
Package ‘rslurm’
February 24, 2023

Type Package

Title Submit R Calculations to a 'Slurm' Cluster

Description Functions that simplify submitting R scripts to a 'Slurm'
workload manager, in part by automating the division of embarrassingly
parallel calculations across cluster nodes.

Acknowledgements Development of this R package was supported by the
National Socio-Environmental Synthesis Center (SESYNC) under
funding received from the National Science Foundation grants
DBI-1052875 and DBI-1639145.

Version 0.6.2

Date 2023-01-31

License GPL-3

URL https://www.earthdatascience.org/rslurm/

BugReports https://github.com/earthlab/rslurm/issues

Depends R (>= 3.5.0)

Imports whisker (>= 0.3)

RoxygenNote 7.2.3

Suggests parallel, testthat, knitr, rmarkdown, markdown

VignetteBuilder knitr

NeedsCompilation no

Author Philippe Marchand [aut],
Ian Carroll [aut],
Mike Smorul [aut],
Rachael Blake [aut],
Quentin Read [aut],
Dayne Filer [ctb],
Ben Fasoli [ctb],
Pol van Rijn [ctb],
Sebastian Schubert [ctb],
Rob Gilmore [ctb],
Christopher Barrington [ctb],

1

https://www.earthdatascience.org/rslurm/
https://github.com/earthlab/rslurm/issues

2 rslurm-package

Se Jong Cho [art],
Erick Verleye [cre]

Maintainer Erick Verleye <erve3705@colorado.edu>

Repository CRAN

Date/Publication 2023-02-24 08:42:35 UTC

R topics documented:

rslurm-package . 2
cancel_slurm . 4
cleanup_files . 4
get_job_status . 5
get_slurm_out . 6
local_slurm_array . 7
slurm_apply . 7
slurm_call . 10
slurm_job . 12
slurm_map . 13

Index 16

rslurm-package Introduction to the rslurm Package

Description

Send long-running or parallel jobs to a Slurm workload manager (i.e. cluster) using the slurm_call,
slurm_apply, or slurm_map functions.

Job submission

This package includes three core functions used to send computations to a Slurm cluster: 1) slurm_call
executes a function using a single set of parameters (passed as a list), 2) slurm_apply evaluates a
function in parallel for each row of parameters in a given data frame, and 3) slurm_map evaluates a
function in parallel for each element of a list. The functions slurm_apply and slurm_map automat-
ically split the parameter rows or list elements into equal-size chunks, each chunk to be processed
by a separate cluster node. They use functions from the parallel-package package to parallelize
computations across processors on a given node.

The output of slurm_apply, slurm_map, or slurm_call is a slurm_job object that serves as an
input to the other functions in the package: print_job_status, cancel_slurm, get_slurm_out
and cleanup_files.

rslurm-package 3

Function specification

To be compatible with slurm_apply, a function may accept any number of single value parameters.
The names of these parameters must match the column names of the params data frame supplied.
There are no restrictions on the types of parameters passed as a list to slurm_call or slurm_map

If the function passed to slurm_call or slurm_apply requires knowledge of any R objects (data,
custom helper functions) besides params, a character vector corresponding to their names should
be passed to the optional global_objects argument.

When parallelizing a function, since any error will interrupt all calculations for the current node,
it may be useful to wrap expressions which may generate errors into a try or tryCatch function.
This will ensure the computation continues with the next parameter set after reporting the error.

Output Format

The default output format for get_slurm_out (outtype = "raw") is a list where each element is
the return value of one function call. If the function passed to slurm_apply produces a vector
output, you may use outtype = "table" to collect the output in a single data frame, with one row
by function call.

Slurm Configuration

Advanced options for the Slurm workload manager may accompany job submission by slurm_call,
slurm_map, and slurm_apply through the optional slurm_options argument. For example, pass-
ing list(time = '1:30:00') for this options limits the job to 1 hour and 30 minutes. Some ad-
vanced configuration must be set through environment variables. On a multi-cluster head node,
for example, the SLURM_CLUSTERS environment variable must be set to direct jobs to a non-default
cluster.

Examples

Not run:
Create a data frame of mean/sd values for normal distributions
pars <- data.frame(par_m = seq(-10, 10, length.out = 1000),

par_sd = seq(0.1, 10, length.out = 1000))

Create a function to parallelize
ftest <- function(par_m, par_sd) {
samp <- rnorm(10^7, par_m, par_sd)
c(s_m = mean(samp), s_sd = sd(samp))
}

sjob1 <- slurm_apply(ftest, pars)
print_job_status(sjob1)
res <- get_slurm_out(sjob1, "table")
all.equal(pars, res) # Confirm correct output
cleanup_files(sjob1)

End(Not run)

4 cleanup_files

cancel_slurm Cancels a scheduled Slurm job

Description

This function cancels the specified Slurm job by invoking the Slurm scancel command. It does not
delete the temporary files (e.g. scripts) created by slurm_apply or slurm_call. Use cleanup_files
to remove those files.

Usage

cancel_slurm(slr_job)

Arguments

slr_job A slurm_job object.

See Also

cleanup_files

cleanup_files Deletes temporary files associated with a Slurm job

Description

This function deletes all temporary files associated with the specified Slurm job, including files
created by slurm_apply or slurm_call, as well as outputs from the cluster. These files should be
located in the _rslurm_[jobname] folder of the current working directory.

Usage

cleanup_files(slr_job, wait = TRUE)

Arguments

slr_job A slurm_job object.

wait Specify whether to block until slr_job completes.

See Also

slurm_apply, slurm_call

get_job_status 5

Examples

Not run:
sjob <- slurm_apply(func, pars)
print_job_status(sjob) # Prints console/error output once job is completed.
func_result <- get_slurm_out(sjob, "table") # Loads output data into R.
cleanup_files(sjob)

End(Not run)

get_job_status Get the status of a Slurm job

Description

This function returns the completion status of a Slurm job, its queue status if any and log outputs.

Usage

get_job_status(slr_job)

Arguments

slr_job A slurm_job object.

Details

The queue element of the output is a data frame matching the output of the Slurm squeue command
for that job; it will only indicate portions of job that are running or in queue. The log element is a
vector of the contents of console/error output files for each node where the job is running.

Value

A list with three elements: completed is a logical value indicating if all portions of the job have
completed or stopped, queue contains the information on job elements still in queue, and log con-
tains the console/error logs.

6 get_slurm_out

get_slurm_out Reads the output of a function calculated on the Slurm cluster

Description

This function reads all function output files (one by cluster node used) from the specified Slurm
job and returns the result in a single data frame (if "table" format selected) or list (if "raw" format
selected). It doesn’t record any messages (including warnings or errors) output to the R console
during the computation; these can be consulted by invoking print_job_status.

Usage

get_slurm_out(slr_job, outtype = "raw", wait = TRUE, ncores = NULL)

Arguments

slr_job A slurm_job object.

outtype Can be "table" or "raw", see "Value" below for details.

wait Specify whether to block until slr_job completes.

ncores (optional) If not null, the number of cores passed to mclapply

Details

The outtype option is only relevant for jobs submitted with slurm_apply. Jobs sent with slurm_call
only return a single object, and setting outtype = "table" creates an error in that case.

Value

If outtype = "table": A data frame with one column by return value of the function passed to
slurm_apply, where each row is the output of the corresponding row in the params data frame
passed to slurm_apply.

If outtype = "raw": A list where each element is the output of the function passed to slurm_apply
for the corresponding row in the params data frame passed to slurm_apply.

See Also

slurm_apply, slurm_call

local_slurm_array 7

local_slurm_array Execute a Slurm job locally

Description

Run a previously created slurm_job object locally instead of on a Slurm cluster

Usage

local_slurm_array(slr_job, rscript_path = NULL)

Arguments

slr_job An object of class slurm_job.

rscript_path The location of the Rscript command. If not specified, defaults to the location
of Rscript within the R installation being run.

Details

This function is most useful for testing your function on a reduced dataset before submitting the full
job to the Slurm cluster.

Call local_slurm_array on a slurm_job object created with slurm_apply(..., submit = FALSE)
or slurm_map(..., submit = FALSE). The job will run serially on the local system rather than be-
ing submitted to the Slurm cluster.

Examples

Not run:
sjob <- slurm_apply(func, pars, submit = FALSE)
local_slurm_array(sjob)
func_result <- get_slurm_out(sjob, "table") # Loads output data into R.
cleanup_files(sjob)

End(Not run)

slurm_apply Parallel execution of a function on the Slurm cluster

Description

Use slurm_apply to compute function over multiple sets of parameters in parallel, spread across
multiple nodes of a Slurm cluster, with similar syntax to mapply.

8 slurm_apply

Usage

slurm_apply(
f,
params,
...,
jobname = NA,
nodes = 2,
cpus_per_node = 2,
processes_per_node = cpus_per_node,
preschedule_cores = TRUE,
job_array_task_limit = NULL,
global_objects = NULL,
add_objects = NULL,
pkgs = rev(.packages()),
libPaths = NULL,
rscript_path = NULL,
r_template = NULL,
sh_template = NULL,
slurm_options = list(),
submit = TRUE

)

Arguments

f A function that accepts one or many single values as parameters and may return
any type of R object.

params A data frame of parameter values to apply f to. Each column corresponds to
a parameter of f (Note: names must match) and each row corresponds to a
separate function call.

... Additional arguments to f. These arguments do not vary with each call to f.

jobname The name of the Slurm job; if NA, it is assigned a random name of the form
"slr####".

nodes The (maximum) number of cluster nodes to spread the calculation over. slurm_apply
automatically divides params in chunks of approximately equal size to send to
each node. Less nodes are allocated if the parameter set is too small to use all
CPUs on the requested nodes.

cpus_per_node The number of CPUs requested per node. This argument is mapped to the Slurm
parameter cpus-per-task.

processes_per_node

The number of logical CPUs to utilize per node, i.e. how many processes to run
in parallel per node. This can exceed cpus_per_node for nodes which support
hyperthreading. Defaults to processes_per_node = cpus_per_node.

preschedule_cores

Corresponds to the mc.preschedule argument of parallel::mcmapply. De-
faults to TRUE. If TRUE, the rows of params are assigned to cores before com-
putation. If FALSE, each row of params is executed by the next available core.

slurm_apply 9

Setting FALSE may be faster if different values of params result in very variable
completion time for jobs.

job_array_task_limit

The maximum number of job array tasks to run at the same time. Defaults to
NULL (no limit).

global_objects A character vector containing the name of R objects to be saved in a .RData file
and loaded on each cluster node prior to calling f.

add_objects Older deprecated name of global_objects, retained for backwards compati-
bility.

pkgs A character vector containing the names of packages that must be loaded on
each cluster node. By default, it includes all packages loaded by the user when
slurm_apply is called.

libPaths A character vector describing the location of additional R library trees to search
through, or NULL. The default value of NULL corresponds to libraries returned
by .libPaths() on a cluster node. Non-existent library trees are silently ig-
nored.

rscript_path The location of the Rscript command. If not specified, defaults to the location
of Rscript within the R installation being run.

r_template The path to the template file for the R script run on each node. If NULL, uses
the default template "rslurm/templates/slurm_run_R.txt".

sh_template The path to the template file for the sbatch submission script. If NULL, uses the
default template "rslurm/templates/submit_sh.txt".

slurm_options A named list of options recognized by sbatch; see Details below for more in-
formation.

submit Whether or not to submit the job to the cluster with sbatch; see Details below
for more information.

Details

This function creates a temporary folder ("_rslurm_[jobname]") in the current directory, holding
.RData and .RDS data files, the R script to run and the Bash submission script generated for the
Slurm job.

The set of input parameters is divided in equal chunks sent to each node, and f is evaluated in
parallel within each node using functions from the parallel R package. The names of any other R
objects (besides params) that f needs to access should be included in global_objects or passed
as additional arguments through

Use slurm_options to set any option recognized by sbatch, e.g. slurm_options = list(time =
"1:00:00", share = TRUE). See http://slurm.schedmd.com/sbatch.html for details on possi-
ble options. Note that full names must be used (e.g. "time" rather than "t") and that flags (such as
"share") must be specified as TRUE. The "array", "job-name", "nodes", "cpus-per-task" and "out-
put" options are already determined by slurm_apply and should not be manually set.

When processing the computation job, the Slurm cluster will output two types of files in the tem-
porary folder: those containing the return values of the function for each subset of parameters
("results_[node_id].RDS") and those containing any console or error output produced by R on each
node ("slurm_[node_id].out").

http://slurm.schedmd.com/sbatch.html

10 slurm_call

If submit = TRUE, the job is sent to the cluster and a confirmation message (or error) is output to
the console. If submit = FALSE, a message indicates the location of the saved data and script files;
the job can be submitted manually by running the shell command sbatch submit.sh from that
directory.

After sending the job to the Slurm cluster, slurm_apply returns a slurm_job object which can be
used to cancel the job, get the job status or output, and delete the temporary files associated with it.
See the description of the related functions for more details.

Value

A slurm_job object containing the jobname and the number of nodes effectively used.

See Also

slurm_call to evaluate a single function call.

slurm_map to evaluate a function over a list.

cancel_slurm, cleanup_files, get_slurm_out and get_job_status which use the output of
this function.

Examples

Not run:
sjob <- slurm_apply(func, pars)
get_job_status(sjob) # Prints console/error output once job is completed.
func_result <- get_slurm_out(sjob, "table") # Loads output data into R.
cleanup_files(sjob)

End(Not run)

slurm_call Execution of a single function call on the Slurm cluster

Description

Use slurm_call to perform a single function evaluation a the Slurm cluster.

Usage

slurm_call(
f,
params = list(),
jobname = NA,
global_objects = NULL,
add_objects = NULL,
pkgs = rev(.packages()),
libPaths = NULL,
rscript_path = NULL,

slurm_call 11

r_template = NULL,
sh_template = NULL,
slurm_options = list(),
submit = TRUE

)

Arguments

f Any R function.

params A named list of parameters to pass to f.

jobname The name of the Slurm job; if NA, it is assigned a random name of the form
"slr####".

global_objects A character vector containing the name of R objects to be saved in a .RData file
and loaded on each cluster node prior to calling f.

add_objects Older deprecated name of global_objects, retained for backwards compati-
bility.

pkgs A character vector containing the names of packages that must be loaded on
each cluster node. By default, it includes all packages loaded by the user when
slurm_call is called.

libPaths A character vector describing the location of additional R library trees to search
through, or NULL. The default value of NULL corresponds to libraries returned
by .libPaths() on a cluster node. Non-existent library trees are silently ig-
nored.

rscript_path The location of the Rscript command. If not specified, defaults to the location
of Rscript within the R installation being run.

r_template The path to the template file for the R script run on each node. If NULL, uses
the default template "rslurm/templates/slurm_run_single_R.txt".

sh_template The path to the template file for the sbatch submission script. If NULL, uses the
default template "rslurm/templates/submit_single_sh.txt".

slurm_options A named list of options recognized by sbatch; see Details below for more in-
formation.

submit Whether or not to submit the job to the cluster with sbatch; see Details below
for more information.

Details

This function creates a temporary folder ("_rslurm_[jobname]") in the current directory, holding
.RData and .RDS data files, the R script to run and the Bash submission script generated for the
Slurm job.

The names of any other R objects (besides params) that f needs to access should be listed in the
global_objects argument.

Use slurm_options to set any option recognized by sbatch, e.g. slurm_options = list(time =
"1:00:00", share = TRUE). See http://slurm.schedmd.com/sbatch.html for details on possi-
ble options. Note that full names must be used (e.g. "time" rather than "t") and that flags (such

http://slurm.schedmd.com/sbatch.html

12 slurm_job

as "share") must be specified as TRUE. The "job-name", "ntasks" and "output" options are already
determined by slurm_call and should not be manually set.

When processing the computation job, the Slurm cluster will output two files in the temporary
folder: one with the return value of the function ("results_0.RDS") and one containing any console
or error output produced by R ("slurm_[node_id].out").

If submit = TRUE, the job is sent to the cluster and a confirmation message (or error) is output to
the console. If submit = FALSE, a message indicates the location of the saved data and script files;
the job can be submitted manually by running the shell command sbatch submit.sh from that
directory.

After sending the job to the Slurm cluster, slurm_call returns a slurm_job object which can be
used to cancel the job, get the job status or output, and delete the temporary files associated with it.
See the description of the related functions for more details.

Value

A slurm_job object containing the jobname and the number of nodes effectively used.

See Also

slurm_apply to parallelize a function over a parameter set.

cancel_slurm, cleanup_files, get_slurm_out and get_job_status which use the output of
this function.

slurm_job Create a slurm_job object

Description

This function creates a slurm_job object which can be passed to other functions such as cancel_slurm,
cleanup_files, get_slurm_out and get_job_status.

Usage

slurm_job(jobname = NULL, jobid = NULL, nodes = NULL)

Arguments

jobname The name of the Slurm job. The rslurm-generated scripts and output files asso-
ciated with a job should be found in the _rslurm_[jobname] folder.

jobid The id of the Slurm job created by the sbatch command.

nodes The number of cluster nodes used by that job.

Details

In general, slurm_job objects are created automatically as the output of slurm_apply or slurm_call,
but it may be necessary to manually recreate one if the job was submitted in a different R session.

slurm_map 13

Value

A slurm_job object.

slurm_map Parallel execution of a function over a list on the Slurm cluster

Description

Use slurm_map to compute function over a list in parallel, spread across multiple nodes of a Slurm
cluster, with similar syntax to lapply.

Usage

slurm_map(
x,
f,
...,
jobname = NA,
nodes = 2,
cpus_per_node = 2,
processes_per_node = cpus_per_node,
preschedule_cores = TRUE,
job_array_task_limit = NULL,
global_objects = NULL,
pkgs = rev(.packages()),
libPaths = NULL,
rscript_path = NULL,
r_template = NULL,
sh_template = NULL,
slurm_options = list(),
submit = TRUE

)

Arguments

x A list to apply f to. Each element of x corresponds to a separate function call.

f A function that accepts one element of x as its first argument, and may return
any type of R object.

... Additional arguments to f. These arguments do not vary with each call to f.

jobname The name of the Slurm job; if NA, it is assigned a random name of the form
"slr####".

nodes The (maximum) number of cluster nodes to spread the calculation over. slurm_map
automatically divides x in chunks of approximately equal size to send to each
node. Less nodes are allocated if the parameter set is too small to use all CPUs
on the requested nodes.

14 slurm_map

cpus_per_node The number of CPUs requested per node. This argument is mapped to the Slurm
parameter cpus-per-task.

processes_per_node

The number of logical CPUs to utilize per node, i.e. how many processes to run
in parallel per node. This can exceed cpus_per_node for nodes which support
hyperthreading. Defaults to processes_per_node = cpus_per_node.

preschedule_cores

Corresponds to the mc.preschedule argument of parallel::mclapply. De-
faults to TRUE. If TRUE, the elements of x are assigned to cores before computa-
tion. If FALSE, each element of x is executed by the next available core. Setting
FALSE may be faster if different elements of x result in very variable completion
time for jobs.

job_array_task_limit

The maximum number of job array tasks to run at the same time. Defaults to
NULL (no limit).

global_objects A character vector containing the name of R objects to be saved in a .RData file
and loaded on each cluster node prior to calling f.

pkgs A character vector containing the names of packages that must be loaded on
each cluster node. By default, it includes all packages loaded by the user when
slurm_map is called.

libPaths A character vector describing the location of additional R library trees to search
through, or NULL. The default value of NULL corresponds to libraries returned
by .libPaths() on a cluster node. Non-existent library trees are silently ig-
nored.

rscript_path The location of the Rscript command. If not specified, defaults to the location
of Rscript within the R installation being run.

r_template The path to the template file for the R script run on each node. If NULL, uses
the default template "rslurm/templates/slurm_run_R.txt".

sh_template The path to the template file for the sbatch submission script. If NULL, uses the
default template "rslurm/templates/submit_sh.txt".

slurm_options A named list of options recognized by sbatch; see Details below for more in-
formation.

submit Whether or not to submit the job to the cluster with sbatch; see Details below
for more information.

Details

This function creates a temporary folder ("_rslurm_[jobname]") in the current directory, holding
.RData and .RDS data files, the R script to run and the Bash submission script generated for the
Slurm job.

The set of input parameters is divided in equal chunks sent to each node, and f is evaluated in
parallel within each node using functions from the parallel R package. The names of any other
R objects (besides x) that f needs to access should be included in global_objects or passed as
additional arguments through

slurm_map 15

Use slurm_options to set any option recognized by sbatch, e.g. slurm_options = list(time =
"1:00:00", share = TRUE). See http://slurm.schedmd.com/sbatch.html for details on possi-
ble options. Note that full names must be used (e.g. "time" rather than "t") and that flags (such as
"share") must be specified as TRUE. The "array", "job-name", "nodes", "cpus-per-task" and "out-
put" options are already determined by slurm_map and should not be manually set.

When processing the computation job, the Slurm cluster will output two types of files in the tem-
porary folder: those containing the return values of the function for each subset of parameters
("results_[node_id].RDS") and those containing any console or error output produced by R on each
node ("slurm_[node_id].out").

If submit = TRUE, the job is sent to the cluster and a confirmation message (or error) is output to
the console. If submit = FALSE, a message indicates the location of the saved data and script files;
the job can be submitted manually by running the shell command sbatch submit.sh from that
directory.

After sending the job to the Slurm cluster, slurm_map returns a slurm_job object which can be
used to cancel the job, get the job status or output, and delete the temporary files associated with it.
See the description of the related functions for more details.

Value

A slurm_job object containing the jobname and the number of nodes effectively used.

See Also

slurm_call to evaluate a single function call.

slurm_apply to evaluate a function row-wise over a data frame of parameters.

cancel_slurm, cleanup_files, get_slurm_out and get_job_status which use the output of
this function.

Examples

Not run:
sjob <- slurm_map(func, list)
get_job_status(sjob) # Prints console/error output once job is completed.
func_result <- get_slurm_out(sjob, "table") # Loads output data into R.
cleanup_files(sjob)

End(Not run)

http://slurm.schedmd.com/sbatch.html

Index

cancel_slurm, 2, 4, 10, 12, 15
cleanup_files, 2, 4, 4, 10, 12, 15

get_job_status, 5, 10, 12, 15
get_slurm_out, 2, 6, 10, 12, 15

local_slurm_array, 7

print_job_status, 2, 6

rslurm-package, 2

slurm_apply, 2–4, 6, 7, 12, 15
slurm_call, 2–4, 6, 10, 10, 12, 15
slurm_job, 12
slurm_map, 2, 3, 10, 13

try, 3
tryCatch, 3

16

	rslurm-package
	cancel_slurm
	cleanup_files
	get_job_status
	get_slurm_out
	local_slurm_array
	slurm_apply
	slurm_call
	slurm_job
	slurm_map
	Index

