](https://mc-stan.org/rstanarm/articles/priors.html)
If you prefer to specify a prior on the intercept without the predictors being
auto-centered, then you have to omit the intercept from the formula and in-
clude a column of ones as a predictor, in which case some element of prior
specifies the prior on it, rather than prior_intercept. Regardless of how
prior_intercept is specified, the reported estimates of the intercept always
correspond to a parameterization without centered predictors (i.e., same as in
glm).

https://mc-stan.org/rstanarm/articles/priors.html
https://mc-stan.org/rstanarm/articles/priors.html
https://mc-stan.org/rstanarm/articles/priors.html
https://mc-stan.org/rstanarm/articles/priors.html

stan_glm 113

prior_aux The prior distribution for the "auxiliary" parameter (if applicable). The "auxil-
iary" parameter refers to a different parameter depending on the family. For
Gaussian models prior_aux controls "sigma", the error standard deviation.
For negative binomial models prior_aux controls "reciprocal_dispersion",
which is similar to the "size" parameter of rnbinom: smaller values of "reciprocal_dispersion"
correspond to greater dispersion. For gamma models prior_aux sets the prior
on to the "shape" parameter (see e.g., rgamma), and for inverse-Gaussian mod-
els it is the so-called "lambda" parameter (which is essentially the reciprocal of
a scale parameter). Binomial and Poisson models do not have auxiliary param-
eters.
The default prior is described in the vignette Prior Distributions for rstanarm
Models. If not using the default, prior_aux can be a call to exponential to
use an exponential distribution, or normal, student_t or cauchy, which results
in a half-normal, half-t, or half-Cauchy prior. See priors for details on these
functions. To omit a prior —i.e., to use a flat (improper) uniform prior— set
prior_aux to NULL.

prior_PD A logical scalar (defaulting to FALSE) indicating whether to draw from the prior
predictive distribution instead of conditioning on the outcome.

algorithm A string (possibly abbreviated) indicating the estimation approach to use. Can
be "sampling" for MCMC (the default), "optimizing" for optimization, "meanfield"
for variational inference with independent normal distributions, or "fullrank"
for variational inference with a multivariate normal distribution. See rstanarm-package
for more details on the estimation algorithms. NOTE: not all fitting functions
support all four algorithms.

mean_PPD A logical value indicating whether the sample mean of the posterior predictive
distribution of the outcome should be calculated in the generated quantities
block. If TRUE then mean_PPD is computed and displayed as a diagnostic in the
printed output. The default is TRUE except if algorithm=="optimizing". A
useful heuristic is to check if mean_PPD is plausible when compared to mean(y).
If it is plausible then this does not mean that the model is good in general (only
that it can reproduce the sample mean), but if mean_PPD is implausible then
there may be something wrong, e.g., severe model misspecification, problems
with the data and/or priors, computational issues, etc.

adapt_delta Only relevant if algorithm="sampling". See the adapt_delta help page for
details.

QR A logical scalar defaulting to FALSE, but if TRUE applies a scaled qr decomposi-
tion to the design matrix. The transformation does not change the likelihood of
the data but is recommended for computational reasons when there are multiple
predictors. See the QR-argument documentation page for details on how rstan-
arm does the transformation and important information about how to interpret
the prior distributions of the model parameters when using QR=TRUE.

sparse A logical scalar (defaulting to FALSE) indicating whether to use a sparse repre-
sentation of the design (X) matrix. If TRUE, the the design matrix is not centered
(since that would destroy the sparsity) and likewise it is not possible to specify
both QR = TRUE and sparse = TRUE. Depending on how many zeros there are in
the design matrix, setting sparse = TRUE may make the code run faster and can
consume much less RAM.

https://mc-stan.org/rstanarm/articles/priors.html
https://mc-stan.org/rstanarm/articles/priors.html

114 stan_glm

link For stan_glm.nb only, the link function to use. See neg_binomial_2.

prior_smooth The prior distribution for the hyperparameters in GAMs, with lower values
yielding less flexible smooth functions.
prior_smooth can be a call to exponential to use an exponential distribution,
or normal, student_t or cauchy, which results in a half-normal, half-t, or half-
Cauchy prior. See priors for details on these functions. To omit a prior —i.e.,
to use a flat (improper) uniform prior— set prior_smooth to NULL. The number
of hyperparameters depends on the model specification but a scalar prior will be
recylced as necessary to the appropriate length.

prior_ops Deprecated. See rstanarm-deprecated for details.

group A list, possibly of length zero (the default), but otherwise having the structure of
that produced by mkReTrms to indicate the group-specific part of the model. In
addition, this list must have elements for the regularization, concentration
shape, and scale components of a decov prior for the covariance matrices
among the group-specific coefficients.

importance_resampling

Logical scalar indicating whether to use importance resampling when approxi-
mating the posterior distribution with a multivariate normal around the posterior
mode, which only applies when algorithm is "optimizing" but defaults to
TRUE in that case

keep_every Positive integer, which defaults to 1, but can be higher in order to "thin" the im-
portance sampling realizations. Applies only when importance_resampling=TRUE.

Details

The stan_glm function is similar in syntax to glm but rather than performing maximum likelihood
estimation of generalized linear models, full Bayesian estimation is performed (if algorithm is
"sampling") via MCMC. The Bayesian model adds priors (independent by default) on the coeffi-
cients of the GLM. The stan_glm function calls the workhorse stan_glm.fit function, but it is
also possible to call the latter directly.

The stan_glm.nb function, which takes the extra argument link, is a wrapper for stan_glm with
family = neg_binomial_2(link).

Value

A stanreg object is returned for stan_glm, stan_glm.nb.

A stanfit object (or a slightly modified stanfit object) is returned if stan_glm.fit is called directly.

References

Gelman, A. and Hill, J. (2007). Data Analysis Using Regression and Multilevel/Hierarchical Mod-
els. Cambridge University Press, Cambridge, UK. (Ch. 3-6)

Muth, C., Oravecz, Z., and Gabry, J. (2018) User-friendly Bayesian regression modeling: A tutorial
with rstanarm and shinystan. The Quantitative Methods for Psychology. 14(2), 99–119. https:
//www.tqmp.org/RegularArticles/vol14-2/p099/p099.pdf

https://www.tqmp.org/RegularArticles/vol14-2/p099/p099.pdf
https://www.tqmp.org/RegularArticles/vol14-2/p099/p099.pdf

stan_glm 115

See Also

stanreg-methods and glm.

The various vignettes for stan_glm at https://mc-stan.org/rstanarm/articles/.

Examples

if (.Platform$OS.type != "windows" || .Platform$r_arch != "i386") {
Linear regression
mtcars$mpg10 <- mtcars$mpg / 10
fit <- stan_glm(

mpg10 ~ wt + cyl + am,
data = mtcars,
QR = TRUE,
for speed of example only (default is "sampling")
algorithm = "fullrank",
refresh = 0
)

plot(fit, prob = 0.5)
plot(fit, prob = 0.5, pars = "beta")
plot(fit, "hist", pars = "sigma")

Logistic regression
head(wells)
wells$dist100 <- wells$dist / 100
fit2 <- stan_glm(

switch ~ dist100 + arsenic,
data = wells,
family = binomial(link = "logit"),
prior_intercept = normal(0, 10),
QR = TRUE,
refresh = 0,
for speed of example only
chains = 2, iter = 200

)
print(fit2)
prior_summary(fit2)

?bayesplot::mcmc_areas
plot(fit2, plotfun = "areas", prob = 0.9,

pars = c("(Intercept)", "arsenic"))

?bayesplot::ppc_error_binned
pp_check(fit2, plotfun = "error_binned")

Poisson regression (example from help("glm"))
count_data <- data.frame(
counts = c(18,17,15,20,10,20,25,13,12),
outcome = gl(3,1,9),
treatment = gl(3,3)

)

https://mc-stan.org/rstanarm/articles/

116 stan_glm

fit3 <- stan_glm(
counts ~ outcome + treatment,
data = count_data,
family = poisson(link="log"),
prior = normal(0, 2),
refresh = 0,
for speed of example only
chains = 2, iter = 250

)
print(fit3)

bayesplot::color_scheme_set("viridis")
plot(fit3)
plot(fit3, regex_pars = c("outcome", "treatment"))
plot(fit3, plotfun = "combo", regex_pars = "treatment") # ?bayesplot::mcmc_combo
posterior_vs_prior(fit3, regex_pars = c("outcome", "treatment"))

Gamma regression (example from help("glm"))
clotting <- data.frame(log_u = log(c(5,10,15,20,30,40,60,80,100)),

lot1 = c(118,58,42,35,27,25,21,19,18),
lot2 = c(69,35,26,21,18,16,13,12,12))

fit4 <- stan_glm(
lot1 ~ log_u,
data = clotting,
family = Gamma(link="log"),
iter = 500, # for speed of example only
refresh = 0
)

print(fit4, digits = 2)

fit5 <- update(fit4, formula = lot2 ~ log_u)

?bayesplot::ppc_dens_overlay
bayesplot::bayesplot_grid(

pp_check(fit4, seed = 123),
pp_check(fit5, seed = 123),
titles = c("lot1", "lot2")

)

Negative binomial regression
fit6 <- stan_glm.nb(

Days ~ Sex/(Age + Eth*Lrn),
data = MASS::quine,
link = "log",
prior_aux = exponential(1.5, autoscale=TRUE),
chains = 2, iter = 200, # for speed of example only
refresh = 0

)

prior_summary(fit6)
bayesplot::color_scheme_set("brightblue")
plot(fit6)

stan_glmer 117

pp_check(fit6, plotfun = "hist", nreps = 5) # ?bayesplot::ppc_hist

80% interval of estimated reciprocal_dispersion parameter
posterior_interval(fit6, pars = "reciprocal_dispersion", prob = 0.8)
plot(fit6, "areas", pars = "reciprocal_dispersion", prob = 0.8)

}

stan_glmer Bayesian generalized linear models with group-specific terms via Stan

Description

Bayesian inference for GLMs with group-specific coefficients that have unknown covariance matri-
ces with flexible priors.

Usage

stan_glmer(
formula,
data = NULL,
family = gaussian,
subset,
weights,
na.action = getOption("na.action", "na.omit"),
offset,
contrasts = NULL,
...,
prior = default_prior_coef(family),
prior_intercept = default_prior_intercept(family),
prior_aux = exponential(autoscale = TRUE),
prior_covariance = decov(),
prior_PD = FALSE,
algorithm = c("sampling", "meanfield", "fullrank"),
adapt_delta = NULL,
QR = FALSE,
sparse = FALSE

)

stan_lmer(
formula,
data = NULL,
subset,
weights,
na.action = getOption("na.action", "na.omit"),
offset,
contrasts = NULL,

118 stan_glmer

...,
prior = default_prior_coef(family),
prior_intercept = default_prior_intercept(family),
prior_aux = exponential(autoscale = TRUE),
prior_covariance = decov(),
prior_PD = FALSE,
algorithm = c("sampling", "meanfield", "fullrank"),
adapt_delta = NULL,
QR = FALSE

)

stan_glmer.nb(
formula,
data = NULL,
subset,
weights,
na.action = getOption("na.action", "na.omit"),
offset,
contrasts = NULL,
link = "log",
...,
prior = default_prior_coef(family),
prior_intercept = default_prior_intercept(family),
prior_aux = exponential(autoscale = TRUE),
prior_covariance = decov(),
prior_PD = FALSE,
algorithm = c("sampling", "meanfield", "fullrank"),
adapt_delta = NULL,
QR = FALSE

)

Arguments

formula, data Same as for glmer. We strongly advise against omitting the data argument.
Unless data is specified (and is a data frame) many post-estimation functions
(including update, loo, kfold) are not guaranteed to work properly.

family Same as for glmer except it is also possible to use family=mgcv::betar to
estimate a Beta regression with stan_glmer.

subset, weights, offset

Same as glm.
na.action, contrasts

Same as glm, but rarely specified.

... For stan_glmer, further arguments passed to sampling (e.g. iter, chains,
cores, etc.) or to vb (if algorithm is "meanfield" or "fullrank"). For
stan_lmer and stan_glmer.nb, ... should also contain all relevant arguments
to pass to stan_glmer (except family).

prior The prior distribution for the (non-hierarchical) regression coefficients.

stan_glmer 119

The default priors are described in the vignette Prior Distributions for rstanarm
Models. If not using the default, prior should be a call to one of the various
functions provided by rstanarm for specifying priors. The subset of these func-
tions that can be used for the prior on the coefficients can be grouped into several
"families":

Family Functions
Student t family normal, student_t, cauchy
Hierarchical shrinkage family hs, hs_plus
Laplace family laplace, lasso
Product normal family product_normal

See the priors help page for details on the families and how to specify the argu-
ments for all of the functions in the table above. To omit a prior —i.e., to use a
flat (improper) uniform prior— prior can be set to NULL, although this is rarely
a good idea.
Note: Unless QR=TRUE, if prior is from the Student t family or Laplace family,
and if the autoscale argument to the function used to specify the prior (e.g.
normal) is left at its default and recommended value of TRUE, then the default
or user-specified prior scale(s) may be adjusted internally based on the scales of
the predictors. See the priors help page and the Prior Distributions vignette for
details on the rescaling and the prior_summary function for a summary of the
priors used for a particular model.

prior_intercept

The prior distribution for the intercept (after centering all predictors, see note
below).
The default prior is described in the vignette Prior Distributions for rstanarm
Models. If not using the default, prior_intercept can be a call to normal,
student_t or cauchy. See the priors help page for details on these functions.
To omit a prior on the intercept —i.e., to use a flat (improper) uniform prior—
prior_intercept can be set to NULL.
Note: If using a dense representation of the design matrix —i.e., if the sparse
argument is left at its default value of FALSE— then the prior distribution for the
intercept is set so it applies to the value when all predictors are centered (you
don’t need to manually center them). This is explained further in [Prior Distri-
butions for rstanarm Models](https://mc-stan.org/rstanarm/articles/priors.html)
If you prefer to specify a prior on the intercept without the predictors being
auto-centered, then you have to omit the intercept from the formula and in-
clude a column of ones as a predictor, in which case some element of prior
specifies the prior on it, rather than prior_intercept. Regardless of how
prior_intercept is specified, the reported estimates of the intercept always
correspond to a parameterization without centered predictors (i.e., same as in
glm).

prior_aux The prior distribution for the "auxiliary" parameter (if applicable). The "auxil-
iary" parameter refers to a different parameter depending on the family. For
Gaussian models prior_aux controls "sigma", the error standard deviation.
For negative binomial models prior_aux controls "reciprocal_dispersion",

https://mc-stan.org/rstanarm/articles/priors.html
https://mc-stan.org/rstanarm/articles/priors.html
https://mc-stan.org/rstanarm/articles/priors.html
https://mc-stan.org/rstanarm/articles/priors.html

120 stan_glmer

which is similar to the "size" parameter of rnbinom: smaller values of "reciprocal_dispersion"
correspond to greater dispersion. For gamma models prior_aux sets the prior
on to the "shape" parameter (see e.g., rgamma), and for inverse-Gaussian mod-
els it is the so-called "lambda" parameter (which is essentially the reciprocal of
a scale parameter). Binomial and Poisson models do not have auxiliary param-
eters.
The default prior is described in the vignette Prior Distributions for rstanarm
Models. If not using the default, prior_aux can be a call to exponential to
use an exponential distribution, or normal, student_t or cauchy, which results
in a half-normal, half-t, or half-Cauchy prior. See priors for details on these
functions. To omit a prior —i.e., to use a flat (improper) uniform prior— set
prior_aux to NULL.

prior_covariance

Cannot be NULL; see decov for more information about the default arguments.

prior_PD A logical scalar (defaulting to FALSE) indicating whether to draw from the prior
predictive distribution instead of conditioning on the outcome.

algorithm A string (possibly abbreviated) indicating the estimation approach to use. Can
be "sampling" for MCMC (the default), "optimizing" for optimization, "meanfield"
for variational inference with independent normal distributions, or "fullrank"
for variational inference with a multivariate normal distribution. See rstanarm-package
for more details on the estimation algorithms. NOTE: not all fitting functions
support all four algorithms.

adapt_delta Only relevant if algorithm="sampling". See the adapt_delta help page for
details.

QR A logical scalar defaulting to FALSE, but if TRUE applies a scaled qr decomposi-
tion to the design matrix. The transformation does not change the likelihood of
the data but is recommended for computational reasons when there are multiple
predictors. See the QR-argument documentation page for details on how rstan-
arm does the transformation and important information about how to interpret
the prior distributions of the model parameters when using QR=TRUE.

sparse A logical scalar (defaulting to FALSE) indicating whether to use a sparse repre-
sentation of the design (X) matrix. If TRUE, the the design matrix is not centered
(since that would destroy the sparsity) and likewise it is not possible to specify
both QR = TRUE and sparse = TRUE. Depending on how many zeros there are in
the design matrix, setting sparse = TRUE may make the code run faster and can
consume much less RAM.

link For stan_glmer.nb only, the link function to use. See neg_binomial_2.

Details

The stan_glmer function is similar in syntax to glmer but rather than performing (restricted)
maximum likelihood estimation of generalized linear models, Bayesian estimation is performed
via MCMC. The Bayesian model adds priors on the regression coefficients (in the same way as
stan_glm) and priors on the terms of a decomposition of the covariance matrices of the group-
specific parameters. See priors for more information about the priors.

The stan_lmer function is equivalent to stan_glmer with family = gaussian(link = "identity").

https://mc-stan.org/rstanarm/articles/priors.html
https://mc-stan.org/rstanarm/articles/priors.html

stan_jm 121

The stan_glmer.nb function, which takes the extra argument link, is a wrapper for stan_glmer
with family = neg_binomial_2(link).

Value

A stanreg object is returned for stan_glmer, stan_lmer, stan_glmer.nb.

A list with classes stanreg, glm, lm, and lmerMod. The conventions for the parameter names are
the same as in the lme4 package with the addition that the standard deviation of the errors is called
sigma and the variance-covariance matrix of the group-specific deviations from the common pa-
rameters is called Sigma, even if this variance-covariance matrix only has one row and one column
(in which case it is just the group-level variance).

References

Gelman, A. and Hill, J. (2007). Data Analysis Using Regression and Multilevel/Hierarchical Mod-
els. Cambridge University Press, Cambridge, UK. (Ch. 11-15)

Muth, C., Oravecz, Z., and Gabry, J. (2018) User-friendly Bayesian regression modeling: A tutorial
with rstanarm and shinystan. The Quantitative Methods for Psychology. 14(2), 99–119. https:
//www.tqmp.org/RegularArticles/vol14-2/p099/p099.pdf

See Also

stanreg-methods and glmer.

The vignette for stan_glmer and the Hierarchical Partial Pooling vignette. https://mc-stan.
org/rstanarm/articles/

Examples

if (.Platform$OS.type != "windows" || .Platform$r_arch != "i386") {
see help(example_model) for details on the model below
if (!exists("example_model")) example(example_model)
print(example_model, digits = 1)
}

stan_jm Bayesian joint longitudinal and time-to-event models via Stan

Description

Fits a shared parameter joint model for longitudinal and time-to-event (e.g. survival) data under a
Bayesian framework using Stan.

https://www.tqmp.org/RegularArticles/vol14-2/p099/p099.pdf
https://www.tqmp.org/RegularArticles/vol14-2/p099/p099.pdf
https://mc-stan.org/rstanarm/articles/
https://mc-stan.org/rstanarm/articles/

122 stan_jm

Usage

stan_jm(
formulaLong,
dataLong,
formulaEvent,
dataEvent,
time_var,
id_var,
family = gaussian,
assoc = "etavalue",
lag_assoc = 0,
grp_assoc,
scale_assoc = NULL,
epsilon = 1e-05,
basehaz = c("bs", "weibull", "piecewise"),
basehaz_ops,
qnodes = 15,
init = "prefit",
weights,
priorLong = normal(autoscale = TRUE),
priorLong_intercept = normal(autoscale = TRUE),
priorLong_aux = cauchy(0, 5, autoscale = TRUE),
priorEvent = normal(autoscale = TRUE),
priorEvent_intercept = normal(autoscale = TRUE),
priorEvent_aux = cauchy(autoscale = TRUE),
priorEvent_assoc = normal(autoscale = TRUE),
prior_covariance = lkj(autoscale = TRUE),
prior_PD = FALSE,
algorithm = c("sampling", "meanfield", "fullrank"),
adapt_delta = NULL,
max_treedepth = 10L,
QR = FALSE,
sparse = FALSE,
...

)

Arguments

formulaLong A two-sided linear formula object describing both the fixed-effects and random-
effects parts of the longitudinal submodel, similar in vein to formula specifi-
cation in the lme4 package (see glmer or the lme4 vignette for details). Note
however that the double bar (||) notation is not allowed when specifying the
random-effects parts of the formula, and neither are nested grouping factors (e.g.
(1 | g1/g2)) or (1 | g1:g2), where g1, g2 are grouping factors. Offset terms
can also be included in the model formula. For a multivariate joint model (i.e.
more than one longitudinal marker) this should be a list of such formula objects,
with each element of the list providing the formula for one of the longitudinal
submodels.

stan_jm 123

dataLong A data frame containing the variables specified in formulaLong. If fitting a mul-
tivariate joint model, then this can be either a single data frame which contains
the data for all longitudinal submodels, or it can be a list of data frames where
each element of the list provides the data for one of the longitudinal submodels.

formulaEvent A two-sided formula object describing the event submodel. The left hand side
of the formula should be a Surv() object. See Surv.

dataEvent A data frame containing the variables specified in formulaEvent.

time_var A character string specifying the name of the variable in dataLong which rep-
resents time.

id_var A character string specifying the name of the variable in dataLong which dis-
tinguishes between individuals. This can be left unspecified if there is only one
grouping factor (which is assumed to be the individual). If there is more than
one grouping factor (i.e. clustering beyond the level of the individual) then the
id_var argument must be specified.

family The family (and possibly also the link function) for the longitudinal submodel(s).
See glmer for details. If fitting a multivariate joint model, then this can option-
ally be a list of families, in which case each element of the list specifies the
family for one of the longitudinal submodels.

assoc A character string or character vector specifying the joint model association
structure. Possible association structures that can be used include: "etavalue"
(the default); "etaslope"; "etaauc"; "muvalue"; "muslope"; "muauc"; "shared_b";
"shared_coef"; or "null". These are described in the Details section below. For a
multivariate joint model, different association structures can optionally be used
for each longitudinal submodel by specifying a list of character vectors, with
each element of the list specifying the desired association structure for one of
the longitudinal submodels. Specifying assoc = NULL will fit a joint model with
no association structure (equivalent to fitting separate longitudinal and time-
to-event models). It is also possible to include interaction terms between the
association term ("etavalue", "etaslope", "muvalue", "muslope") and observed
data/covariates. It is also possible, when fitting a multivariate joint model, to in-
clude interaction terms between the association terms ("etavalue" or "muvalue")
corresponding to the different longitudinal outcomes. See the Details section as
well as the Examples below.

lag_assoc A non-negative scalar specifying the time lag that should be used for the asso-
ciation structure. That is, the hazard of the event at time t will be assumed to
be associated with the value/slope/auc of the longitudinal marker at time t-u,
where u is the time lag. If fitting a multivariate joint model, then a different
time lag can be used for each longitudinal marker by providing a numeric vec-
tor of lags, otherwise if a scalar is provided then the specified time lag will be
used for all longitudinal markers. Note however that only one time lag can be
specified for linking each longitudinal marker to the event, and that that time lag
will be used for all association structure types (e.g. "etavalue", "etaslope",
"etaauc", "muvalue", etc) that are specified for that longitudinal marker in the
assoc argument.

grp_assoc Character string specifying the method for combining information across lower
level units clustered within an individual when forming the association structure.

124 stan_jm

This is only relevant when a grouping factor is specified in formulaLong that
corresponds to clustering within individuals. This can be specified as either
"sum", mean, "min" or "max". For example, specifying grp_assoc = "sum"
indicates that the association structure should be based on a summation across
the lower level units clustered within an individual, or specifying grp_assoc
= "mean" indicates that the association structure should be based on the mean
(i.e. average) taken across the lower level units clustered within an individual.
So, for example, specifying assoc = "muvalue" and grp_assoc = "sum" would
mean that the log hazard at time t for individual i would be linearly related to
the sum of the expected values at time t for each of the lower level units (which
may be for example tumor lesions) clustered within that individual.

scale_assoc A non-zero numeric value specifying an optional scaling parameter for the as-
sociation structure. This multiplicatively scales the value/slope/auc of the lon-
gitudinal marker by scale_assoc within the event submodel. When fitting a
multivariate joint model, a scaling parameter must be specified for each longi-
tudinal submodel using a vector of numeric values. Note that only one scaling
parameter can be specified for each longitudinal submodel, and it will be used
for all association structure types (e.g. "etavalue", "etaslope", "etaauc",
"muvalue", etc) that are specified for that longitudinal marker in the assoc ar-
gument.

epsilon The half-width of the central difference used to numerically calculate the derivate
when the "etaslope" association structure is used.

basehaz A character string indicating which baseline hazard to use for the event sub-
model. Options are a B-splines approximation estimated for the log baseline
hazard ("bs", the default), a Weibull baseline hazard ("weibull"), or a piece-
wise constant baseline hazard ("piecewise"). (Note however that there is cur-
rently limited post-estimation functionality available for models estimated using
a piecewise constant baseline hazard).

basehaz_ops A named list specifying options related to the baseline hazard. Currently this
can include:

df A positive integer specifying the degrees of freedom for the B-splines if
basehaz = "bs", or the number of intervals used for the piecewise constant
baseline hazard if basehaz = "piecewise". The default is 6.

knots An optional numeric vector specifying the internal knot locations for the
B-splines if basehaz = "bs", or the internal cut-points for defining inter-
vals of the piecewise constant baseline hazard if basehaz = "piecewise".
Knots cannot be specified if df is specified. If not specified, then the de-
fault is to use df - 4 knots if basehaz = "bs", or df - 1 knots if basehaz =
"piecewise", which are placed at equally spaced percentiles of the distri-
bution of observed event times.

qnodes The number of nodes to use for the Gauss-Kronrod quadrature that is used to
evaluate the cumulative hazard in the likelihood function. Options are 15 (the
default), 11 or 7.

init The method for generating the initial values for the MCMC. The default is
"prefit", which uses those obtained from fitting separate longitudinal and

stan_jm 125

time-to-event models prior to fitting the joint model. The separate longitudi-
nal model is a (possibly multivariate) generalised linear mixed model estimated
using variational bayes. This is achieved via the stan_mvmer function with
algorithm = "meanfield". The separate Cox model is estimated using coxph.
This is achieved using the and time-to-event models prior to fitting the joint
model. The separate models are estimated using the glmer and coxph functions.
This should provide reasonable initial values which should aid the MCMC sam-
pler. Parameters that cannot be obtained from fitting separate longitudinal and
time-to-event models are initialised using the "random" method for stan. How-
ever it is recommended that any final analysis should ideally be performed with
several MCMC chains each initiated from a different set of initial values; this
can be obtained by setting init = "random". In addition, other possibilities for
specifying init are the same as those described for stan.

weights Experimental and should be used with caution. The user can optionally sup-
ply a 2-column data frame containing a set of ’prior weights’ to be used in the
estimation process. The data frame should contain two columns: the first con-
taining the IDs for each individual, and the second containing the corresponding
weights. The data frame should only have one row for each individual; that is,
weights should be constant within individuals.

priorLong, priorEvent, priorEvent_assoc

The prior distributions for the regression coefficients in the longitudinal sub-
model(s), event submodel, and the association parameter(s). Can be a call to
one of the various functions provided by rstanarm for specifying priors. The
subset of these functions that can be used for the prior on the coefficients can be
grouped into several "families":

Family Functions
Student t family normal, student_t, cauchy
Hierarchical shrinkage family hs, hs_plus
Laplace family laplace, lasso

See the priors help page for details on the families and how to specify the argu-
ments for all of the functions in the table above. To omit a prior —i.e., to use a
flat (improper) uniform prior— prior can be set to NULL, although this is rarely
a good idea.
Note: Unless QR=TRUE, if prior is from the Student t family or Laplace fam-
ily, and if the autoscale argument to the function used to specify the prior
(e.g. normal) is left at its default and recommended value of TRUE, then the
default or user-specified prior scale(s) may be adjusted internally based on the
scales of the predictors. See the priors help page for details on the rescaling and
the prior_summary function for a summary of the priors used for a particular
model.

priorLong_intercept, priorEvent_intercept

The prior distributions for the intercepts in the longitudinal submodel(s) and
event submodel. Can be a call to normal, student_t or cauchy. See the priors
help page for details on these functions. To omit a prior on the intercept —i.e.,
to use a flat (improper) uniform prior— prior_intercept can be set to NULL.

126 stan_jm

Note: The prior distribution for the intercept is set so it applies to the value
when all predictors are centered. Moreover, note that a prior is only placed on
the intercept for the event submodel when a Weibull baseline hazard has been
specified. For the B-splines and piecewise constant baseline hazards there is
not intercept parameter that is given a prior distribution; an intercept parameter
will be shown in the output for the fitted model, but this just corresponds to the
necessary post-estimation adjustment in the linear predictor due to the centering
of the predictiors in the event submodel.

priorLong_aux The prior distribution for the "auxiliary" parameters in the longitudinal sub-
models (if applicable). The "auxiliary" parameter refers to a different param-
eter depending on the family. For Gaussian models priorLong_aux controls
"sigma", the error standard deviation. For negative binomial models priorLong_aux
controls "reciprocal_dispersion", which is similar to the "size" parame-
ter of rnbinom: smaller values of "reciprocal_dispersion" correspond to
greater dispersion. For gamma models priorLong_aux sets the prior on to the
"shape" parameter (see e.g., rgamma), and for inverse-Gaussian models it is
the so-called "lambda" parameter (which is essentially the reciprocal of a scale
parameter). Binomial and Poisson models do not have auxiliary parameters.
priorLong_aux can be a call to exponential to use an exponential distribution,
or normal, student_t or cauchy, which results in a half-normal, half-t, or half-
Cauchy prior. See priors for details on these functions. To omit a prior —i.e.,
to use a flat (improper) uniform prior— set priorLong_aux to NULL.
If fitting a multivariate joint model, you have the option to specify a list of prior
distributions, however the elements of the list that correspond to any longitudinal
submodel which does not have an auxiliary parameter will be ignored.

priorEvent_aux The prior distribution for the "auxiliary" parameters in the event submodel. The
"auxiliary" parameters refers to different parameters depending on the base-
line hazard. For basehaz = "weibull" the auxiliary parameter is the Weibull
shape parameter. For basehaz = "bs" the auxiliary parameters are the coeffi-
cients for the B-spline approximation to the log baseline hazard. For basehaz
= "piecewise" the auxiliary parameters are the piecewise estimates of the log
baseline hazard.

prior_covariance

Cannot be NULL; see priors for more information about the prior distributions
on covariance matrices. Note however that the default prior for covariance ma-
trices in stan_jm is slightly different to that in stan_glmer (the details of which
are described on the priors page).

prior_PD A logical scalar (defaulting to FALSE) indicating whether to draw from the prior
predictive distribution instead of conditioning on the outcome.

algorithm A string (possibly abbreviated) indicating the estimation approach to use. Can
be "sampling" for MCMC (the default), "optimizing" for optimization, "meanfield"
for variational inference with independent normal distributions, or "fullrank"
for variational inference with a multivariate normal distribution. See rstanarm-package
for more details on the estimation algorithms. NOTE: not all fitting functions
support all four algorithms.

adapt_delta Only relevant if algorithm="sampling". See the adapt_delta help page for
details.

stan_jm 127

max_treedepth A positive integer specifying the maximum treedepth for the non-U-turn sam-
pler. See the control argument in stan.

QR A logical scalar defaulting to FALSE, but if TRUE applies a scaled qr decomposi-
tion to the design matrix. The transformation does not change the likelihood of
the data but is recommended for computational reasons when there are multiple
predictors. See the QR-argument documentation page for details on how rstan-
arm does the transformation and important information about how to interpret
the prior distributions of the model parameters when using QR=TRUE.

sparse A logical scalar (defaulting to FALSE) indicating whether to use a sparse repre-
sentation of the design (X) matrix. If TRUE, the the design matrix is not centered
(since that would destroy the sparsity) and likewise it is not possible to specify
both QR = TRUE and sparse = TRUE. Depending on how many zeros there are in
the design matrix, setting sparse = TRUE may make the code run faster and can
consume much less RAM.

... Further arguments passed to the function in the rstan package (sampling, vb,
or optimizing), corresponding to the estimation method named by algorithm.
For example, if algorithm is "sampling" it is possible to specify iter, chains,
cores, and other MCMC controls.
Another useful argument that can be passed to rstan via ... is refresh, which
specifies how often to print updates when sampling (i.e., show the progress every
refresh iterations). refresh=0 turns off the iteration updates.

Details

The stan_jm function can be used to fit a joint model (also known as a shared parameter model)
for longitudinal and time-to-event data under a Bayesian framework. The underlying estimation is
carried out using the Bayesian C++ package Stan (https://mc-stan.org/).

The joint model may be univariate (with only one longitudinal submodel) or multivariate (with
more than one longitudinal submodel). For the longitudinal submodel a (possibly multivariate)
generalised linear mixed model is assumed with any of the family choices allowed by glmer.
If a multivariate joint model is specified (by providing a list of formulas in the formulaLong ar-
gument), then the multivariate longitudinal submodel consists of a multivariate generalized linear
model (GLM) with group-specific terms that are assumed to be correlated across the different GLM
submodels. That is, within a grouping factor (for example, patient ID) the group-specific terms are
assumed to be correlated across the different GLM submodels. It is possible to specify a different
outcome type (for example a different family and/or link function) for each of the GLM submod-
els, by providing a list of family objects in the family argument. Multi-level clustered data are
allowed, and that additional clustering can occur at a level higher than the individual-level (e.g.
patients clustered within clinics), or at a level lower than the individual-level (e.g. tumor lesions
clustered within patients). If the clustering occurs at a level lower than the individual, then the
user needs to indicate how the lower level clusters should be handled when forming the association
structure between the longitudinal and event submodels (see the grp_assoc argument described
above).

For the event submodel a parametric proportional hazards model is assumed. The baseline haz-
ard can be estimated using either a cubic B-splines approximation (basehaz = "bs", the default),
a Weibull distribution (basehaz = "weibull"), or a piecewise constant baseline hazard (basehaz =

https://mc-stan.org/

128 stan_jm

"piecewise"). If the B-spline or piecewise constant baseline hazards are used, then the degrees of
freedom or the internal knot locations can be (optionally) specified. If the degrees of freedom are
specified (through the df argument) then the knot locations are automatically generated based on
the distribution of the observed event times (not including censoring times). Otherwise internal knot
locations can be specified directly through the knots argument. If neither df or knots is specified,
then the default is to set df equal to 6. It is not possible to specify both df and knots.

Time-varying covariates are allowed in both the longitudinal and event submodels. These should be
specified in the data in the same way as they normally would when fitting a separate longitudinal
model using lmer or a separate time-to-event model using coxph. These time-varying covariates
should be exogenous in nature, otherwise they would perhaps be better specified as an additional
outcome (i.e. by including them as an additional longitudinal outcome in the joint model).

Bayesian estimation of the joint model is performed via MCMC. The Bayesian model includes inde-
pendent priors on the regression coefficients for both the longitudinal and event submodels, includ-
ing the association parameter(s) (in much the same way as the regression parameters in stan_glm)
and priors on the terms of a decomposition of the covariance matrices of the group-specific param-
eters. See priors for more information about the priors distributions that are available.

Gauss-Kronrod quadrature is used to numerically evaluate the integral over the cumulative haz-
ard in the likelihood function for the event submodel. The accuracy of the numerical approximation
can be controlled using the number of quadrature nodes, specified through the qnodes argument.
Using a higher number of quadrature nodes will result in a more accurate approximation.

Association structures: The association structure for the joint model can be based on any of the
following parameterisations:

• current value of the linear predictor in the longitudinal submodel ("etavalue")
• first derivative (slope) of the linear predictor in the longitudinal submodel ("etaslope")
• the area under the curve of the linear predictor in the longitudinal submodel ("etaauc")
• current expected value of the longitudinal submodel ("muvalue")
• the area under the curve of the expected value from the longitudinal submodel ("muauc")
• shared individual-level random effects ("shared_b")
• shared individual-level random effects which also incorporate the corresponding fixed effect

as well as any corresponding random effects for clustering levels higher than the individual)
("shared_coef")

• interactions between association terms and observed data/covariates ("etavalue_data", "etaslope_data",
"muvalue_data", "muslope_data"). These are described further below.

• interactions between association terms corresponding to different longitudinal outcomes in a
multivariate joint model ("etavalue_etavalue(#)", "etavalue_muvalue(#)", "muvalue_etavalue(#)",
"muvalue_muvalue(#)"). These are described further below.

• no association structure (equivalent to fitting separate longitudinal and event models) ("null"
or NULL)

More than one association structure can be specified, however, not all possible combinations are
allowed. Note that for the lagged association structures baseline values (time = 0) are used for
the instances where the time lag results in a time prior to baseline. When using the "etaauc"
or "muauc" association structures, the area under the curve is evaluated using Gauss-Kronrod
quadrature with 15 quadrature nodes. By default, "shared_b" and "shared_coef" contribute

stan_jm 129

all random effects to the association structure; however, a subset of the random effects can be
chosen by specifying their indices between parentheses as a suffix, for example, "shared_b(1)"
or "shared_b(1:3)" or "shared_b(1,2,4)", and so on.

In addition, several association terms ("etavalue", "etaslope", "muvalue", "muslope") can
be interacted with observed data/covariates. To do this, use the association term’s main handle
plus a suffix of "_data" then followed by the model matrix formula in parentheses. For example
if we had a variable in our dataset for gender named sex then we might want to obtain different
estimates for the association between the current slope of the marker and the risk of the event for
each gender. To do this we would specify assoc = c("etaslope", "etaslope_data(~ sex)").

It is also possible, when fitting a multivariate joint model, to include interaction terms between
the association terms themselves (this only applies for interacting "etavalue" or "muvalue").
For example, if we had a joint model with two longitudinal markers, we could specify assoc =
list(c("etavalue", "etavalue_etavalue(2)"), "etavalue"). The first element of list says
we want to use the value of the linear predictor for the first marker, as well as it’s interaction with
the value of the linear predictor for the second marker. The second element of the list says we
want to also include the expected value of the second marker (i.e. as a "main effect"). Therefore,
the linear predictor for the event submodel would include the "main effects" for each marker as
well as their interaction.

There are additional examples in the Examples section below.

Value

A stanjm object is returned.

See Also

stanreg-objects, stanmvreg-methods, print.stanmvreg, summary.stanmvreg, posterior_traj,
posterior_survfit, posterior_predict, posterior_interval, pp_check, ps_check, stan_mvmer.

Examples

if (.Platform$OS.type != "windows" || .Platform$r_arch !="i386") {

#####
Univariate joint model, with association structure based on the
current value of the linear predictor
f1 <- stan_jm(formulaLong = logBili ~ year + (1 | id),

dataLong = pbcLong,
formulaEvent = Surv(futimeYears, death) ~ sex + trt,
dataEvent = pbcSurv,
time_var = "year",
this next line is only to keep the example small in size!
chains = 1, cores = 1, seed = 12345, iter = 1000)

print(f1)
summary(f1)

#####

130 stan_jm

Univariate joint model, with association structure based on the
current value and slope of the linear predictor
f2 <- stan_jm(formulaLong = logBili ~ year + (year | id),

dataLong = pbcLong,
formulaEvent = Surv(futimeYears, death) ~ sex + trt,
dataEvent = pbcSurv,
assoc = c("etavalue", "etaslope"),
time_var = "year",
chains = 1, cores = 1, seed = 12345, iter = 1000)

print(f2)

#####
Univariate joint model, with association structure based on the
lagged value of the linear predictor, where the lag is 2 time
units (i.e. 2 years in this example)
f3 <- stan_jm(formulaLong = logBili ~ year + (1 | id),

dataLong = pbcLong,
formulaEvent = Surv(futimeYears, death) ~ sex + trt,
dataEvent = pbcSurv,
time_var = "year",
assoc = "etavalue", lag_assoc = 2,
chains = 1, cores = 1, seed = 12345, iter = 1000)

print(f3)

#####
Univariate joint model, where the association structure includes
interactions with observed data. Here we specify that we want to use
an association structure based on the current value of the linear
predictor from the longitudinal submodel (i.e. "etavalue"), but we
also want to interact this with the treatment covariate (trt) from
pbcLong data frame, so that we can estimate a different association
parameter (i.e. estimated effect of log serum bilirubin on the log
hazard of death) for each treatment group
f4 <- stan_jm(formulaLong = logBili ~ year + (1 | id),

dataLong = pbcLong,
formulaEvent = Surv(futimeYears, death) ~ sex + trt,
dataEvent = pbcSurv,
time_var = "year",
assoc = c("etavalue", "etavalue_data(~ trt)"),
chains = 1, cores = 1, seed = 12345, iter = 1000)

print(f4)

######
Multivariate joint model, with association structure based
on the current value and slope of the linear predictor in the
first longitudinal submodel and the area under the marker
trajectory for the second longitudinal submodel
mv1 <- stan_jm(

formulaLong = list(
logBili ~ year + (1 | id),
albumin ~ sex + year + (year | id)),

dataLong = pbcLong,
formulaEvent = Surv(futimeYears, death) ~ sex + trt,

stan_mvmer 131

dataEvent = pbcSurv,
assoc = list(c("etavalue", "etaslope"), "etaauc"),
time_var = "year",
chains = 1, cores = 1, seed = 12345, iter = 100)

print(mv1)

#####
Multivariate joint model, where the association structure is formed by
including the expected value of each longitudinal marker (logBili and
albumin) in the linear predictor of the event submodel, as well as their
interaction effect (i.e. the interaction between the two "etavalue" terms).
Note that whether such an association structure based on a marker by
marker interaction term makes sense will depend on the context of your
application -- here we just show it for demostration purposes).
mv2 <- stan_jm(

formulaLong = list(
logBili ~ year + (1 | id),
albumin ~ sex + year + (year | id)),

dataLong = pbcLong,
formulaEvent = Surv(futimeYears, death) ~ sex + trt,
dataEvent = pbcSurv,
assoc = list(c("etavalue", "etavalue_etavalue(2)"), "etavalue"),
time_var = "year",
chains = 1, cores = 1, seed = 12345, iter = 100)

#####
Multivariate joint model, with one bernoulli marker and one
Gaussian marker. We will artificially create the bernoulli
marker by dichotomising log serum bilirubin
pbcLong$ybern <- as.integer(pbcLong$logBili >= mean(pbcLong$logBili))
mv3 <- stan_jm(

formulaLong = list(
ybern ~ year + (1 | id),
albumin ~ sex + year + (year | id)),

dataLong = pbcLong,
formulaEvent = Surv(futimeYears, death) ~ sex + trt,
dataEvent = pbcSurv,
family = list(binomial, gaussian),
time_var = "year",
chains = 1, cores = 1, seed = 12345, iter = 1000)

}

stan_mvmer Bayesian multivariate generalized linear models with correlated
group-specific terms via Stan

132 stan_mvmer

Description

Bayesian inference for multivariate GLMs with group-specific coefficients that are assumed to be
correlated across the GLM submodels.

Usage

stan_mvmer(
formula,
data,
family = gaussian,
weights,
prior = normal(autoscale = TRUE),
prior_intercept = normal(autoscale = TRUE),
prior_aux = cauchy(0, 5, autoscale = TRUE),
prior_covariance = lkj(autoscale = TRUE),
prior_PD = FALSE,
algorithm = c("sampling", "meanfield", "fullrank"),
adapt_delta = NULL,
max_treedepth = 10L,
init = "random",
QR = FALSE,
sparse = FALSE,
...

)

Arguments

formula A two-sided linear formula object describing both the fixed-effects and random-
effects parts of the longitudinal submodel similar in vein to formula specification
in the lme4 package (see glmer or the lme4 vignette for details). Note however
that the double bar (||) notation is not allowed when specifying the random-
effects parts of the formula, and neither are nested grouping factors (e.g. (1 |
g1/g2)) or (1 | g1:g2), where g1, g2 are grouping factors. For a multivariate
GLM this should be a list of such formula objects, with each element of the list
providing the formula for one of the GLM submodels.

data A data frame containing the variables specified in formula. For a multivariate
GLM, this can be either a single data frame which contains the data for all GLM
submodels, or it can be a list of data frames where each element of the list
provides the data for one of the GLM submodels.

family The family (and possibly also the link function) for the GLM submodel(s). See
glmer for details. If fitting a multivariate GLM, then this can optionally be a list
of families, in which case each element of the list specifies the family for one
of the GLM submodels. In other words, a different family can be specified for
each GLM submodel.

weights Same as in glm, except that when fitting a multivariate GLM and a list of data
frames is provided in data then a corresponding list of weights must be pro-
vided. If weights are provided for one of the GLM submodels, then they must
be provided for all GLM submodels.

stan_mvmer 133

prior, prior_intercept, prior_aux

Same as in stan_glmer except that for a multivariate GLM a list of priors can be
provided for any of prior, prior_intercept or prior_aux arguments. That is,
different priors can optionally be specified for each of the GLM submodels. If a
list is not provided, then the same prior distributions are used for each GLM sub-
model. Note that the "product_normal" prior is not allowed for stan_mvmer.

prior_covariance

Cannot be NULL; see priors for more information about the prior distributions
on covariance matrices. Note however that the default prior for covariance ma-
trices in stan_mvmer is slightly different to that in stan_glmer (the details of
which are described on the priors page).

prior_PD A logical scalar (defaulting to FALSE) indicating whether to draw from the prior
predictive distribution instead of conditioning on the outcome.

algorithm A string (possibly abbreviated) indicating the estimation approach to use. Can
be "sampling" for MCMC (the default), "optimizing" for optimization, "meanfield"
for variational inference with independent normal distributions, or "fullrank"
for variational inference with a multivariate normal distribution. See rstanarm-package
for more details on the estimation algorithms. NOTE: not all fitting functions
support all four algorithms.

adapt_delta Only relevant if algorithm="sampling". See the adapt_delta help page for
details.

max_treedepth A positive integer specifying the maximum treedepth for the non-U-turn sam-
pler. See the control argument in stan.

init The method for generating initial values. See stan.

QR A logical scalar defaulting to FALSE, but if TRUE applies a scaled qr decomposi-
tion to the design matrix. The transformation does not change the likelihood of
the data but is recommended for computational reasons when there are multiple
predictors. See the QR-argument documentation page for details on how rstan-
arm does the transformation and important information about how to interpret
the prior distributions of the model parameters when using QR=TRUE.

sparse A logical scalar (defaulting to FALSE) indicating whether to use a sparse repre-
sentation of the design (X) matrix. If TRUE, the the design matrix is not centered
(since that would destroy the sparsity) and likewise it is not possible to specify
both QR = TRUE and sparse = TRUE. Depending on how many zeros there are in
the design matrix, setting sparse = TRUE may make the code run faster and can
consume much less RAM.

... Further arguments passed to the function in the rstan package (sampling, vb,
or optimizing), corresponding to the estimation method named by algorithm.
For example, if algorithm is "sampling" it is possible to specify iter, chains,
cores, and other MCMC controls.

Another useful argument that can be passed to rstan via ... is refresh, which
specifies how often to print updates when sampling (i.e., show the progress every
refresh iterations). refresh=0 turns off the iteration updates.

134 stan_mvmer

Details

The stan_mvmer function can be used to fit a multivariate generalized linear model (GLM) with
group-specific terms. The model consists of distinct GLM submodels, each which contains group-
specific terms; within a grouping factor (for example, patient ID) the grouping-specific terms are
assumed to be correlated across the different GLM submodels. It is possible to specify a different
outcome type (for example a different family and/or link function) for each of the GLM submodels.

Bayesian estimation of the model is performed via MCMC, in the same way as for stan_glmer.
Also, similar to stan_glmer, an unstructured covariance matrix is used for the group-specific terms
within a given grouping factor, with priors on the terms of a decomposition of the covariance ma-
trix.See priors for more information about the priors distributions that are available for the covari-
ance matrices, the regression coefficients and the intercept and auxiliary parameters.

Value

A stanmvreg object is returned.

See Also

stan_glmer, stan_jm, stanreg-objects, stanmvreg-methods, print.stanmvreg, summary.stanmvreg,
posterior_predict, posterior_interval.

Examples

if (.Platform$OS.type != "windows" || .Platform$r_arch !="i386") {

#####
A multivariate GLM with two submodels. For the grouping factor 'id', the
group-specific intercept from the first submodel (logBili) is assumed to
be correlated with the group-specific intercept and linear slope in the
second submodel (albumin)
f1 <- stan_mvmer(

formula = list(
logBili ~ year + (1 | id),
albumin ~ sex + year + (year | id)),

data = pbcLong,
this next line is only to keep the example small in size!
chains = 1, cores = 1, seed = 12345, iter = 1000)

summary(f1)

#####
A multivariate GLM with one bernoulli outcome and one
gaussian outcome. We will artificially create the bernoulli
outcome by dichotomising log serum bilirubin
pbcLong$ybern <- as.integer(pbcLong$logBili >= mean(pbcLong$logBili))
f2 <- stan_mvmer(

formula = list(
ybern ~ year + (1 | id),
albumin ~ sex + year + (year | id)),

data = pbcLong,
family = list(binomial, gaussian),

stan_nlmer 135

chains = 1, cores = 1, seed = 12345, iter = 1000)

}

stan_nlmer Bayesian nonlinear models with group-specific terms via Stan

Description

Bayesian inference for NLMMs with group-specific coefficients that have unknown covariance ma-
trices with flexible priors.

Usage

stan_nlmer(
formula,
data = NULL,
subset,
weights,
na.action,
offset,
contrasts = NULL,
...,
prior = normal(autoscale = TRUE),
prior_aux = exponential(autoscale = TRUE),
prior_covariance = decov(),
prior_PD = FALSE,
algorithm = c("sampling", "meanfield", "fullrank"),
adapt_delta = NULL,
QR = FALSE,
sparse = FALSE

)

Arguments

formula, data Same as for nlmer. We strongly advise against omitting the data argument.
Unless data is specified (and is a data frame) many post-estimation functions
(including update, loo, kfold) are not guaranteed to work properly.

subset, weights, offset

Same as glm.
na.action, contrasts

Same as glm, but rarely specified.

... Further arguments passed to the function in the rstan package (sampling, vb,
or optimizing), corresponding to the estimation method named by algorithm.
For example, if algorithm is "sampling" it is possible to specify iter, chains,
cores, and other MCMC controls.

136 stan_nlmer

Another useful argument that can be passed to rstan via ... is refresh, which
specifies how often to print updates when sampling (i.e., show the progress every
refresh iterations). refresh=0 turns off the iteration updates.

prior The prior distribution for the (non-hierarchical) regression coefficients.
The default priors are described in the vignette Prior Distributions for rstanarm
Models. If not using the default, prior should be a call to one of the various
functions provided by rstanarm for specifying priors. The subset of these func-
tions that can be used for the prior on the coefficients can be grouped into several
"families":

Family Functions
Student t family normal, student_t, cauchy
Hierarchical shrinkage family hs, hs_plus
Laplace family laplace, lasso
Product normal family product_normal

See the priors help page for details on the families and how to specify the argu-
ments for all of the functions in the table above. To omit a prior —i.e., to use a
flat (improper) uniform prior— prior can be set to NULL, although this is rarely
a good idea.
Note: Unless QR=TRUE, if prior is from the Student t family or Laplace family,
and if the autoscale argument to the function used to specify the prior (e.g.
normal) is left at its default and recommended value of TRUE, then the default
or user-specified prior scale(s) may be adjusted internally based on the scales of
the predictors. See the priors help page and the Prior Distributions vignette for
details on the rescaling and the prior_summary function for a summary of the
priors used for a particular model.

prior_aux The prior distribution for the "auxiliary" parameter (if applicable). The "auxil-
iary" parameter refers to a different parameter depending on the family. For
Gaussian models prior_aux controls "sigma", the error standard deviation.
For negative binomial models prior_aux controls "reciprocal_dispersion",
which is similar to the "size" parameter of rnbinom: smaller values of "reciprocal_dispersion"
correspond to greater dispersion. For gamma models prior_aux sets the prior
on to the "shape" parameter (see e.g., rgamma), and for inverse-Gaussian mod-
els it is the so-called "lambda" parameter (which is essentially the reciprocal of
a scale parameter). Binomial and Poisson models do not have auxiliary param-
eters.
The default prior is described in the vignette Prior Distributions for rstanarm
Models. If not using the default, prior_aux can be a call to exponential to
use an exponential distribution, or normal, student_t or cauchy, which results
in a half-normal, half-t, or half-Cauchy prior. See priors for details on these
functions. To omit a prior —i.e., to use a flat (improper) uniform prior— set
prior_aux to NULL.

prior_covariance

Cannot be NULL; see decov for more information about the default arguments.
prior_PD A logical scalar (defaulting to FALSE) indicating whether to draw from the prior

predictive distribution instead of conditioning on the outcome.

https://mc-stan.org/rstanarm/articles/priors.html
https://mc-stan.org/rstanarm/articles/priors.html
https://mc-stan.org/rstanarm/articles/priors.html
https://mc-stan.org/rstanarm/articles/priors.html

stan_nlmer 137

algorithm A string (possibly abbreviated) indicating the estimation approach to use. Can
be "sampling" for MCMC (the default), "optimizing" for optimization, "meanfield"
for variational inference with independent normal distributions, or "fullrank"
for variational inference with a multivariate normal distribution. See rstanarm-package
for more details on the estimation algorithms. NOTE: not all fitting functions
support all four algorithms.

adapt_delta Only relevant if algorithm="sampling". See the adapt_delta help page for
details.

QR A logical scalar defaulting to FALSE, but if TRUE applies a scaled qr decomposi-
tion to the design matrix. The transformation does not change the likelihood of
the data but is recommended for computational reasons when there are multiple
predictors. See the QR-argument documentation page for details on how rstan-
arm does the transformation and important information about how to interpret
the prior distributions of the model parameters when using QR=TRUE.

sparse A logical scalar (defaulting to FALSE) indicating whether to use a sparse repre-
sentation of the design (X) matrix. If TRUE, the the design matrix is not centered
(since that would destroy the sparsity) and likewise it is not possible to specify
both QR = TRUE and sparse = TRUE. Depending on how many zeros there are in
the design matrix, setting sparse = TRUE may make the code run faster and can
consume much less RAM.

Details

The stan_nlmer function is similar in syntax to nlmer but rather than performing (approximate)
maximum marginal likelihood estimation, Bayesian estimation is by default performed via MCMC.
The Bayesian model adds independent priors on the "coefficients" — which are really intercepts
— in the same way as stan_nlmer and priors on the terms of a decomposition of the covariance
matrices of the group-specific parameters. See priors for more information about the priors.

The supported transformation functions are limited to the named "self-starting" functions in the
stats library: SSasymp, SSasympOff, SSasympOrig, SSbiexp, SSfol, SSfpl, SSgompertz, SSlogis,
SSmicmen, and SSweibull.

Value

A stanreg object is returned for stan_nlmer.

See Also

stanreg-methods and nlmer.

The vignette for stan_glmer, which also discusses stan_nlmer models. https://mc-stan.org/
rstanarm/articles/

Examples

if (.Platform$OS.type != "windows" || .Platform$r_arch !="i386") {

data("Orange", package = "datasets")
Orange$circumference <- Orange$circumference / 100

https://mc-stan.org/rstanarm/articles/
https://mc-stan.org/rstanarm/articles/

138 stan_polr

Orange$age <- Orange$age / 100
fit <- stan_nlmer(

circumference ~ SSlogis(age, Asym, xmid, scal) ~ Asym|Tree,
data = Orange,
for speed only
chains = 1,
iter = 1000
)

print(fit)
posterior_interval(fit)
plot(fit, regex_pars = "b\\[")

}

stan_polr Bayesian ordinal regression models via Stan

Description

Bayesian inference for ordinal (or binary) regression models under a proportional odds assumption.

Usage

stan_polr(
formula,
data,
weights,
...,
subset,
na.action = getOption("na.action", "na.omit"),
contrasts = NULL,
model = TRUE,
method = c("logistic", "probit", "loglog", "cloglog", "cauchit"),
prior = R2(stop("'location' must be specified")),
prior_counts = dirichlet(1),
shape = NULL,
rate = NULL,
prior_PD = FALSE,
algorithm = c("sampling", "meanfield", "fullrank"),
adapt_delta = NULL,
do_residuals = NULL

)

stan_polr.fit(
x,
y,
wt = NULL,
offset = NULL,

stan_polr 139

method = c("logistic", "probit", "loglog", "cloglog", "cauchit"),
...,
prior = R2(stop("'location' must be specified")),
prior_counts = dirichlet(1),
shape = NULL,
rate = NULL,
prior_PD = FALSE,
algorithm = c("sampling", "meanfield", "fullrank"),
adapt_delta = NULL,
do_residuals = algorithm == "sampling"

)

Arguments

formula, data, subset

Same as polr, but we strongly advise against omitting the data argument. Un-
less data is specified (and is a data frame) many post-estimation functions (in-
cluding update, loo, kfold) are not guaranteed to work properly.

weights, na.action, contrasts, model

Same as polr, but rarely specified.

... Further arguments passed to the function in the rstan package (sampling, vb,
or optimizing), corresponding to the estimation method named by algorithm.
For example, if algorithm is "sampling" it is possible to specify iter, chains,
cores, and other MCMC controls.
Another useful argument that can be passed to rstan via ... is refresh, which
specifies how often to print updates when sampling (i.e., show the progress every
refresh iterations). refresh=0 turns off the iteration updates.

method One of ’logistic’, ’probit’, ’loglog’, ’cloglog’ or ’cauchit’, but can be abbrevi-
ated. See polr for more details.

prior Prior for coefficients. Should be a call to R2 to specify the prior location of the
R2 but can be NULL to indicate a standard uniform prior. See priors.

prior_counts A call to dirichlet to specify the prior counts of the outcome when the predic-
tors are at their sample means.

shape Either NULL or a positive scalar that is interpreted as the shape parameter for a
GammaDistribution on the exponent applied to the probability of success when
there are only two outcome categories. If NULL, which is the default, then the
exponent is taken to be fixed at 1.

rate Either NULL or a positive scalar that is interpreted as the rate parameter for a
GammaDistribution on the exponent applied to the probability of success when
there are only two outcome categories. If NULL, which is the default, then the
exponent is taken to be fixed at 1.

prior_PD A logical scalar (defaulting to FALSE) indicating whether to draw from the prior
predictive distribution instead of conditioning on the outcome.

algorithm A string (possibly abbreviated) indicating the estimation approach to use. Can
be "sampling" for MCMC (the default), "optimizing" for optimization, "meanfield"
for variational inference with independent normal distributions, or "fullrank"

140 stan_polr

for variational inference with a multivariate normal distribution. See rstanarm-package
for more details on the estimation algorithms. NOTE: not all fitting functions
support all four algorithms.

adapt_delta Only relevant if algorithm="sampling". See the adapt_delta help page for
details.

do_residuals A logical scalar indicating whether or not to automatically calculate fit residuals
after sampling completes. Defaults to TRUE if and only if algorithm="sampling".
Setting do_residuals=FALSE is only useful in the somewhat rare case that
stan_polr appears to finish sampling but hangs instead of returning the fitted
model object.

x A design matrix.

y A response variable, which must be a (preferably ordered) factor.

wt A numeric vector (possibly NULL) of observation weights.

offset A numeric vector (possibly NULL) of offsets.

Details

The stan_polr function is similar in syntax to polr but rather than performing maximum likeli-
hood estimation of a proportional odds model, Bayesian estimation is performed (if algorithm =
"sampling") via MCMC. The stan_polr function calls the workhorse stan_polr.fit function,
but it is possible to call the latter directly.

As for stan_lm, it is necessary to specify the prior location of R2. In this case, the R2 pertains to
the proportion of variance in the latent variable (which is discretized by the cutpoints) attributable
to the predictors in the model.

Prior beliefs about the cutpoints are governed by prior beliefs about the outcome when the predictors
are at their sample means. Both of these are explained in the help page on priors and in the
rstanarm vignettes.

Unlike polr, stan_polr also allows the "ordinal" outcome to contain only two levels, in which
case the likelihood is the same by default as for stan_glm with family = binomial but the prior
on the coefficients is different. However, stan_polr allows the user to specify the shape and rate
hyperparameters, in which case the probability of success is defined as the logistic CDF of the linear
predictor, raised to the power of alpha where alpha has a gamma prior with the specified shape
and rate. This likelihood is called “scobit” by Nagler (1994) because if alpha is not equal to 1,
then the relationship between the linear predictor and the probability of success is skewed. If shape
or rate is NULL, then alpha is assumed to be fixed to 1.

Otherwise, it is usually advisible to set shape and rate to the same number so that the expected
value of alpha is 1 while leaving open the possibility that alpha may depart from 1 a little bit.
It is often necessary to have a lot of data in order to estimate alpha with much precision and
always necessary to inspect the Pareto shape parameters calculated by loo to see if the results are
particularly sensitive to individual observations.

Users should think carefully about how the outcome is coded when using a scobit-type model.
When alpha is not 1, the asymmetry implies that the probability of success is most sensitive to the
predictors when the probability of success is less than 0.63. Reversing the coding of the successes
and failures allows the predictors to have the greatest impact when the probability of failure is less
than 0.63. Also, the gamma prior on alpha is positively skewed, but you can reverse the coding of
the successes and failures to circumvent this property.

summary.stanreg 141

Value

A stanreg object is returned for stan_polr.

A stanfit object (or a slightly modified stanfit object) is returned if stan_polr.fit is called directly.

References

Nagler, J., (1994). Scobit: An Alternative Estimator to Logit and Probit. American Journal of
Political Science. 230 – 255.

See Also

stanreg-methods and polr.

The vignette for stan_polr. https://mc-stan.org/rstanarm/articles/

Examples

if (.Platform$OS.type != "windows" || .Platform$r_arch !="i386") {
fit <- stan_polr(tobgp ~ agegp, data = esoph, method = "probit",

prior = R2(0.2, "mean"), init_r = 0.1, seed = 12345,
algorithm = "fullrank") # for speed only

print(fit)
plot(fit)

}

summary.stanreg Summary method for stanreg objects

Description

Summaries of parameter estimates and MCMC convergence diagnostics (Monte Carlo error, effec-
tive sample size, Rhat).

Usage

S3 method for class 'stanreg'
summary(
object,
pars = NULL,
regex_pars = NULL,
probs = c(0.1, 0.5, 0.9),
...,
digits = 1

)

S3 method for class 'summary.stanreg'
print(x, digits = max(1, attr(x, "print.digits")), ...)

https://mc-stan.org/rstanarm/articles/

142 summary.stanreg

S3 method for class 'summary.stanreg'
as.data.frame(x, ...)

S3 method for class 'stanmvreg'
summary(object, pars = NULL, regex_pars = NULL, probs = NULL, ..., digits = 3)

S3 method for class 'summary.stanmvreg'
print(x, digits = max(1, attr(x, "print.digits")), ...)

Arguments

object A fitted model object returned by one of the rstanarm modeling functions. See
stanreg-objects.

pars An optional character vector specifying a subset of parameters to display. Pa-
rameters can be specified by name or several shortcuts can be used. Using
pars="beta" will restrict the displayed parameters to only the regression co-
efficients (without the intercept). "alpha" can also be used as a shortcut for
"(Intercept)". If the model has varying intercepts and/or slopes they can be
selected using pars = "varying".

In addition, for stanmvreg objects there are some additional shortcuts available.
Using pars = "long" will display the parameter estimates for the longitudinal
submodels only (excluding group-specific pparameters, but including auxiliary
parameters). Using pars = "event" will display the parameter estimates for
the event submodel only, including any association parameters. Using pars =
"assoc" will display only the association parameters. Using pars = "fixef"
will display all fixed effects, but not the random effects or the auxiliary param-
eters. pars and regex_pars are set to NULL then all fixed effect regression
coefficients are selected, as well as any auxiliary parameters and the log poste-
rior.

If pars is NULL all parameters are selected for a stanreg object, while for a
stanmvreg object all fixed effect regression coefficients are selected as well as
any auxiliary parameters and the log posterior. See Examples.

regex_pars An optional character vector of regular expressions to use for parameter selec-
tion. regex_pars can be used in place of pars or in addition to pars. Currently,
all functions that accept a regex_pars argument ignore it for models fit using
optimization.

probs For models fit using MCMC or one of the variational algorithms, an optional
numeric vector of probabilities passed to quantile.

... Currently ignored.

digits Number of digits to use for formatting numbers when printing. When calling
summary, the value of digits is stored as the "print.digits" attribute of the
returned object.

x An object of class "summary.stanreg".

summary.stanreg 143

Details

mean_PPD diagnostic: Summary statistics are also reported for mean_PPD, the sample average
posterior predictive distribution of the outcome. This is useful as a quick diagnostic. A use-
ful heuristic is to check if mean_PPD is plausible when compared to mean(y). If it is plausible
then this does not mean that the model is good in general (only that it can reproduce the sample
mean), however if mean_PPD is implausible then it is a sign that something is wrong (severe model
misspecification, problems with the data, computational issues, etc.).

Value

The summary method returns an object of class "summary.stanreg" (or "summary.stanmvreg",
inheriting "summary.stanreg"), which is a matrix of summary statistics and diagnostics, with at-
tributes storing information for use by the print method. The print method for summary.stanreg
or summary.stanmvreg objects is called for its side effect and just returns its input. The as.data.frame
method for summary.stanreg objects converts the matrix to a data.frame, preserving row and col-
umn names but dropping the print-related attributes.

See Also

prior_summary to extract or print a summary of the priors used for a particular model.

Examples

if (.Platform$OS.type != "windows" || .Platform$r_arch != "i386") {
if (!exists("example_model")) example(example_model)
summary(example_model, probs = c(0.1, 0.9))

These produce the same output for this example,
but the second method can be used for any model
summary(example_model, pars = c("(Intercept)", "size",

paste0("period", 2:4)))
summary(example_model, pars = c("alpha", "beta"))

Only show parameters varying by group
summary(example_model, pars = "varying")
as.data.frame(summary(example_model, pars = "varying"))
}

Index

adapt_delta, 7, 72, 93, 98, 101, 103, 107,
113, 120, 126, 133, 137, 140

aes, 58
aov, 4, 10, 94
arrangeGrob, 34
as.array.stanreg (as.matrix.stanreg), 7
as.data.frame.stanreg

(as.matrix.stanreg), 7
as.data.frame.summary.stanreg

(summary.stanreg), 141
as.matrix, 29, 87
as.matrix.stanreg, 7, 87
as.shinystan, 17
as_draws (stanreg-draws-formats), 87
as_draws_array (stanreg-draws-formats),

87
as_draws_df (stanreg-draws-formats), 87
as_draws_list (stanreg-draws-formats),

87
as_draws_matrix

(stanreg-draws-formats), 87
as_draws_rvars (stanreg-draws-formats),

87
autoscale, 77
available-algorithms, 9
available-models, 10
available_mcmc, 34
available_ppc, 60

bayes_R2 (bayes_R2.stanreg), 11
bayes_R2.stanreg, 11
bayesplot, 4, 33, 59, 60
bayesplot_grid, 38
bball1970 (rstanarm-datasets), 81
bball2006 (rstanarm-datasets), 81
Beta, 75
betareg, 5, 11, 96, 98
biglm, 99–101

cauchy, 84

cauchy (priors), 69
cbpp, 13
clogit, 5, 11, 104
coef, 68
coef.stanmvreg (stanmvreg-methods), 84
coef.stanreg (nobs.stanmvreg), 27
color_scheme_set, 34, 61, 63, 108
compare_models (loo.stanreg), 20
confint.default, 29
confint.stanreg, 41
confint.stanreg (nobs.stanmvreg), 27
coxph, 125, 128

data.frame, 103
decov, 103, 107, 114, 120, 136
decov (priors), 69
default_prior_coef (priors), 69
default_prior_intercept (priors), 69
dirichlet, 139
dirichlet (priors), 69

E_loo, 24, 25
example_jm, 12
example_model, 13
exponential (priors), 69

facet_wrap, 32, 37, 58, 108
factor, 82
family, 4, 10, 27, 88, 89, 127
fitted.stanmvreg (stanmvreg-methods), 84
fitted.stanreg (nobs.stanmvreg), 27
fixef (nobs.stanmvreg), 27
fixef.stanmvreg (stanmvreg-methods), 84
formula, 89, 93, 97, 100, 107, 112, 119
formula.stanmvreg (stanmvreg-methods),

84

gamm4, 4, 10, 106, 108, 109
GammaDist, 139
geom_contour, 108

144

INDEX 145

geom_line, 38, 79
geom_ribbon, 32, 38, 79, 108
geom_smooth, 32
glm, 3, 4, 10, 106, 111, 114, 115, 118, 132, 135
glm.nb, 4, 10
glmer, 4, 10, 102, 118, 120–123, 125, 127, 132
glmer.nb, 4, 10

hs, 7
hs (priors), 69
hs_plus, 7
hs_plus (priors), 69

interaction, 103
invlogit (logit), 18

jagam, 108

kfold, 21, 22, 29
kfold (kfold.stanreg), 14
kfold-helpers, 14
kfold.stanreg, 14, 20
kfold_split_random, 14
kidiq (rstanarm-datasets), 81

labs, 32, 37, 79
laplace (priors), 69
lasso (priors), 69
launch_shinystan, 4, 17, 29
launch_shinystan

(launch_shinystan.stanreg), 16
launch_shinystan.stanreg, 16
lkj (priors), 69
lm, 4, 10, 92, 93
lmer, 4, 10, 128
log_lik, 29, 86
log_lik (log_lik.stanreg), 19
log_lik.stanreg, 19, 23
logit, 18
loo, 4, 14, 15, 20–22, 29, 86, 140
loo (loo.stanreg), 20
loo.stanreg, 20
loo_compare, 15, 22, 23
loo_compare (loo.stanreg), 20
loo_linpred (loo_predict.stanreg), 24
loo_model_weights, 21, 23, 90
loo_model_weights (loo.stanreg), 20
loo_predict (loo_predict.stanreg), 24
loo_predict.stanreg, 24

loo_predictive_interval
(loo_predict.stanreg), 24

loo_R2 (bayes_R2.stanreg), 11

mad, 29, 69, 86, 88
match.fun, 44
mclapply, 15
MCMC, 33, 34
mcmc_intervals, 34
mcmc_pairs, 29, 30
methods, 4
mkReTrms, 114
mortality (rstanarm-datasets), 81

neg_binomial_2, 26, 111, 114, 120, 121
negative.binomial, 26
ngrps (nobs.stanmvreg), 27
ngrps.stanmvreg (stanmvreg-methods), 84
nlmer, 4, 10, 135, 137
nobs.stanmvreg, 27
nobs.stanreg (nobs.stanmvreg), 27
normal, 84, 93, 97, 100, 103, 106, 112, 119,

125, 136
normal (priors), 69
nsamples (nobs.stanmvreg), 27

optimizing, 6, 10, 92, 96, 100, 102, 111, 127,
133, 135, 139

pairs.stanreg, 29
pairs_condition (pairs.stanreg), 29
pairs_style_np (pairs.stanreg), 29
parLapply, 15
pbcLong (rstanarm-datasets), 81
pbcSurv (rstanarm-datasets), 81
plot, 29, 38, 86
plot.gam, 108
plot.loo, 22
plot.predict.stanjm, 31, 38, 54, 55
plot.stanreg, 33
plot.survfit.stanjm, 33, 37, 38, 50
plot_nonlinear, 34
plot_nonlinear (stan_gamm4), 105
plot_stack_jm, 32, 33, 38, 50
plot_stack_jm (plot.survfit.stanjm), 37
poisson, 27
polr, 4, 11, 139–141
posterior, 87, 88
posterior predictive distribution, 60

146 INDEX

posterior_epred, 11
posterior_epred

(posterior_linpred.stanreg), 41
posterior_interval, 29, 67, 86, 87, 129, 134
posterior_interval

(posterior_interval.stanreg),
39

posterior_interval.stanreg, 39
posterior_linpred, 25
posterior_linpred

(posterior_linpred.stanreg), 41
posterior_linpred.stanreg, 41
posterior_predict, 4, 19, 29, 38, 41–43, 54,

55, 60, 61, 63–67, 80, 86, 101, 129,
134

posterior_predict
(posterior_predict.stanreg), 43

posterior_predict.stanreg, 43
posterior_survfit, 19, 33, 37, 38, 46, 55,

80, 86, 129
posterior_traj, 31–33, 38, 50, 51, 86, 129
posterior_vs_prior, 57, 77
pp_check, 4, 16, 29, 34, 45, 63, 80, 86, 129
pp_check (pp_check.stanreg), 59
pp_check.stanreg, 59
pp_validate, 62
PPC, 59, 60
ppc_dens_overlay, 60
ppc_error_binned, 60
predict.merMod, 44
predict.stanreg, 64
predictive_error, 29, 45, 67
predictive_error

(predictive_error.stanreg), 65
predictive_error.stanreg, 65
predictive_interval, 25, 29, 41, 45
predictive_interval

(predictive_interval.stanreg),
66

predictive_interval.stanreg, 66
print, 29, 86, 94
print.loo, 22
print.stanmvreg, 86, 87, 129, 134
print.stanmvreg (print.stanreg), 68
print.stanreg, 29, 68, 88
print.stanreg_list (stanreg_list), 90
print.summary.stanmvreg

(summary.stanreg), 141

print.summary.stanreg
(summary.stanreg), 141

printed output, 113
prior_options (rstanarm-deprecated), 84
prior_summary, 29, 57, 69, 73, 86, 97, 103,

106, 112, 119, 125, 136, 143
prior_summary (prior_summary.stanreg),

77
prior_summary.stanreg, 77
priors, 69, 91, 97, 107, 108, 113, 114, 120,

126, 128, 133, 134, 136, 137, 139,
140

priors help page, 4, 78, 96, 97, 103, 106,
112, 119, 125, 136

product_normal (priors), 69
proj, 92
ps_check, 50, 79, 86, 129
psis, 25

QR, 78
qr, 80, 98, 104, 107, 113, 120, 127, 133, 137
QR-argument, 80, 98, 104, 108, 113, 120, 127,

133, 137
quantile, 142

R2, 7, 92, 100, 139
R2 (priors), 69
radon (rstanarm-datasets), 81
ranef (nobs.stanmvreg), 27
ranef.stanmvreg (stanmvreg-methods), 84
regular expressions, 8, 30, 34, 40, 58, 142
residuals.stanmvreg

(stanmvreg-methods), 84
residuals.stanreg (nobs.stanmvreg), 27
rgamma, 107, 113, 120, 126, 136
rnbinom, 107, 113, 120, 126, 136
roaches (rstanarm-datasets), 81
rstanarm (rstanarm-package), 3
rstanarm-datasets, 81
rstanarm-deprecated, 84, 114
rstanarm-package, 3
runApp, 17

sampling, 5, 9, 92, 96, 100, 102, 106, 111,
118, 127, 133, 135, 139

scale_color_manual, 58
se, 69
se.stanmvreg (stanmvreg-methods), 84
se.stanreg (nobs.stanmvreg), 27

INDEX 147

seed, 44, 49, 54, 60, 79
shinystan, 17
sigma (nobs.stanmvreg), 27
sigma.stanmvreg (stanmvreg-methods), 84
SSasymp, 137
SSasympOff, 137
SSasympOrig, 137
SSbiexp, 137
SSfol, 137
SSfpl, 137
SSgompertz, 137
SSlogis, 137
SSmicmen, 137
SSweibull, 137
stan, 125, 127, 133
stan_aov, 69, 75, 91
stan_betareg, 5, 11, 94
stan_biglm, 90, 99
stan_clogit, 5, 11, 42, 45, 102
stan_gamm4, 4, 5, 9, 10, 34, 105, 111
stan_glm, 4–6, 9, 10, 26, 69, 78, 84, 91, 94,

108, 109, 120, 128, 140
stan_glm.nb, 26
stan_glmer, 4, 5, 9–11, 26, 69, 84, 104, 108,

117, 126, 133, 134
stan_glmer.nb, 26
stan_jm, 5, 11, 12, 19, 47, 52, 69, 74, 79, 86,

88, 89, 121, 134
stan_lm, 4, 10, 75, 99, 140
stan_lm (stan_aov), 91
stan_lmer (stan_glmer), 117
stan_mvmer, 5, 11, 74, 85, 86, 88, 125, 129,

131
stan_nlmer, 4, 10, 135, 137
stan_polr, 4, 11, 28, 73, 75, 138
stanfit, 90, 94, 98, 114, 141
stanjm, 129
stanjm_list (stanreg_list), 90
stanmvreg, 84, 134
stanmvreg-methods, 84
stanmvreg_list (stanreg_list), 90
stanreg, 4, 14, 17, 27, 84, 94, 98, 104, 109,

114, 121, 137, 141
stanreg object, 65, 67
stanreg-draws-formats, 87
stanreg-methods (nobs.stanmvreg), 27
stanreg-objects, 14, 21, 33, 60, 88
stanreg_list, 21, 23, 90

strata, 103
student_t, 84
student_t (priors), 69
subset_draws, 87
summary, 29, 68, 86
summary.stanmvreg, 87, 129, 134
summary.stanmvreg (summary.stanreg), 141
summary.stanreg, 69, 141
Surv, 123

tumors (rstanarm-datasets), 81

update, 28, 85
update.stanjm (stanmvreg-methods), 84
update.stanmvreg (stanmvreg-methods), 84
update.stanreg (nobs.stanmvreg), 27

VarCorr, 28
VarCorr (nobs.stanmvreg), 27
vb, 92, 96, 100, 102, 106, 111, 118, 127, 133,

135, 139
vcov.stanreg (nobs.stanmvreg), 27

waic, 15, 22
waic (loo.stanreg), 20
wells (rstanarm-datasets), 81

	rstanarm-package
	adapt_delta
	as.matrix.stanreg
	available-algorithms
	available-models
	bayes_R2.stanreg
	example_jm
	example_model
	kfold.stanreg
	launch_shinystan.stanreg
	logit
	log_lik.stanreg
	loo.stanreg
	loo_predict.stanreg
	neg_binomial_2
	nobs.stanmvreg
	pairs.stanreg
	plot.predict.stanjm
	plot.stanreg
	plot.survfit.stanjm
	posterior_interval.stanreg
	posterior_linpred.stanreg
	posterior_predict.stanreg
	posterior_survfit
	posterior_traj
	posterior_vs_prior
	pp_check.stanreg
	pp_validate
	predict.stanreg
	predictive_error.stanreg
	predictive_interval.stanreg
	print.stanreg
	priors
	prior_summary.stanreg
	ps_check
	QR-argument
	rstanarm-datasets
	rstanarm-deprecated
	stanmvreg-methods
	stanreg-draws-formats
	stanreg-objects
	stanreg_list
	stan_aov
	stan_betareg
	stan_biglm
	stan_clogit
	stan_gamm4
	stan_glm
	stan_glmer
	stan_jm
	stan_mvmer
	stan_nlmer
	stan_polr
	summary.stanreg
	Index

