Package ‘rsample’

April 2, 2025
Title General Resampling Infrastructure
Version 1.3.0

Description Classes and functions to create and summarize different types
of resampling objects (e.g. bootstrap, cross-validation).

License MIT + file LICENSE

URL https://rsample.tidymodels.org,
https://github.com/tidymodels/rsample

BugReports https://github.com/tidymodels/rsample/issues
Depends R (>= 3.6)

Imports cli, dplyr (>= 1.1.1), furrr, generics, glue, lifecycle,
methods, pillar, purrr (>= 1.0.0), rlang (>= 1.1.0), slider (>=
0.1.5), tibble, tidyr, tidyselect, vctrs (>= 0.5.0)

Suggests broom, covr, ggplot2, knitr, modeldata, recipes (>= 0.1.4),

rmarkdown, stats, testthat (>= 3.0.0), utils, whisker, withr,
xml2

VignetteBuilder knitr

Config/Needs/website GGally, nlstools, tidymodels,
tidyverse/tidytemplate

Encoding UTF-8
RoxygenNote 7.3.2
Config/testthat/edition 3
NeedsCompilation no

Author Hannah Frick [aut, cre] (<https://orcid.org/0000-0002-6049-5258>),
Fanny Chow [aut],
Max Kuhn [aut],
Michael Mahoney [aut] (<https://orcid.org/0000-0003-2402-304X>),
Julia Silge [aut] (<https://orcid.org/0000-0002-3671-836X>),
Hadley Wickham [aut],
Posit Software, PBC [cph, fnd]

Maintainer Hannah Frick <hannah@posit.co>

https://rsample.tidymodels.org
https://github.com/tidymodels/rsample
https://github.com/tidymodels/rsample/issues
https://orcid.org/0000-0002-6049-5258
https://orcid.org/0000-0003-2402-304X
https://orcid.org/0000-0002-3671-836X

2 Contents

Repository CRAN

Date/Publication 2025-04-02 21:50:02 UTC

Contents
get_fingerprint .. oL oL L L L L L e e 3
add_resample_id 4
APPATENL oL e e e e e e e e e e 5
as.data.frame.rsplit L L 5
bootstraps 6
clustering_cv L e e e 8
complement e e e e e e e e e e 10
form_pred 11
get_rsplit . . .o e 12
group_bootstraps oL 12
GIOUP_IMC_CV + v o v v et e e e e e e e e e e e e e e e e e e 14
group_vfold_cv 15
initial_split e e 16
initial_validation_split 18
int_petl ..o e 21
Jabels.rset e e e e e e 24
labels.rsplit e 24
J00_CV . . e e 25
make_splits L e e e 26
make_Strata e e e 27
manual_ISet e 28
IMNC_CV o o v v e v e e e e e e e 29
nested_CV e e s 31
PErmutations 32
populateo e e e 33
reg_intervals L. e e e e e 34
reshuffle_rset L e 35
reverse_splits L 36
rolling_origin L 37
rsample-dplyr L. 38
rsample2caret L e 40
ISEL_TECONSIIUCT o v v i it ittt e e e e e 40
slide-resampling e e e 41
tidy.rsplit e 45
validation_set e 47
VIOId_CV . . o . 48

Index 51

.get_fingerprint 3

.get_fingerprint Obtain a identifier for the resamples

Description

This function returns a hash (or NA) for an attribute that is created when the rset was initially
constructed. This can be used to compare with other resampling objects to see if they are the same.

Usage
.get_fingerprint(x, ...)

Default S3 method:
.get_fingerprint(x, ...)

S3 method for class 'rset'
.get_fingerprint(x, ...)

Arguments

X An rset or tune_results object.

Not currently used.

Value

A character value or NA_character_ if the object was created prior to rsample version 0.1.0.

Examples

set.seed(1)
.get_fingerprint(vfold_cv(mtcars))

set.seed(1)
.get_fingerprint(vfold_cv(mtcars))

set.seed(2)
.get_fingerprint(vfold_cv(mtcars))

set.seed(1)
.get_fingerprint(vfold_cv(mtcars, repeats = 2))

4 add_resample_id

add_resample_id Augment a data set with resampling identifiers

Description

For a data set, add_resample_id() will add at least one new column that identifies which resample
that the data came from. In most cases, a single column is added but for some resampling methods,
two or more are added.

Usage

add_resample_id(.data, split, dots = FALSE)

Arguments
.data A data frame.
split A single rset object.
dots A single logical: should the id columns be prefixed with a "." to avoid name
conflicts with .data?
Value

An updated data frame.

See Also

labels.rsplit

Examples

library(dplyr)

set.seed(363)
car_folds <- vfold_cv(mtcars, repeats = 3)

analysis(car_folds$splits[[11]) %>%
add_resample_id(car_folds$splits[[1]]1) %>%
head()

car_bt <- bootstraps(mtcars)
analysis(car_bt$splits[[11]1) %>%

add_resample_id(car_bt$splits[[11]) %>%
head()

apparent 5

apparent Sampling for the Apparent Error Rate

Description

When building a model on a data set and re-predicting the same data, the performance estimate
from those predictions is often called the "apparent” performance of the model. This estimate can
be wildly optimistic. "Apparent sampling" here means that the analysis and assessment samples
are the same. These resamples are sometimes used in the analysis of bootstrap samples and should
otherwise be avoided like old sushi.

Usage
apparent(data, ...)
Arguments
data A data frame.
These dots are for future extensions and must be empty.
Value

A tibble with a single row and classes apparent, rset, tbl_df, tbl, and data. frame. The results
include a column for the data split objects and one column called id that has a character string with
the resample identifier.

Examples

apparent(mtcars)

as.data.frame.rsplit Convert an rsplit object to a data frame

Description

The analysis or assessment code can be returned as a data frame (as dictated by the data argument)
using as.data.frame.rsplit(). analysis() and assessment() are shortcuts.

6 bootstraps

Usage
S3 method for class 'rsplit'
as.data.frame(x, row.names = NULL, optional = FALSE, data = "analysis”, ...)
analysis(x, ...)

Default S3 method:
analysis(x, ...)

S3 method for class 'rsplit'
analysis(x, ...)

assessment(x, ...)

Default S3 method:
assessment(x, ...)

S3 method for class 'rsplit'

assessment(x, ...)
Arguments
X An rsplit object.
row.names NULL or a character vector giving the row names for the data frame. Missing
values are not allowed.
optional A logical: should the column names of the data be checked for legality?
data Either "analysis” or "assessment” to specify which data are returned.

Not currently used.

Examples

library(dplyr)
set.seed(104)
folds <- vfold_cv(mtcars)

model_data_1 <- folds$splits[[1]1] %>% analysis()
holdout_data_1 <- folds$splits[[1]1] %>% assessment()

bootstraps Bootstrap Sampling

Description

A bootstrap sample is a sample that is the same size as the original data set that is made using
replacement. This results in analysis samples that have multiple replicates of some of the original
rows of the data. The assessment set is defined as the rows of the original data that were not included
in the bootstrap sample. This is often referred to as the "out-of-bag" (OOB) sample.

bootstraps

Usage

bootstraps(
data,

times = 25,

strata =
breaks =
pool = 0.
apparent

Arguments

data
times

strata

breaks

pool

apparent

Details

N
4
1

’
’

ULL,

FALSE,

A data frame.
The number of bootstrap samples.

A variable in data (single character or name) used to conduct stratified sam-
pling. When not NULL, each resample is created within the stratification variable.
Numeric strata are binned into quartiles.

A single number giving the number of bins desired to stratify a numeric stratifi-
cation variable.

A proportion of data used to determine if a particular group is too small and
should be pooled into another group. We do not recommend decreasing this
argument below its default of 0.1 because of the dangers of stratifying groups
that are too small.

A logical. Should an extra resample be added where the analysis and holdout
subset are the entire data set. This is required for some estimators used by the
summary () function that require the apparent error rate.

These dots are for future extensions and must be empty.

The argument apparent enables the option of an additional "resample" where the analysis and
assessment data sets are the same as the original data set. This can be required for some types of
analysis of the bootstrap results.

With a strata argument, the random sampling is conducted within the stratification variable. This
can help ensure that the resamples have equivalent proportions as the original data set. For a cat-
egorical variable, sampling is conducted separately within each class. For a numeric stratification
variable, strata is binned into quartiles, which are then used to stratify. Strata below 10% of the
total are pooled together; see make_strata() for more details.

Value

A tibble with classes bootstraps, rset, tbl_df, tbl, and data.frame. The results include a
column for the data split objects and a column called id that has a character string with the resample

identifier.

8 clustering_cv

Examples

bootstraps(mtcars, times = 2)
bootstraps(mtcars, times = 2, apparent = TRUE)

library(purrr)
library(modeldata)
data(wa_churn)

set.seed(13)
resamplel <- bootstraps(wa_churn, times = 3)
map_db1(
resamplel$splits,
function(x) {
dat <- as.data.frame(x)$churn
mean(dat == "Yes")
}
)

set.seed(13)
resample2 <- bootstraps(wa_churn, strata = churn, times = 3)
map_db1(
resample2$splits,
function(x) {
dat <- as.data.frame(x)$churn
mean(dat == "Yes")
3
)

set.seed(13)
resample3 <- bootstraps(wa_churn, strata = tenure, breaks = 6, times = 3)
map_db1(
resample3s$splits,
function(x) {
dat <- as.data.frame(x)$churn
mean(dat == "Yes")
}
)

clustering_cv Cluster Cross-Validation

Description

Cluster cross-validation splits the data into V groups of disjointed sets using k-means clustering
of some variables. A resample of the analysis data consists of V-1 of the folds/clusters while the
assessment set contains the final fold/cluster. In basic cross-validation (i.e. no repeats), the number
of resamples is equal to V.

clustering_cv 9

Usage
clustering_cv(
data,
vars,
v =10,
repeats = 1,
distance_function = "dist”,
cluster_function = c("kmeans”, "hclust"),
)
Arguments
data A data frame.
vars A vector of bare variable names to use to cluster the data.
v The number of partitions of the data set.
repeats The number of times to repeat the clustered partitioning.

distance_function
Which function should be used for distance calculations? Defaults to stats: :dist().
You can also provide your own function; see Details.

cluster_function
Which function should be used for clustering? Options are either "kmeans” (to
use stats: :kmeans()) or "hclust” (to use stats::hclust()). You can also
provide your own function; see Details.

Extra arguments passed on to cluster_function.

Details

The variables in the vars argument are used for k-means clustering of the data into disjointed sets
or for hierarchical clustering of the data. These clusters are used as the folds for cross-validation.
Depending on how the data are distributed, there may not be an equal number of points in each fold.

You can optionally provide a custom function to distance_function. The function should take a
data frame (as created via datal[vars]) and return a stats: :dist() object with distances between
data points.

You can optionally provide a custom function to cluster_function. The function must take three
arguments:

* dists, astats::dist() object with distances between data points

* v, a length-1 numeric for the number of folds to create

e ..., to pass any additional named arguments to your function

The function should return a vector of cluster assignments of length nrow(data), with each element
of the vector corresponding to the matching row of the data frame.

Value

A tibble with classes rset, tbl_df, tbl, and data.frame. The results include a column for the
data split objects and an identification variable id.

10 complement

Examples

data(ames, package = "modeldata”)
clustering_cv(ames, vars = c(Sale_Price, First_Flr_SF, Second_Flr_SF), v = 2)

complement Determine the Assessment Samples

Description

This method and function help find which data belong in the analysis and assessment sets.

Usage

complement(x, ...)

S3 method for class 'rsplit'’
complement(x, ...)

S3 method for class 'rof_split'
complement(x, ...)

S3 method for class 'sliding_window_split'
complement(x, ...)

S3 method for class 'sliding_index_split'
complement(x, ...)

S3 method for class 'sliding_period_split'
complement(x, ...)

S3 method for class 'apparent_split'

complement(x, ...)
Arguments
X An rsplit object.

Not currently used.

Details

Given an rsplit object, complement() will determine which of the data rows are contained in
the assessment set. To save space, many of the rsplit objects will not contain indices for the
assessment split.

Value

A integer vector.

form_pred 11

See Also

populate()

Examples

set.seed(28432)

fold_rs <- vfold_cv(mtcars)
head(fold_rs$splits[[1]]$in_id)
fold_rs$splits[[1]]1$out_id
complement(fold_rs$splits[[1]])

form_pred Extract Predictor Names from Formula or Terms

Description

While all.vars() returns all variables used in a formula, this function only returns the variables
explicitly used on the right-hand side (i.e., it will not resolve dots unless the object is terms with a
data set specified).

Usage
form_pred(object, ...)
Arguments
object A model formula or stats: :terms() object.
Arguments to pass to all.vars()
Value

A character vector of names

Examples

form_pred(y ~ x + z)
form_pred(terms(y ~ x + z))

form_pred(y ~ x + log(z))
form_pred(log(y) ~ x + z)

form_pred(yl + y2 ~ x + z)
form_pred(log(yl) + y2 ~ x + z)

will fail:
form_pred(y ~ .)

form_pred(terms(mpg ~ (.)*2, data = mtcars))
form_pred(terms(~ (.)*2, data = mtcars))

12 group_bootstraps

get_rsplit Retrieve individual rsplits objects from an rset

Description

Retrieve individual rsplits objects from an rset
Usage
get_rsplit(x, index, ...)

S3 method for class 'rset'
get_rsplit(x, index, ...)

Default S3 method:

get_rsplit(x, index, ...)
Arguments
X The rset object to retrieve an rsplit from.
index An integer indicating which rsplit to retrieve: 1 for the rsplit in the first row of

the rset, 2 for the second, and so on.

Not currently used.

Value

The rsplit object in row index of rset

Examples

set.seed(123)
(starting_splits <- group_vfold_cv(mtcars, cyl, v = 3))
get_rsplit(starting_splits, 1)

group_bootstraps Group Bootstraps

Description

Group bootstrapping creates splits of the data based on some grouping variable (which may have
more than a single row associated with it). A common use of this kind of resampling is when you
have repeated measures of the same subject. A bootstrap sample is a sample that is the same size
as the original data set that is made using replacement. This results in analysis samples that have
multiple replicates of some of the original rows of the data. The assessment set is defined as the
rows of the original data that were not included in the bootstrap sample. This is often referred to as
the "out-of-bag" (OOB) sample.

group_bootstraps

13

Usage
group_bootstraps(
data,
group,
times = 25,

apparent = FALSE,

strata =
pool = Q.

Arguments

data

group

times

apparent

strata

pool

Details

NULL,
:

A data frame.

A variable in data (single character or name) used for grouping observations
with the same value to either the analysis or assessment set within a fold.

The number of bootstrap samples.

A logical. Should an extra resample be added where the analysis and holdout
subset are the entire data set. This is required for some estimators used by the
summary () function that require the apparent error rate.

These dots are for future extensions and must be empty.

A variable in data (single character or name) used to conduct stratified sam-
pling. When not NULL, each resample is created within the stratification variable.
Numeric strata are binned into quartiles.

A proportion of data used to determine if a particular group is too small and
should be pooled into another group. We do not recommend decreasing this
argument below its default of 0.1 because of the dangers of stratifying groups
that are too small.

The argument apparent enables the option of an additional "resample" where the analysis and
assessment data sets are the same as the original data set. This can be required for some types of
analysis of the bootstrap results.

Value

An tibble with classes group_bootstraps bootstraps, rset, tbl_df, tbl, and data.frame. The
results include a column for the data split objects and a column called id that has a character string
with the resample identifier.

Examples

data(ames, package = "modeldata")

set.seed(13)

group_bootstraps(ames, Neighborhood, times = 3)

14

group_mc_cv

group_bootstraps(ames, Neighborhood, times = 3, apparent = TRUE)

group_mc_cv

Group Monte Carlo Cross-Validation

Description

Group Monte Carlo cross-validation creates splits of the data based on some grouping variable
(which may have more than a single row associated with it). One resample of Monte Carlo cross-
validation takes a random sample (without replacement) of groups in the original data set to be used
for analysis. All other data points are added to the assessment set. A common use of this kind of
resampling is when you have repeated measures of the same subject.

Usage

group_mc_cv(
data,

group,
prop = 3/4,
times = 25,
strata =
pool = 0.

Arguments

data

group

prop
times

strata

pool

Value

NULL,
1

A data frame.

A variable in data (single character or name) used for grouping observations
with the same value to either the analysis or assessment set within a fold.

The proportion of data to be retained for modeling/analysis.
The number of times to repeat the sampling.
These dots are for future extensions and must be empty.

A variable in data (single character or name) used to conduct stratified sam-
pling. When not NULL, each resample is created within the stratification variable.
Numeric strata are binned into quartiles.

A proportion of data used to determine if a particular group is too small and
should be pooled into another group. We do not recommend decreasing this
argument below its default of 0.1 because of the dangers of stratifying groups
that are too small.

A tibble with classes group_mc_cv, rset, tbl_df, tbl, and data.frame. The results include a
column for the data split objects and an identification variable.

group_vfold_cv 15

Examples

data(ames, package = "modeldata")

set.seed(123)
group_mc_cv(ames, group = Neighborhood, times = 5)

group_vfold_cv Group V-Fold Cross-Validation

Description

Group V-fold cross-validation creates splits of the data based on some grouping variable (which
may have more than a single row associated with it). The function can create as many splits as there
are unique values of the grouping variable or it can create a smaller set of splits where more than
one group is left out at a time. A common use of this kind of resampling is when you have repeated
measures of the same subject.

Usage
group_vfold_cv(
data,
group = NULL,
v = NULL,
repeats = 1,
balance = c("groups"”, "observations”),
strata = NULL,
pool = 0.1

)

Arguments

data A data frame.

group A variable in data (single character or name) used for grouping observations
with the same value to either the analysis or assessment set within a fold.

v The number of partitions of the data set. If left as NULL (the default), v will be
set to the number of unique values in the grouping variable, creating "leave-one-
group-out" splits.

repeats The number of times to repeat the V-fold partitioning.

balance If v is less than the number of unique groups, how should groups be combined

into folds? Should be one of "groups”, which will assign roughly the same
number of groups to each fold, or "observations”, which will assign roughly
the same number of observations to each fold.

These dots are for future extensions and must be empty.

16 initial_split

strata A variable in data (single character or name) used to conduct stratified sam-
pling. When not NULL, each resample is created within the stratification variable.
Numeric strata are binned into quartiles.

pool A proportion of data used to determine if a particular group is too small and
should be pooled into another group. We do not recommend decreasing this
argument below its default of 0.1 because of the dangers of stratifying groups
that are too small.

Value

A tibble with classes group_vfold_cv, rset, tbl_df, tbl, and data. frame. The results include a
column for the data split objects and an identification variable.

Examples

data(ames, package = "modeldata”)

set.seed(123)
group_vfold_cv(ames, group = Neighborhood, v
group_vfold_cv(

5)

ames,
group = Neighborhood,

v =5,

balance = "observations”

)

group_vfold_cv(ames, group = Neighborhood, v = 5, repeats = 2)

Leave-one-group-out CV
group_vfold_cv(ames, group = Neighborhood)

library(dplyr)
data(Sacramento, package = "modeldata”)

city_strata <- Sacramento %>%
group_by(city) %>%
summarize(strata = mean(price)) %>%
summarize(city = city,
strata = cut(strata, quantile(strata), include.lowest = TRUE))

sacramento_data <- Sacramento %>%
full_join(city_strata, by = "city")

group_vfold_cv(sacramento_data, city, strata = strata)

initial_split Simple Training/Test Set Splitting

initial_split

Description

17

initial_split() creates a single binary split of the data into a training set and testing set. initial_time_split()
does the same, but takes the first prop samples for training, instead of a random selection. group_initial_split()
creates splits of the data based on some grouping variable, so that all data in a "group" is assigned

to the same split.

Usage
initial_split(data, prop = 3/4, strata = NULL, breaks = 4, pool = 0.1, ...)
initial_time_split(data, prop = 3/4, lag = 0, ...)
training(x, ...)

Default S3 method:

training(x,

L)

S3 method for class 'rsplit'

training(x,

testing(x,

)

Default S3 method:

testing(x,

S3 method for class 'rsplit'’

testing(x,
group_initial_split(data, group, prop = 3/4, ..., strata = NULL, pool = 0.1)
Arguments

data A data frame.

prop The proportion of data to be retained for modeling/analysis.

strata A variable in data (single character or name) used to conduct stratified sam-
pling. When not NULL, each resample is created within the stratification variable.
Numeric strata are binned into quartiles.

breaks A single number giving the number of bins desired to stratify a numeric stratifi-
cation variable.

pool A proportion of data used to determine if a particular group is too small and
should be pooled into another group. We do not recommend decreasing this
argument below its default of 0.1 because of the dangers of stratifying groups
that are too small.
These dots are for future extensions and must be empty.

lag A value to include a lag between the assessment and analysis set. This is useful

if lagged predictors will be used during training and testing.

18 initial_validation_split

X An rsplit object produced by initial_split() or initial_time_split().

group A variable in data (single character or name) used for grouping observations
with the same value to either the analysis or assessment set within a fold.

Details

training() and testing() are used to extract the resulting data.

With a strata argument, the random sampling is conducted within the stratification variable. This
can help ensure that the resamples have equivalent proportions as the original data set. For a cat-
egorical variable, sampling is conducted separately within each class. For a numeric stratification
variable, strata is binned into quartiles, which are then used to stratify. Strata below 10% of the
total are pooled together; see make_strata() for more details.

Value

An rsplit object that can be used with the training() and testing() functions to extract the
data in each split.

Examples

set.seed(1353)

car_split <- initial_split(mtcars)
train_data <- training(car_split)
test_data <- testing(car_split)

data(drinks, package = "modeldata")

drinks_split <- initial_time_split(drinks)

train_data <- training(drinks_split)

test_data <- testing(drinks_split)
c(max(train_data$date), min(test_data$date)) # no lag

With 12 period lag

drinks_lag_split <- initial_time_split(drinks, lag = 12)
train_data <- training(drinks_lag_split)

test_data <- testing(drinks_lag_split)
c(max(train_data$date), min(test_data$date)) # 12 period lag

set.seed(1353)

car_split <- group_initial_split(mtcars, cyl)
train_data <- training(car_split)

test_data <- testing(car_split)

initial_validation_split
Create an Initial Train/Validation/Test Split

initial_validation_split 19

Description

initial_validation_split() creates a random three-way split of the data into a training set, a
validation set, and a testing set. initial_validation_time_split() does the same, but instead
of a random selection the training, validation, and testing set are in order of the full data set, with
the first observations being put into the training set. group_initial_validation_split() creates
similar random splits of the data based on some grouping variable, so that all data in a "group" are
assigned to the same partition.

Usage

initial_validation_split(
data,
prop = c(0.6, 0.2),
strata = NULL,

breaks = 4,
pool = 0.1,
)
initial_validation_time_split(data, prop = c(0.6, 0.2), ...)

group_initial_validation_split(
data,
group,
prop = c(0.6, 0.2),
strata =
pool = Q.
)

NULL,
]

S3 method for class 'initial_validation_split'
training(x, ...)

S3 method for class 'initial_validation_split'
testing(x, ...)

validation(x, ...)

Default S3 method:
validation(x, ...)

S3 method for class 'initial_validation_split'
validation(x, ...)

Arguments

data A data frame.

20

prop

strata

breaks

pool

group

Details

initial_validation_split

A length-2 vector of proportions of data to be retained for training and validation
data, respectively.

A variable in data (single character or name) used to conduct stratified sam-
pling. When not NULL, each resample is created within the stratification variable.
Numeric strata are binned into quartiles.

A single number giving the number of bins desired to stratify a numeric stratifi-
cation variable.

A proportion of data used to determine if a particular group is too small and
should be pooled into another group. We do not recommend decreasing this
argument below its default of 0.1 because of the dangers of stratifying groups
that are too small.

These dots are for future extensions and must be empty.

A variable in data (single character or name) used for grouping observations
with the same value to either the analysis or assessment set within a fold.

An object of class initial_validation_split.

training(), validation(), and testing() can be used to extract the resulting data sets. Use
validation_set() to create an rset object for use with functions from the tune package such as
tune: :tune_grid().

With a strata argument, the random sampling is conducted within the stratification variable. This
can help ensure that the resamples have equivalent proportions as the original data set. For a cat-
egorical variable, sampling is conducted separately within each class. For a numeric stratification
variable, strata is binned into quartiles, which are then used to stratify. Strata below 10% of the
total are pooled together; see make_strata() for more details.

Value

An initial_validation_split object that can be used with the training(), validation(),
and testing() functions to extract the data in each split.

See Also

validation_set()

Examples

set.seed(1353)

car_split <- initial_validation_split(mtcars)
train_data <- training(car_split)
validation_data <- validation(car_split)
test_data <- testing(car_split)

data(drinks, package = "modeldata”)

drinks_split <- initial_validation_time_split(drinks)
train_data <- training(drinks_split)

validation_data <- validation(drinks_split)

int_pctl 21

c(max(train_data$date), min(validation_data$date))

data(ames, package = "modeldata")

set.seed(1353)

ames_split <- group_initial_validation_split(ames, group = Neighborhood)
train_data <- training(ames_split)

validation_data <- validation(ames_split)

test_data <- testing(ames_split)

int_pctl Bootstrap confidence intervals

Description

Calculate bootstrap confidence intervals using various methods.

Usage

int_pctl(.data, ...)

Default S3 method:
int_pctl(.data, ...)

S3 method for class 'bootstraps'
int_pctl(.data, statistics, alpha = 0.05, ...)

int_t(.data, ...)

Default S3 method:
int_t(.data, ...)

S3 method for class 'bootstraps'
int_t(.data, statistics, alpha = 0.05, ...)

int_bca(.data, ...)

Default S3 method:
int_bca(.data, ...)

S3 method for class 'bootstraps'

int_bca(.data, statistics, alpha = 0.05, .fn, ...)
Arguments
.data A object containing the bootstrap resamples, created using bootstraps(). For

t- and BCa-intervals, the apparent argument should be set to TRUE. Even if the
apparent argument is set to TRUE for the percentile method, the apparent data
is never used in calculating the percentile confidence interval.

22

statistics

alpha
.fn

Details

int_pctl

Arguments to pass to . fn (int_bca() only).

An unquoted column name or dplyr selector that identifies a single column in
the data set containing the individual bootstrap estimates. This must be a list
column of tidy tibbles (with columns term and estimate). Optionally, users
can include columns whose names begin with a period and the intervals will
be created for each combination of these variables and the term column. For
t-intervals, a standard tidy column (usually called std.error) is required. See
the examples below.

Level of significance.

A function to calculate statistic of interest. The function should take an rsplit
as the first argument and the . . . are required.

Percentile intervals are the standard method of obtaining confidence intervals but require thousands
of resamples to be accurate. T-intervals may need fewer resamples but require a corresponding

variance estimate.

Bias-corrected and accelerated intervals require the original function that was

used to create the statistics of interest and are computationally taxing.

Value

Each function returns a tibble with columns . lower, .estimate, .upper, .alpha, .method, and
term. .method is the type of interval (eg. "percentile", "student-t", or "BCa"). term is the name of
the estimate. Note the .estimate returned from int_pctl() is the mean of the estimates from the
bootstrap resamples and not the estimate from the apparent model.

References

https://rsample.tidymodels.org/articles/Applications/Intervals.html

Davison, A., & Hinkley, D. (1997). Bootstrap Methods and their Application. Cambridge: Cam-
bridge University Press. doi:10.1017/CBO9780511802843

See Also

reg_intervals()

Examples

library(broom)
library(dplyr)
library(purrr)
library(tibble)
library(tidyr)

Im_est <- function(split, ...) {
Im(mpg ~ disp + hp, data = analysis(split)) %>%

https://rsample.tidymodels.org/articles/Applications/Intervals.html

int_pctl

tidy()
}

set.seed(52156)

car_rs <-
bootstraps(mtcars, 500, apparent = TRUE) %>%
mutate(results = map(splits, lm_est))

int_pctl(car_rs, results)
int_t(car_rs, results)
int_bca(car_rs, results, .fn = lm_est)

putting results into a tidy format
rank_corr <- function(split) {
dat <- analysis(split)

tibble(
term = "corr”,
estimate = cor(dat$sqft, dat$price, method = "spearman”),

don't know the analytical std.error so no t-intervals
std.error = NA_real_
)
3

set.seed(69325)

data(Sacramento, package = "modeldata")

bootstraps(Sacramento, 1000, apparent = TRUE) %>%
mutate(correlations = map(splits, rank_corr)) %>%
int_pctl(correlations)

An example of computing the interval for each value of a custom grouping
factor (type of house in this example)

Get regression estimates for each house type
Im_est <- function(split, ...) {
analysis(split) %>%
tidyr::nest(.by = c(type)) %>%
Compute regression estimates for each house type
mutate(
betas = purrr::map(data, ~ 1m(logl@(price) ~ sqft, data = .x) %>% tidy())

) %>%
Convert the column name to begin with a period
rename(.type = type) %>%
select(.type, betas) %>%
unnest(cols = betas)

set.seed(52156)

house_rs <-
bootstraps(Sacramento, 1000, apparent = TRUE) %>%
mutate(results = map(splits, Ilm_est))

23

24 labels.rsplit

int_pctl(house_rs, results)

labels.rset Find Labels from rset Object

Description
Produce a vector of resampling labels (e.g. "Fold1") from an rset object. Currently, nested_cv()
is not supported.

Usage

S3 method for class 'rset'
labels(object, make_factor = FALSE, ...)

S3 method for class 'vfold_cv'

labels(object, make_factor = FALSE, ...)
Arguments
object An rset object.
make_factor A logical for whether the results should be a character or a factor.

Not currently used.

Value

A single character or factor vector.

Examples

labels(vfold_cv(mtcars))

labels.rsplit Find Labels from rsplit Object

Description

Produce a tibble of identification variables so that single splits can be linked to a particular resample.

Usage

S3 method for class 'rsplit'
labels(object, ...)

loo_cv 25

Arguments
object An rsplit object
Not currently used.
Value
A tibble.
See Also

add_resample_id

Examples

cv_splits <- vfold_cv(mtcars)
labels(cv_splits$splits[[11])

loo_cv Leave-One-Out Cross-Validation

Description

Leave-one-out (LOO) cross-validation uses one data point in the original set as the assessment data
and all other data points as the analysis set. A LOO resampling set has as many resamples as rows
in the original data set.

Usage
loo_cv(data, ...)
Arguments
data A data frame.
These dots are for future extensions and must be empty.
Value

An tibble with classes 1loo_cv, rset, tbl_df, tbl, and data. frame. The results include a column
for the data split objects and one column called id that has a character string with the resample
identifier.

Examples

loo_cv(mtcars)

26

make_splits

make_splits

Constructors for split objects

Description

Constructors for split objects

Usage

make_splits(x, ...)

Default S3 method:
make_splits(x, ...)

S3 method for class 'list'
make_splits(x, data, class = NULL, ...)

S3 method for class 'data.frame'

make_splits(x, assessment, ...)
Arguments
X A list of integers with names "analysis" and "assessment”, or a data frame of
analysis or training data.
Not currently used.
data A data frame.
class An optional class to give the object.
assessment A data frame of assessment or testing data, which can be empty.
Examples

df <- data.frame(
year = 1900:1999,
value = 10 + 8x1900:1999 + runif(100L, @, 100)

)

split_from_indices <- make_splits(
x = list(analysis = which(df$year <= 1980),
assessment = which(df$year > 1980)),
data = df
)
split_from_data_frame <- make_splits(
x = df[df$year <= 1980,1],
assessment = df[df$year > 1980,]
)

identical(split_from_indices, split_from_data_frame)

make_strata 27

make_strata Create or Modify Stratification Variables

Description
This function can create strata from numeric data and make non-numeric data more conducive for
stratification.

Usage

make_strata(x, breaks = 4, nunique = 5, pool = 0.1, depth = 20)

Arguments
X An input vector.
breaks A single number giving the number of bins desired to stratify a numeric stratifi-
cation variable.
nunique An integer for the number of unique value threshold in the algorithm.
pool A proportion of data used to determine if a particular group is too small and
should be pooled into another group. We do not recommend decreasing this
argument below its default of 0.1 because of the dangers of stratifying groups
that are too small.
depth An integer that is used to determine the best number of percentiles that should
be used. The number of bins are based on min(5, floor(n / depth)) where
n = length(x). If x is numeric, there must be at least 40 rows in the data set
(when depth = 20) to conduct stratified sampling.
Details

For numeric data, if the number of unique levels is less than nunique, the data are treated as cate-
gorical data.

For categorical inputs, the function will find levels of x than occur in the data with percentage less
than pool. The values from these groups will be randomly assigned to the remaining strata (as will
data points that have missing values in Xx).

For numeric data with more unique values than nunique, the data will be converted to being cate-
gorical based on percentiles of the data. The percentile groups will have no more than 20 percent
of the data in each group. Again, missing values in x are randomly assigned to groups.

Value

A factor vector.

28 manual_ rset

Examples

set.seed(61)

x1 <- rpois(100, lambda
table(x1)
table(make_strata(x1))

5)

set.seed(554)

X2 <- rpois(100, lambda = 1)
table(x2)
table(make_strata(x2))

small groups are randomly assigned
x3 <- factor(x2)

table(x3)

table(make_strata(x3))

x4 <- rep(LETTERS[1:71, c(37, 26, 3, 7, 11, 10, 2))
table(x4)
table(make_strata(x4))
table(make_strata(x4, pool
table(make_strata(x4, pool

0.1)
0.0))

not enough data to stratify
x5 <= rnorm(20)
table(make_strata(x5))

set.seed(483)

x6 <= rnorm(200)

quantile(x6, probs = (0:10) / 10)
table(make_strata(x6, breaks = 10))

manual_rset Manual resampling

Description

manual_rset() is used for constructing the most minimal rset possible. It can be useful when you
have custom rsplit objects built from make_splits(), or when you want to create a new rset from
splits contained within an existing rset.

Usage

manual_rset(splits, ids)

Arguments
splits A list of "rsplit” objects. It is easiest to create these using make_splits().
ids A character vector of ids. The length of ids must be the same as the length of

splits.

mc_cv 29

Examples

df <- data.frame(x = c(1, 2, 3, 4, 5, 6))

Create an rset from custom indices
indices <- list(
list(analysis = c(1L, 2L), assessment
list(analysis = c(4L, 5L), assessment

)

3L,
6L)

splits <- lapply(indices, make_splits, data = df)
manual_rset(splits, c(”Split 1", "Split 2"))

You can also use this to create an rset from a subset of an
existing rset

resamples <- vfold_cv(mtcars)

best_split <- resamples[5, 1]

manual_rset(best_split$splits, best_split$id)

mc_cv Monte Carlo Cross-Validation

Description

One resample of Monte Carlo cross-validation takes a random sample (without replacement) of the
original data set to be used for analysis. All other data points are added to the assessment set.

Usage
mc_cv(data, prop = 3/4, times = 25, strata = NULL, breaks = 4, pool = 0.1, ...)
Arguments
data A data frame.
prop The proportion of data to be retained for modeling/analysis.
times The number of times to repeat the sampling.
strata A variable in data (single character or name) used to conduct stratified sam-
pling. When not NULL, each resample is created within the stratification variable.
Numeric strata are binned into quartiles.
breaks A single number giving the number of bins desired to stratify a numeric stratifi-
cation variable.
pool A proportion of data used to determine if a particular group is too small and

should be pooled into another group. We do not recommend decreasing this
argument below its default of 0.1 because of the dangers of stratifying groups
that are too small.

These dots are for future extensions and must be empty.

30 mc_cv

Details

With a strata argument, the random sampling is conducted within the stratification variable. This
can help ensure that the resamples have equivalent proportions as the original data set. For a cat-
egorical variable, sampling is conducted separately within each class. For a numeric stratification
variable, strata is binned into quartiles, which are then used to stratify. Strata below 10% of the
total are pooled together; see make_strata() for more details.

Value

An tibble with classes mc_cv, rset, tbl_df, tbl, and data. frame. The results include a column for
the data split objects and a column called id that has a character string with the resample identifier.

Examples

mc_cv(mtcars, times = 2)

mc_cv(mtcars, prop = .5, times = 2)
library(purrr)
data(wa_churn, package = "modeldata”)

set.seed(13)
resamplel <- mc_cv(wa_churn, times = 3, prop = .5)
map_db1l(
resamplel$splits,
function(x) {
dat <- as.data.frame(x)$churn
mean(dat == "Yes")
}
)

set.seed(13)
resample2 <- mc_cv(wa_churn, strata = churn, times = 3, prop = .5)
map_db1(
resample2$splits,
function(x) {
dat <- as.data.frame(x)$churn
mean(dat == "Yes")
3
)

set.seed(13)
resample3 <- mc_cv(wa_churn, strata = tenure, breaks = 6, times = 3, prop = .5)
map_db1l(
resample3$splits,
function(x) {
dat <- as.data.frame(x)$churn
mean(dat == "Yes")
}
)

nested_cv 31

nested_cv Nested or Double Resampling

Description
nested_cv() can be used to take the results of one resampling procedure and conduct further
resamples within each split. Any type of resampling used in rsample can be used.

Usage

nested_cv(data, outside, inside)

Arguments
data A data frame.
outside The initial resampling specification. This can be an already created object or an
expression of a new object (see the examples below). If the latter is used, the
data argument does not need to be specified and, if it is given, will be ignored.
inside An expression for the type of resampling to be conducted within the initial pro-
cedure.
Details

It is a bad idea to use bootstrapping as the outer resampling procedure (see the example below)

Value

An tibble with nested_cv class and any other classes that outer resampling process normally con-
tains. The results include a column for the outer data split objects, one or more id columns, and a
column of nested tibbles called inner_resamples with the additional resamples.

Examples

Using expressions for the resampling procedures:
nested_cv(mtcars, outside = vfold_cv(v = 3), inside = bootstraps(times = 5))

Using an existing object:
folds <- vfold_cv(mtcars)
nested_cv(mtcars, folds, inside = bootstraps(times = 5))

The dangers of outer bootstraps:

set.seed(2222)

bad_idea <- nested_cv(mtcars,
outside = bootstraps(times = 5),
inside = vfold_cv(v = 3)

)

first_outer_split <- get_rsplit(bad_idea, 1)

32 permutations

outer_analysis <- analysis(first_outer_split)
sum(grepl(”Camaro 728", rownames(outer_analysis)))

For the 3-fold CV used inside of each bootstrap, how are the replicated
~Camaro Z28" data partitioned?

first_inner_split <- get_rsplit(bad_idea$inner_resamples[[1]], 1)
inner_analysis <- analysis(first_inner_split)

inner_assess <- assessment(first_inner_split)

sum(grepl(”Camaro 728", rownames(inner_analysis)))
sum(grepl(”"Camaro Z28", rownames(inner_assess)))

permutations Permutation sampling

Description

A permutation sample is the same size as the original data set and is made by permuting/shuffling
one or more columns. This results in analysis samples where some columns are in their original
order and some columns are permuted to a random order. Unlike other sampling functions in
rsample, there is no assessment set and calling assessment () on a permutation split will throw an

error.
Usage
permutations(data, permute = NULL, times = 25, apparent = FALSE, ...)
Arguments
data A data frame.
permute One or more columns to shuffle. This argument supports tidyselect selectors.
Multiple expressions can be combined with c (). Variable names can be used as
if they were positions in the data frame, so expressions like x:y can be used to
select a range of variables. See language for more details.
times The number of permutation samples.
apparent A logical. Should an extra resample be added where the analysis is the standard
data set.
These dots are for future extensions and must be empty.
Details

The argument apparent enables the option of an additional "resample" where the analysis data
set is the same as the original data set. Permutation-based resampling can be especially helpful
for computing a statistic under the null hypothesis (e.g. t-statistic). This forms the basis of a
permutation test, which computes a test statistic under all possible permutations of the data.

populate 33

Value

A tibble with classes permutations, rset, tbl_df, tbl, and data. frame. The results include a
column for the data split objects and a column called id that has a character string with the resample
identifier.

Examples

permutations(mtcars, mpg, times
permutations(mtcars, mpg, times

2)
2, apparent = TRUE)

library(purrr)
resamplel <- permutations(mtcars, starts_with("c"), times = 1)
resamplel1$splits[[1]1] %>% analysis()

resample?2 <- permutations(mtcars, hp, times = 10, apparent = TRUE)
map_dbl(resample2$splits, function(x) {

t.test(hp ~ vs, data = analysis(x))$statistic
»

populate Add Assessment Indices

Description

Many rsplit and rset objects do not contain indicators for the assessment samples. populate()
can be used to fill the slot for the appropriate indices.

Usage
populate(x, ...)
Arguments
X A rsplit and rset object.
Not currently used.
Value

An object of the same kind with the integer indices.

Examples

set.seed(28432)
fold_rs <- vfold_cv(mtcars)

fold_rs$splits[[1]]1$out_id
complement (fold_rs$splits[[1]])

34

reg_intervals

populate(fold_rs$splits[[1]])$out_id

fold_rs_all <- populate(fold_rs)
fold_rs_all$splits[[1]]$out_id

reg_intervals

A convenience function for confidence intervals with linear-ish para-
metric models

Description

A convenience function for confidence intervals with linear-ish parametric models

Usage

reg_intervals(

formula,
data,

model_fn = "1m",
type = "student-t",

times = NULL,
alpha = 0.05,
filter = term != "(Intercept)”,
keep_reps = FALSE,
)
Arguments
formula An R model formula with one outcome and at least one predictor.
data A data frame.
model_fn The model to fit. Allowable values are "1m"”, "glm"”, "survreg", and "coxph”.
The latter two require that the survival package be installed.
type The type of bootstrap confidence interval. Values of "student-t" and "percentile”
are allowed.
times A single integer for the number of bootstrap samples. If left NULL, 1,001 are
used for t-intervals and 2,001 for percentile intervals.
alpha Level of significance.
filter A logical expression used to remove rows from the final result, or NULL to keep
all rows.
keep_reps Should the individual parameter estimates for each bootstrap sample be re-

tained?

Options to pass to the model function (such as family for stats::glm()).

reshuffle_rset 35

Value

non non "non

A tibble with columns "term", ".lower", ".estimate", ".upper", ".alpha", and ".method". If keep_reps
= TRUE, an additional list column called ".replicates" is also returned.
References

Davison, A., & Hinkley, D. (1997). Bootstrap Methods and their Application. Cambridge: Cam-
bridge University Press. doi:10.1017/CB0O9780511802843

Bootstrap Confidence Intervals, https://rsample.tidymodels.org/articles/Applications/
Intervals.html

See Also

int_pctl(), int_t()
Examples

set.seed(1)
reg_intervals(mpg ~ I(1 / sqrt(disp)), data = mtcars)

set.seed(1)
reg_intervals(mpg ~ I(1 / sqrt(disp)), data = mtcars, keep_reps = TRUE)

reshuffle_rset "Reshuffle" an rset to re-generate a new rset with the same parameters

Description

This function re-generates an rset object, using the same arguments used to generate the original.

Usage

reshuffle_rset(rset)

Arguments

rset The rset object to be reshuffled

Value

An rset of the same class as rset.

https://rsample.tidymodels.org/articles/Applications/Intervals.html
https://rsample.tidymodels.org/articles/Applications/Intervals.html

36 reverse_splits

Examples

set.seed(123)
(starting_splits <- group_vfold_cv(mtcars, cyl, v = 3))
reshuffle_rset(starting_splits)

reverse_splits Reverse the analysis and assessment sets

Description

This functions "swaps" the analysis and assessment sets of either a single rsplit or all rsplitsin
the splits column of an rset object.

Usage
reverse_splits(x, ...)

Default S3 method:
reverse_splits(x, ...)

S3 method for class 'permutations'
reverse_splits(x, ...)

S3 method for class 'perm_split'
reverse_splits(x, ...)

S3 method for class 'rsplit'’
reverse_splits(x, ...)

S3 method for class 'rset'

reverse_splits(x, ...)
Arguments
X An rset or rsplit object.

Not currently used.

Value

An object of the same class as x

Examples

set.seed(123)

starting_splits <- vfold_cv(mtcars, v = 3)
reverse_splits(starting_splits)
reverse_splits(starting_splits$splits[[1]])

rolling_origin

37

rolling_origin

Rolling Origin Forecast Resampling

Description

[Superseded]

This resampling method is useful when the data set has a strong time component. The resamples
are not random and contain data points that are consecutive values. The function assumes that the
original data set are sorted in time order.

This function is superseded by sliding_window(), sliding_index(), and sliding_period()
which provide more flexibility and control. Superseded functions will not go away, but active
development will be focused on the new functions.

Usage

rolling_origin(
data,
initial = 5,
assess = 1,
cumulative =
skip = 0,
lag = 0,

Arguments

data
initial
assess

cumulative

skip

lag

Details

The main options,

TRUE,

A data frame.
The number of samples used for analysis/modeling in the initial resample.
The number of samples used for each assessment resample.

A logical. Should the analysis resample grow beyond the size specified by
initial at each resample?.

A integer indicating how many (if any) additional resamples to skip to thin the
total amount of data points in the analysis resample. See the example below.

A value to include a lag between the assessment and analysis set. This is useful
if lagged predictors will be used during training and testing.

These dots are for future extensions and must be empty.

initial and assess, control the number of data points from the original data

that are in the analysis and assessment set, respectively. When cumulative = TRUE, the analysis set
will grow as resampling continues while the assessment set size will always remain static. skip
enables the function to not use every data point in the resamples. When skip = @, the resampling
data sets will increment by one position. Suppose that the rows of a data set are consecutive days.

38 rsample-dplyr

Using skip = 6 will make the analysis data set to operate on weeks instead of days. The assessment
set size is not affected by this option.

Value

An tibble with classes rolling_origin, rset, tbl_df, tbl, and data. frame. The results include a
column for the data split objects and a column called id that has a character string with the resample
identifier.

See Also

sliding_window(), sliding_index(), and sliding_period() for additional time based resam-
pling functions.

Examples

set.seed(1131)

ex_data <- data.frame(row = 1:20, some_var = rnorm(20))
dim(rolling_origin(ex_data))

dim(rolling_origin(ex_data, skip = 2))
dim(rolling_origin(ex_data, skip = 2, cumulative = FALSE))

You can also roll over calendar periods by first nesting by that period,
which is especially useful for irregular series where a fixed window

is not useful. This example slides over 5 years at a time.
library(dplyr)

library(tidyr)

data(drinks, package = "modeldata”)

drinks_annual <- drinks %>%
mutate(year = as.POSIX1lt(date)$year + 1900) %>%
nest(data = c(-year))

multi_year_roll <- rolling_origin(drinks_annual, cumulative = FALSE)

analysis(multi_year_roll$splits[[1]1])
assessment(multi_year_roll$splits[[1]1])

rsample-dplyr Compatibility with dplyr

Description

This page lays out the compatibility between rsample and dplyr. The rset objects from rsample
are a specific subclass of tibbles, hence standard dplyr operations like joins as well row or column
modifications work. However, whether the operation returns an rset or a tibble depends on the
details of the operation.

rsample-dplyr 39

The overarching principle is that any operation which leaves the specific characteristics of an rset
intact will return an rset. If an operation modifies any of the following characteristics, the result
will be a tibble rather than an rset:

* Rows: The number of rows needs to remain unchanged to retain the rset property. For ex-
ample, you can’t have a 10-fold CV object without 10 rows. The order of the rows can be
changed though and the object remains an rset.

e Columns: The splits column and the id column(s) are required for an rset and need to
remain untouched. They cannot be dropped, renamed, or modified if the result should remain
an rset.

Joins:

The following affect all of the dplyr joins, such as left_join(), right_join(), full_join(),
and inner_join().

The resulting object is an rset if the number of rows is unaffected. Rows can be reordered but
not added or removed, otherwise the resulting object is a tibble.

operation same rows, possibly reordered add or remove rows
join(rset, tbl) rset tibble

Row Operations:

The resulting object is an rset if the number of rows is unaffected. Rows can be reordered but
not added or removed, otherwise the resulting object is a tibble.

operation same rows, possibly reordered add or remove rows
rsetlind,] rset tibble
slice(rset) rset tibble
filter(rset) rset tibble
arrange(rset) rset tibble

Column Operations:

The resulting object is an rset if the required splits and id columns remain unaltered. Other-
wise the resulting object is a tibble.

operation required columns unaltered required columns removed, renamed, or modified
rset[,ind] rset tibble
select(rset) rset tibble
rename(rset) rset tibble

mutate(rset) rset tibble

40 rset_reconstruct

rsample2caret Convert Resampling Objects to Other Formats

Description

These functions can convert resampling objects between rsample and caret.

Usage

rsample2caret(object, data = c("analysis"”, "assessment"))

caret2rsample(ctrl, data = NULL)

Arguments
object An rset object. Currently, nested_cv () is not supported.
data The data that was originally used to produce the ctrl object.
ctrl An object produced by caret::trainControl() that has had the index and
indexOut elements populated by integers. One method of getting this is to
extract the control objects from an object produced by train.
Value

rsample2caret () returns a list that mimics the index and indexOut elements of a trainControl
object. caret2rsample() returns an rset object of the appropriate class.

rset_reconstruct Extending rsample with new rset subclasses

Description

rset_reconstruct() encapsulates the logic for allowing new rset subclasses to work properly with
vetrs (through vetrs: :vec_restore()) and dplyr (through dplyr: :dplyr_reconstruct()). Itis
intended to be a developer tool, and is not required for normal usage of rsample.

Usage

rset_reconstruct(x, to)

Arguments

X A data frame to restore to an rset subclass.

to An rset subclass to restore to.

slide-resampling 41

Details
rset objects are considered "reconstructable" after a vctrs/dplyr operation if:

e x and to both have an identical column named "splits” (column and row order do not
matter).

 x and to both have identical columns prefixed with "id"” (column and row order do not matter).

Value

x restored to the rset subclass of to.

Examples

to <- bootstraps(mtcars, times = 25)

Imitate a vctrs/dplyr operation,

where the class might be lost along the way

x <- tibble::as_tibble(to)

Say we added a new column to “x”. Here we mock a “mutate()".
x$foo <- "bar"

This is still reconstructable to “to”
rset_reconstruct(x, to)

Say we lose the first row

x <= x[-1, 1]

This is no longer reconstructable to “to™, as “x* is no longer an rset
bootstraps object with 25 bootstraps if one is lost!
rset_reconstruct(x, to)

slide-resampling Time-based Resampling

Description

These resampling functions are focused on various forms of time series resampling.

e sliding_window() uses the row number when computing the resampling indices. It is inde-
pendent of any time index, but is useful with completely regular series.

* sliding_index() computes resampling indices relative to the index column. This is often
a Date or POSIXct column, but doesn’t have to be. This is useful when resampling irregular
series, or for using irregular lookback periods such as lookback = lubridate::years(1)
with daily data (where the number of days in a year may vary).

* sliding_period() first breaks up the index into less granular groups based on period, and
then uses that to construct the resampling indices. This is extremely useful for constructing
rolling monthly or yearly windows from daily data.

42 slide-resampling

Usage

sliding_window(
data,

lookback = oL,
assess_start = 1L,
assess_stop = 1L,
complete = TRUE,

step = 1L,
skip = oL
)
sliding_index(
data,
index,

lookback = oL,
assess_start = 1L,
assess_stop = 1L,
complete = TRUE,

step = 1L,
skip = oL
)
sliding_period(
data,
index,
period,

lookback = oL,
assess_start = 1L,
assess_stop = 1L,
complete = TRUE,
step = 1L,

skip = oL,

every = 1L,

origin = NULL

Arguments

data A data frame.
These dots are for future extensions and must be empty.

lookback The number of elements to look back from the current element when computing
the resampling indices of the analysis set. The current row is always included in
the analysis set.

e For sliding_window(), a single integer defining the number of rows to
look back from the current row.

slide-resampling 43

e For sliding_index(), a single object that will be subtracted from the
index as index - lookback to define the boundary of where to start search-
ing for rows to include in the current resample. This is often an integer value
corresponding to the number of days to look back, or a lubridate Period ob-
ject.

* For sliding_period(), a single integer defining the number of groups
to look back from the current group, where the groups were defined from
breaking up the index according to the period.

In all cases, Inf is also allowed to force an expanding window.
assess_start, assess_stop
This combination of arguments determines how far into the future to look when
constructing the assessment set. Together they construct a range of [index + assess_start, index + a:
to search for rows to include in the assessment set.
Generally, assess_start will always be 1 to indicate that the first value to po-
tentially include in the assessment set should start one element after the current
row, but it can be increased to a larger value to create "gaps" between the analy-
sis and assessment set if you are worried about high levels of correlation in short
term forecasting.

* For sliding_window(), these are both single integers defining the number
of rows to look forward from the current row.

» For sliding_index(), these are single objects that will be added to the
index to compute the range to search for rows to include in the assessment
set. This is often an integer value corresponding to the number of days to
look forward, or a lubridate Period object.

* For sliding_period(), these are both single integers defining the number
of groups to look forward from the current group, where the groups were
defined from breaking up the index according to the period.

complete A single logical. When using lookback to compute the analysis sets, should
only complete windows be considered? If set to FALSE, partial windows will be
used until it is possible to create a complete window (based on 1lookback). This
is a way to use an expanding window up to a certain point, and then switch to a
sliding window.

step A single positive integer. After computing the resampling indices, step is used
to thin out the results by selecting every step-th result by subsetting the indices
with seq(1L, n_indices, by = step). step is applied after skip. Note that
step is independent of any time index used.

skip A single positive integer, or zero. After computing the resampling indices, the
first skip results will be dropped by subsetting the indices with seq(skip + 1L,
n_indices). This can be especially useful when combined with lookback =
Inf, which creates an expanding window starting from the first row. By skipping
forward, you can drop the first few windows that have very few data points. skip
is applied before step. Note that skip is independent of any time index used.

index The index to compute resampling indices relative to, specified as a bare column
name. This must be an existing column in data.

* For sliding_index(), this is commonly a date vector, but is not required.

» For sliding_period(), it is required that this is a Date or POSIXct vector.

44 slide-resampling
The index must be an increasing vector, but duplicate values are allowed. Ad-
ditionally, the index cannot contain any missing values.

period The period to group the index by. This is specified as a single string, such as
"year"” or "month"”. See the .period argument of slider::slide_period()
for the full list of options and further explanation.

every A single positive integer. The number of periods to group together.
For example, if the period was set to "year"” with an every value of 2, then the
years 1970 and 1971 would be placed in the same group.

origin The reference date time value. The default when left as NULL is the epoch time
of 1970-01-01 ©0:00:00, in the time zone of the index.
This is generally used to define the anchor time to count from, which is relevant
when the every value is > 1.

See Also

rolling_origin()

slider::slide(), slider::slide_index(), and slider::slide_period(), which power these

resamplers.

Examples

library(vctrs)
library(tibble)
library(modeldata)

data("Chicago")

index <- new_date(c(1, 3, 4, 7, 8, 9, 13, 15, 16, 17))
df <- tibble(x = 1:10, index = index)
df

Look back two rows beyond the current row, for a total of three rows

in each analysis set. Each assessment set is composed of the two rows after
the current row.

sliding_window(df, lookback = 2, assess_stop = 2)

Same as before, but step forward by 3 rows between each resampling slice,
rather than just by 1.

rset <- sliding_window(df, lookback = 2, assess_stop = 2, step = 3)

rset

analysis(rset$splits[[1]1])
analysis(rset$splits[[2]1])

Now slide relative to the “index™ column in “df”. This time we look back
2 days from the current row's ~index” value, and 2 days forward from

it to construct the assessment set. Note that this series is irregular,
so it produces different results than “sliding_window()~. Additionally,
note that it is entirely possible for the assessment set to contain no
data if you have a highly irregular series and "look forward” into a
date range where no data points actually exist!

R RN

tidy.rsplit 45

sliding_index(df, index, lookback = 2, assess_stop = 2)

With “sliding_period()”, we can break up our date index into less granular
chunks, and slide over them instead of the index directly. Here we'll use
the Chicago data, which contains daily data spanning 16 years, and we'll

break it up into rolling yearly chunks. Three years worth of data will

be used for the analysis set, and one years worth of data will be held out
for performance assessment.

sliding_period(

Chicago,
date,
"year",
lookback = 2,
assess_stop = 1
)
Because ~lookback = 27, three years are required to form a "complete”
window of data. To allow partial windows, set “complete = FALSE™.
Here that first constructs two expanding windows until a complete three
year window can be formed, at which point we switch to a sliding window.

sliding_period(
Chicago,
date,
"year",
lookback = 2,
assess_stop = 1,
complete = FALSE

)
Alternatively, you could break the resamples up by month. Here we'll
use an expanding monthly window by setting ~lookback = Inf~, and each
assessment set will contain two months of data. To ensure that we have
enough data to fit our models, we'll “skip™ the first 4 expanding windows.
Finally, to thin out the results, we'll “step™ forward by 2 between
each resample.
sliding_period(

Chicago,

date,

"month”,

lookback = Inf,
assess_stop = 2,
skip = 4,
step = 2

tidy.rsplit Tidy Resampling Object

46 tidy.rsplit

Description
The tidy () function from the broom package can be used on rset and rsplit objects to generate
tibbles with which rows are in the analysis and assessment sets.

Usage

S3 method for class 'rsplit'
tidy(x, unique_ind = TRUE, ...)

S3 method for class 'rset'
tidy(x, unique_ind = TRUE, ...)

S3 method for class 'vfold_cv'
tidy(x, ...)

S3 method for class 'nested_cv'

tidy(x, unique_ind = TRUE, ...)
Arguments
X A rset or rsplit object
unique_ind Should unique row identifiers be returned? For example, if FALSE then boot-

strapping results will include multiple rows in the sample for the same row in
the original data.

These dots are for future extensions and must be empty.

Details

Note that for nested resampling, the rows of the inner resample, named inner_Row, are relative row
indices and do not correspond to the rows in the original data set.

Value

A tibble with columns Row and Data. The latter has possible values "Analysis" or "Assessment".
For rset inputs, identification columns are also returned but their names and values depend on the
type of resampling. For vfold_cv(), contains a column "Fold" and, if repeats are used, another
called "Repeats". bootstraps() and mc_cv() use the column "Resample".

Examples

library(ggplot2)
theme_set (theme_bw())

set.seed(4121)

cv <- tidy(vfold_cv(mtcars, v = 5))

ggplot(cv, aes(x = Fold, y = Row, fill = Data)) +
geom_tile() +
scale_fill_brewer()

validation_set

set.seed(4121)
rcv <- tidy(vfold_cv(mtcars, v = 5, repeats = 2))
ggplot(rcv, aes(x = Fold, y = Row, fill = Data)) +
geom_tile() +
facet_wrap(~Repeat) +
scale_fill_brewer()

set.seed(4121)

mccv <- tidy(mc_cv(mtcars, times = 5))

ggplot(mccv, aes(x = Resample, y = Row, fill = Data)) +
geom_tile() +
scale_fill_brewer()

set.seed(4121)

bt <- tidy(bootstraps(mtcars, time = 5))

ggplot(bt, aes(x = Resample, y = Row, fill = Data)) +
geom_tile() +
scale_fill_brewer()

dat <- data.frame(day = 1:30)
Resample by week instead of day
ts_cv <- rolling_origin(dat,
initial = 7, assess = 7,
skip = 6, cumulative = FALSE
)
ts_cv <- tidy(ts_cv)
ggplot(ts_cv, aes(x = Resample, y = factor(Row), fill = Data)) +
geom_tile() +
scale_fill_brewer()

validation_set Create a Validation Split for Tuning

Description

validation_set() creates a the validation split for model tuning.
Usage
validation_set(split, ...)

S3 method for class 'val_split'
analysis(x, ...)

S3 method for class 'val_split'
assessment(x, ...)

S3 method for class 'val_split'

48 vfold_cv

training(x, ...)

S3 method for class 'val_split'
validation(x, ...)

S3 method for class 'val_split'

testing(x, ...)
Arguments
split Anobjectofclassinitial_validation_split, such asresulting from initial_validation_split()
or group_initial_validation_split().
These dots are for future extensions and must be empty.
X An rsplit object produced by validation_set().
Value

An tibble with classes validation_set, rset, tbl_df, tbl, and data. frame. The results include a
column for the data split object and a column called id that has a character string with the resample
identifier.

Examples

set.seed(1353)
car_split <- initial_validation_split(mtcars)
car_set <- validation_set(car_split)

vfold_cv V-Fold Cross-Validation

Description

V-fold cross-validation (also known as k-fold cross-validation) randomly splits the data into V
groups of roughly equal size (called "folds"). A resample of the analysis data consists of V-1 of
the folds while the assessment set contains the final fold. In basic V-fold cross-validation (i.e. no
repeats), the number of resamples is equal to V.

Usage

vfold_cv(data, v = 10, repeats = 1, strata = NULL, breaks = 4, pool = 0.1, ...)
Arguments

data A data frame.

v The number of partitions of the data set.

repeats The number of times to repeat the V-fold partitioning.

vfold_cv 49

strata A variable in data (single character or name) used to conduct stratified sam-
pling. When not NULL, each resample is created within the stratification variable.
Numeric strata are binned into quartiles.

breaks A single number giving the number of bins desired to stratify a numeric stratifi-
cation variable.

pool A proportion of data used to determine if a particular group is too small and
should be pooled into another group. We do not recommend decreasing this
argument below its default of 0.1 because of the dangers of stratifying groups
that are too small.

These dots are for future extensions and must be empty.

Details

With more than one repeat, the basic V-fold cross-validation is conducted each time. For example, if
three repeats are used with v = 19, there are a total of 30 splits: three groups of 10 that are generated
separately.

With a strata argument, the random sampling is conducted within the stratification variable. This
can help ensure that the resamples have equivalent proportions as the original data set. For a cat-
egorical variable, sampling is conducted separately within each class. For a numeric stratification
variable, strata is binned into quartiles, which are then used to stratify. Strata below 10% of the
total are pooled together; see make_strata() for more details.

Value

A tibble with classes vfold_cv, rset, tbl_df, tbl, and data. frame. The results include a column
for the data split objects and one or more identification variables. For a single repeat, there will be
one column called id that has a character string with the fold identifier. For repeats, id is the repeat
number and an additional column called id2 that contains the fold information (within repeat).

Examples

vfold_cv(mtcars, v = 10)
vfold_cv(mtcars, v = 10, repeats = 2)

library(purrr)
data(wa_churn, package = "modeldata”)

set.seed(13)
folds1 <- vfold_cv(wa_churn, v = 5)
map_db1l(
folds1$splits,
function(x) {
dat <- as.data.frame(x)$churn
mean(dat == "Yes")
}
)

set.seed(13)
folds2 <- vfold_cv(wa_churn, strata = churn, v = 5)

50

map_db1(
folds2$splits,
function(x) {
dat <- as.data.frame(x)$churn
mean(dat == "Yes")
}
)

set.seed(13)
folds3 <- vfold_cv(wa_churn, strata = tenure, breaks
map_db1(
folds3$splits,
function(x) {
dat <- as.data.frame(x)$churn
mean(dat == "Yes")
}
)

6, Vv

5)

vfold_cv

Index

.get_fingerprint, 3

add_resample_id, 4

all.vars(), 11

analysis (as.data.frame.rsplit), 5

analysis.val_split (validation_set), 47

apparent, 5

as.data.frame.rsplit, 5

assessment (as.data.frame.rsplit), 5

assessment(), 32

assessment.val_split (validation_set),
47

bootstraps, 6
bootstraps(), 21, 46

caret2rsample (rsample2caret), 40
clustering_cv, 8
complement, 10

form_pred, 11

get_rsplit, 12

group_bootstraps, 12

group_initial_split (initial_split), 16

group_initial_validation_split
(initial_validation_split), 18

group_initial_validation_split(), 48

group_mc_cv, 14

group_vfold_cv, 15

initial_split, 16

initial_time_split (initial_split), 16

initial_validation_split, 18

initial_validation_split(), 48

initial_validation_time_split
(initial_validation_split), 18

int_bca (int_pctl), 21

int_pctl, 21

int_pctl(), 35

int_t (int_pctl), 21

51

int_t(), 35

labels.rset, 24
labels.rsplit, 24
labels.vfold_cv (labels.rset), 24
language, 32

loo_cv, 25

make_splits, 26
make_splits(), 28
make_strata, 27
make_strata(), 7, 18, 20, 30, 49
manual_rset, 28

mc_cv, 29

mc_cv(), 46

nested_cv, 31
nested_cv(), 24, 40

permutations, 32
populate, 33
populate(), 11

reg_intervals, 34
reg_intervals(), 22
reshuffle_rset, 35
reverse_splits, 36
rolling_origin, 37
rolling_origin(), 44
rsample-dplyr, 38
rsample2caret, 40
rset_reconstruct, 40

slide-resampling, 41
slider::slide(), 44
slider::slide_index(), 44
slider::slide_period(), 44

sliding_index (slide-resampling), 41

sliding_index(), 37, 38

sliding_period (slide-resampling), 41

sliding_period(), 37, 38

52

sliding_window (slide-resampling), 41
sliding_window(), 37, 38
stats::dist(), 9

stats::glm(), 34

stats::hclust(), 9

stats: :kmeans(), 9
stats::terms(), 11/

summary(), 7, 13

testing (initial_split), 16
testing(), 20
testing.initial_validation_split
(initial_validation_split), 18
testing.val_split (validation_set), 47
tidy.nested_cv (tidy.rsplit), 45
tidy.rset (tidy.rsplit), 45
tidy.rsplit, 45
tidy.vfold_cv (tidy.rsplit), 45
training (initial_split), 16
training(), 20
training.initial_validation_split
(initial_validation_split), 18
training.val_split (validation_set), 47

validation (initial_validation_split),
18

validation(), 20

validation.val_split (validation_set),
47

validation_set, 47

validation_set(), 20

vfold_cv, 48

vfold_cv(), 46

INDEX

	.get_fingerprint
	add_resample_id
	apparent
	as.data.frame.rsplit
	bootstraps
	clustering_cv
	complement
	form_pred
	get_rsplit
	group_bootstraps
	group_mc_cv
	group_vfold_cv
	initial_split
	initial_validation_split
	int_pctl
	labels.rset
	labels.rsplit
	loo_cv
	make_splits
	make_strata
	manual_rset
	mc_cv
	nested_cv
	permutations
	populate
	reg_intervals
	reshuffle_rset
	reverse_splits
	rolling_origin
	rsample-dplyr
	rsample2caret
	rset_reconstruct
	slide-resampling
	tidy.rsplit
	validation_set
	vfold_cv
	Index

