Package ‘rotasym’

August 19, 2023
Type Package
Title Tests for Rotational Symmetry on the Hypersphere
Version 1.1.5
Date 2023-08-19

Description Implementation of the tests for rotational symmetry on the
hypersphere proposed in Garcia-Portugués, Paindaveine and Verdebout (2020)
<doi:10.1080/01621459.2019.1665527>. The package also implements the
proposed distributions on the hypersphere, based on the tangent-normal
decomposition, and allows for the replication of the data application
considered in the paper.

License GPL-3

LazyData true

Depends R (>=3.4.0), Rcpp
Suggests rgl, viridisLite
LinkingTo Rcpp, ReppArmadillo

URL https://github.com/egarpor/rotasym

BugReports https://github.com/egarpor/rotasym
Encoding UTF-8

RoxygenNote 7.2.3

NeedsCompilation yes

Author Eduardo Garcia-Portugués [aut, cre]
(<https://orcid.org/0000-0002-9224-4111>),
Davy Paindaveine [aut],
Thomas Verdebout [aut]

Maintainer Eduardo Garcia-Portugués <edgarcia@est-econ.uc3m.es>
Repository CRAN
Date/Publication 2023-08-19 04:50:02 UTC

https://doi.org/10.1080/01621459.2019.1665527
https://github.com/egarpor/rotasym
https://github.com/egarpor/rotasym
https://orcid.org/0000-0002-9224-4111

2 ACG
R topics documented:
rotasym-package e e e e e e e e 2
ACG . . . e 2
COSINES-SIZNS o i it e 4
ESHMALOTS . . . o v v v o e e e e e e e e e e e e e e e e e e e 6
sunspots_births oL 8
tang-norm-deCOmpP e e e e e e e e e e e e e 11
tangent-elliptical L 14
tangent-vMFE . . L L oL 17
EEST_IOtASYIM . .« . o v vt e e e e e e e e e e e e 19
unif ... e 24
VME e e 26
Index 29
rotasym-package rotasym — Tests for Rotational Symmetry on the Hypersphere
Description

Implementation of the tests for rotational symmetry on the hypersphere proposed in Garcia-Portugués,
Paindaveine and Verdebout (2020) <doi:10.1080/01621459.2019.1665527>. The package imple-
ments the proposed distributions on the hypersphere based on the tangent-normal decomposition. It
also allows for the replication of the data application considered in the paper.

Author(s)

Eduardo Garcia-Portugués, Davy Paindaveine, and Thomas Verdebout.

References

Garcia-Portugués, E., Paindaveine, D., Verdebout, T. (2020) On optimal tests for rotational symme-
try against new classes of hyperspherical distributions. Journal of the American Statistical Associ-
ation, 115(532):1873-1887. doi:10.1080/01621459.2019.1665527

ACG

Angular central Gaussian distribution

Description

Density and simulation of the Angular Central Gaussian (ACG) distribution on SP~! := {x € RP :
||[x|| = 1}, p > 1. The density at x € SP~1, p > 2, is given by

A EATX) TP with e QC =1/ (wy|A[V?)

where A is the shape matrix, a p X p symmetric and positive definite matrix, and wy, is the surface
area of SP~1,

https://doi.org/10.1080/01621459.2019.1665527

ACG 3

Usage

d_ACG(x, Lambda, log = FALSE)
c_ACG(p, Lambda, log = FALSE)

r_ACG(n, Lambda)

Arguments
X locations in SP~! to evaluate the density. Either a matrix of size c(nx, p) or a
vector of length p. Normalized internally if required (with a warning message).
Lambda the shape matrix A of the ACG. A symmetric and positive definite matrix of size
c(p,).
log flag to indicate if the logarithm of the density (or the normalizing constant) is to
be computed.
p dimension of the ambient space RP that contains SP~!. A positive integer.
n sample size, a positive integer.
Details

Due to the projection of the ACG, the shape matrix A is only identified up to a constant, that is, A
and cA give the same ACG distribution. Usually, A is normalized to have trace equal to p.

c_ACG is vectorized on p. If p = 1, then the ACG is the uniform distribution in the set {—1, 1}.

Value

Depending on the function:

* d_ACG: a vector of length nx or 1 with the evaluated density at x.
* r_ACG: a matrix of size c(n, p) with the random sample.

* C_ACG: the normalizing constant.

Author(s)

Eduardo Garcia-Portugués, Davy Paindaveine, and Thomas Verdebout.

References
Tyler, D. E. (1987). Statistical analysis for the angular central Gaussian distribution on the sphere.
Biometrika, 74(3):579-589. doi:10.1093/biomet/74.3.579

See Also

tangent-elliptical.

https://doi.org/10.1093/biomet/74.3.579

4 cosines-signs

Examples

Simulation and density evaluation for p = 2

Lambda <- diag(c(5, 1))

n <- 1e3

X <= r_ACG(n = n, Lambda = Lambda)

col <- viridisLite::viridis(n)

r <- runif(n, 0.95, 1.05) # Radius perturbation to improve visualization
plot(r * x, pch = 16, col = collrank(d_ACG(x = x, Lambda = Lambda))])

Simulation and density evaluation for p = 3
Lambda <- rbind(c(5, 1, 0.5),
c(1, 2, 1),
c(0.5, 1, 1))
X <= r_ACG(n = n, Lambda = Lambda)
if (requireNamespace("rgl”)) {
rgl::plot3d(x, col = col[rank(d_ACG(x = x, Lambda = Lambda))], size = 5)
3

cosines-signs Cosines and multivariate signs of a hyperspherical sample about a
given location

Description

Computation of the cosines and multivariate signs of the hyperspherical sample X;,...,X,, €
SP~1 about a location @ € SP~1, for SP~1 := {x € RP : ||x|| = 1} with p > 2. The cosines are
defined as

V=X, i=1,...,n,
whereas the multivariate signs are the vectors Uy, ..., U, € SP~2 defined as
U, :=TpX;/||TeX;||, i=1,...,n.
The projection matrix I'g is a p X (p — 1) semi-orthogonal matrix that satisfies
Telp=1,1 and Tely=1I,— 66"
where I, is the identity matrix of dimension p.
Usage
signs(X, theta, Gamma = NULL, check_X = FALSE)
cosines(X, theta, check_X = FALSE)

Gamma_theta(theta, eig = FALSE)

cosines-signs 5

Arguments
X hyperspherical data, a matrix of size c(n, p) with unit-norm rows. NAs are
allowed.
theta a unit-norm vector of length p. Normalized internally if it does not have unit
norm (with a warning message).
Gamma output from Gamma_theta(theta = theta). If NULL (default), it is computed
internally.
check_X whether to check the unit norms on the rows of X. Defaults to FALSE for perfor-
mance reasons.
eig whether I' is to be found using an eigendecomposition of I, — 86’ (inefficient).
Defaults to FALSE.
Details
Note that the projection matrix I'g is not unique. In particular, any completion of € to an orthonor-
mal basis {6, v1,...,v,_1} gives a set of p—1 orthonormal p-vectors {vy, ..., v,_1 } that conform
the columns of I'g. If eig = FALSE, this approach is employed by rotating the canonical completion
ofe; =(1,0,...,0), {es,...,e,}, by the rotation matrix that rotates e; to 6:

Hg = (0 —+ el)(0 + el)’/(l —+ 91) — Ip.

If eig = TRUE, then a much more expensive eigendecomposition of ['gT'y = I, — 06" is performed
for determining {v1,...,vp_1}.

If signs and cosines are called with X without unit norms in the rows, then the results will be
spurious. Setting check_X = TRUE prevents this from happening.

Value
Depending on the function:
* cosines: a vector of length n with the cosines of X.

* signs: a matrix of size c(n, p - 1) with the multivariate signs of X.

* Gamma_theta: a projection matrix I'g of size c(p, p - 1).

Author(s)

Eduardo Garcia-Portugués, Davy Paindaveine, and Thomas Verdebout.

References

Garcia-Portugués, E., Paindaveine, D., Verdebout, T. (2020) On optimal tests for rotational symme-
try against new classes of hyperspherical distributions. Journal of the American Statistical Associ-
ation, 115(532):1873-1887. doi:10.1080/01621459.2019.1665527

https://doi.org/10.1080/01621459.2019.1665527

6 estimators

Examples

Gamma_theta
theta <- c(0@, 1)
Gamma_theta(theta = theta)

Signs and cosines for p = 2
L <- rbind(c(1, 0.5),
c(0.5, 1))
X <= r_ACG(n = 1e3, Lambda = L)
par(mfrow = c(1, 2))
plot(signs(X = X, theta = theta), main = "Signs"”, xlab = expression(x[1]),
ylab = expression(x[2]))
hist(cosines(X = X, theta = theta), prob = TRUE, main = "Cosines”,
xlab = expression(x * "'" *x theta))

Signs and cosines for p = 3
L <- rbind(c(2, 0.25, 0.25),
c(0.25, 0.5, 0.25),
c(0.25, 0.25, 0.5))
X <= r_ACG(n = 1e3, Lambda = L)
par(mfrow = c(1, 2))
theta <- c(0, 1, @)
plot(signs(X = X, theta = theta), main = "Signs”, xlab = expression(x[1]),
ylab = expression(x[2]))
hist(cosines(X = X, theta = theta), prob = TRUE, main = "Cosines”,

xlab = expression(x * "'" *x theta))
estimators Estimators for the axis of rotational symmetry 0
Description

Estimation of the axis of rotational symmetry 0 of a rotational symmetric unit-norm random vector
X in SP71 = {x € RP : ||x|| = 1}, p > 2, from a hyperspherical sample X, ...,X,, € SP~L.
Usage

spherical_mean(data)

spherical_loc_PCA(data)

Arguments

data hyperspherical data, a matrix of size c(n, p) with unit norm rows. Normalized
internally if any row does not have unit norm (with a warning message). NAs
are ignored.

estimators 7

Details

The spherical_mean estimator computes the sample mean of Xy, ..., X,, and normalizes it by
its norm (if the norm is different from zero). It estimates consistently @ for rotational symmetric
models based on angular functions g that are monotone increasing.

The estimator in spherical_loc_PCA is based on the fact that, under rotational symmetry, the
expectation of XX’ is af8’ + b(Ip — 00’) for certain constants a,b > 0. Therefore, 6 is the
eigenvector with unique multiplicity of the expectation of XX'. Its use is recommended if the
rotationally symmetric data is not unimodal.

Value

A vector of length p with an estimate for 6.

Author(s)

Eduardo Garcia-Portugués, Davy Paindaveine, and Thomas Verdebout.

References

Garcia-Portugués, E., Paindaveine, D., Verdebout, T. (2020) On optimal tests for rotational symme-
try against new classes of hyperspherical distributions. Journal of the American Statistical Associ-
ation, 115(532):1873-1887. doi:10.1080/01621459.2019.1665527

Examples

Sample from a VMF

n <- 200

p <- 10

theta <- c(1, rep(@, p - 1))

set.seed(123456789)

data <- r_vMF(n = n, mu = theta, kappa = 3)
theta_mean <- spherical_mean(data)

theta_PCA <- spherical_loc_PCA(data)
sqrt(sum((theta - theta_mean)*2)) # More efficient
sqrt(sum((theta - theta_PCA)"2))

Sample from a mixture of antipodal vMF's

n <- 200

p <- 10

theta <- c(1, rep(0, p - 1))

set.seed(123456789)

data <- rbind(r_vMF(n = n, mu = theta, kappa = 3),
r_vMF(n = n, mu = -theta, kappa = 3))

theta_mean <- spherical_mean(data)

theta_PCA <- spherical_loc_PCA(data)

sgrt(sum((theta - theta_mean)*2))

sqrt(sum((theta - theta_PCA)*2)) # Better suited in this case

https://doi.org/10.1080/01621459.2019.1665527

8 sunspots_births

sunspots_births Recorded sunspots births during 1872-2018

Description

Processed version of the Debrecen Photoheliographic Data (DPD) sunspot catalogue and the revised
version of the Greenwich Photoheliographic Results (GPR) sunspot catalogue. The two sources
contain the records of sunspots appeared during 1872-2018 (GPR for 1872—-1976; DPD for 1974—
2018).

Sunspots appear in groups and have a variable lifetime. This dataset has been processed to account
only for the births or emergences (first observations) of groups of sunspots.

Usage

sunspots_births

Format
A data frame with 51303 rows and 6 variables:

date UTC date, as POSIXct, of the first observation of a group of sunspots.

cycle solar cycle in which the group of sunspots was observed.

total_area total whole spot area of the group, measured in millionths of the solar hemisphere.
dist_sun_disc distance from the center of Sun’s disc, measured in units of the solar radius.
theta mean longitude angle 6 € [0, 27) of the group position.

phi mean latitude angle ¢ € [—7/2, 7/2) of the group position.

Details

The mean position of the group of sunspots is obtained by a weighted average of the positions of
the single sunspots by the whole spot area of the single spots. The areas are corrected to account
for foreshortening.

The (6, ¢) angles are such their associated Cartesian coordinates are:

(cos(@) cos(8), cos(@) sin(6), sin(6)),

with (0, 0, 1) denoting the north pole.

The DPD data has different states of completeness and quality control. The longest span of "fi-
nal complete data" (no missing observation days and the data has undergone a systematic quality
control) is from 2005 to 2015.

The data has been preprocessed using the following pipeline:

1. Retrieve data from the GPR and DPD sunspot catalogues.
2. Omit observations with NAs in the sunspot positions.

3. Filter for sunspot groups.

http://fenyi.solarobs.csfk.mta.hu/DPD/
http://fenyi.solarobs.csfk.mta.hu/GPR/
https://en.wikipedia.org/wiki/List_of_solar_cycles
http://fenyi.solarobs.csfk.mta.hu/ftp/pub/DPD/README.txt

sunspots_births 9

4. Relabel the NOAA identifier for the sunspot group for records before 1974, prefixing the
"GPR" string. Otherwise, very different groups of sunspots from the two catalogues may
share the same identifier.

5. Keep only the first row of each NOAA instance, the first-ever observation of each sunspot
group.

The script performing the preprocessing is available at sunspots-births.R

Author(s)

Data processed by Eduardo Garcia-Portugués, Davy Paindaveine, and Thomas Verdebout from the
original sources.

Source

http://fenyi.solarobs.csfk.mta.hu

References

Baranyi, T., Gyori, L., Ludmény, A. (2016) On-line tools for solar data compiled at the Debrecen
observatory and their extensions with the Greenwich sunspot data. Solar Physics, 291(9-10):3081—
3102. doi:10.1007/s1120701609301

Gybri, L., Ludmény, A., Baranyi, T. (2019) Comparative analysis of Debrecen sunspot catalogues.
Monthly Notices of the Royal Astronomical Society, 465(2):1259-1273. doi:10.1093/mnras/stw2667

Examples

Load data
data("sunspots_births")

Transform to Cartesian coordinates
sunspots_births$X <-
cbind(cos(sunspots_births$phi) * cos(sunspots_births$theta),
cos(sunspots_births$phi) * sin(sunspots_births$theta),
sin(sunspots_births$phi))

Plot data associated to the 23rd cycle
sunspots_23 <- subset(sunspots_births, cycle == 23)
n <- nrow(sunspots_23$X)
if (requireNamespace("rgl")) {
rgl::plot3d(@, @, 0, xlim = c(-1, 1), ylim = c(-1, 1), zlim = c(-
radius = 1, type = "s", col = "lightblue”, alpha = 0.
lit = FALSE)

1, D,
25,
3
n_cols <- 100
cuts <- cut(x = sunspots_23$date, include.lowest = TRUE,
breaks = quantile(sunspots_23%date,
probs = seq(@, 1, 1

if (requireNamespace("rgl”)) {

rgl::points3d(sunspots_23$X, col = viridisLite::viridis(n_cols)[cuts])

}

n_cols + 1)))

https://github.com/egarpor/rotasym/blob/master/data-raw/sunspots-births.R
http://fenyi.solarobs.csfk.mta.hu
https://doi.org/10.1007/s11207-016-0930-1
https://doi.org/10.1093/mnras/stw2667

10

sunspots_births

Sporer's law: sunspots at the beginning of the solar cycle (dark blue
color) tend to appear at higher latitutes, gradually decreasing to the
equator as the solar cycle advances (yellow color)

Estimation of the density of the cosines
V <- cosines(X = sunspots_23$X, theta = c(@, 0, 1))
h <- bw.SJ(x =V, method = "dpi")
plot(kde <- density(x =V, bw = h, n = 2*13, from= -1, to =1), col =1,
xlim = c¢(-1, 1), ylim = c(@, 3), axes = FALSE, main = "",
xlab = "Cosines (latitude angles)”, lwd = 2)
at <- seq(-1, 1, by = 0.25)
axis(2); axis(1, at = at)
axis(1, at = at, line = 1, tick = FALSE,
labels = paste@("(", 9@ - round(acos(at) / pi * 18, 1), "2)"))
rug(V)
legend("topright”, legend = c("Full cycle”, "Initial 25% cycle”,
"Final 25% cycle"),
lwd = 2, col = c(1, viridislLite::viridis(12)[c(3, 8)1))

Density for the observations within the initial 25% of the cycle

partl <- sunspots_23%$date < quantile(sunspots_23%$date, 0.25)

V1 <- cosines(X = sunspots_23$X[partl, 1, theta = c(@, 0, 1))

h1 <- bw.SJ(x = V1, method = "dpi")

lines(kdel <- density(x = V1, bw = h1, n = 2%13, from = -1, to = 1),
col = viridisLite::viridis(12)[3]1, 1lwd = 2)

Density for the observations within the final 25% of the cycle

part2 <- sunspots_23$date > quantile(sunspots_23%$date, 0.75)

V2 <- cosines(X = sunspots_23$X[part2, 1, theta = c(@, 0, 1))

h2 <- bw.SJ(x = V2, method = "dpi")

lines(kde2 <- density(x = V2, bw = h2, n = 2*13, from = -1, to = 1),
col = viridisLite::viridis(12)[8], 1lwd = 2)

Computation the level set of a kernel density estimator that contains
at least 1 - alpha of the probability (kde stands for an object

containing the output of density(x = data))

kde_level_set <- function(kde, data, alpha) {

Estimate c from alpha
c <- quantile(approx(x = kde$x, y = kde$y, xout = data)$y, probs = alpha)

Begin and end index for the potentially many intervals in the level sets
kde_larger_c <- kdes$y >= ¢

run_length_kde <- rle(kde_larger_c)

begin <- which(diff(kde_larger_c) > @) + 1

end <- begin + run_length_kde$lengths[run_length_kde$values] - 1

Return the [a_i, b_i], i =1, ..., K in the K rows
return(cbind(kde$x[begin], kde$x[end]))

Level set containing the 90% of the probability, in latitude angles

tang-norm-decomp 11

90 - acos(kde_level_set(kde = kde, data = V, alpha = 0.10)) / pi * 180

Modes (in cosines and latitude angles)

modes <- c(kde$x[kde$x < @J[which.max(kde$y[kde$x < 01)1,
kde$x[kde$x > @][which.max(kde$y[kde$x > 0]1)1)

90 - acos(modes) / pi * 180

tang-norm-decomp Distributions based on the tangent-normal decomposition
Description
Density and simulation of a distribution on SP~! := {x € RP : ||x|| = 1}, p > 2, obtained

by the tangent-normal decomposition. The tangent-normal decomposition of the random vector

X e 5P~ 1is
Ve ++1-V22IgU

where V' := X’6 is a random variable in [—1, 1] (the cosines of X) and U := I'gX/||[T'eX|| is a
random vector in SP~2 (the multivariate signs of X) and T'g is the p x (p — 1) matrix computed by
Gamma_theta.

The tangent-normal decomposition can be employed for constructing distributions for X that arise
for certain choices of V' and U. If V' and U are independent, then simulation from X is straight-
forward using the tangent-normal decomposition. Also, the density of X at x € SP~1, fx(x), is
readily computed as

Fx(x) = wp-16,9(H) (1 =)P fis(u)

where ¢t := x'0, u = T'gx/||Tex||, fu is the density of U, and fy (v) := wp_1¢9(v)(1 —
v?)(P=3)/2 is the density of V' for an angular function g with normalizing constant cg. wWp—1 is the
surface area of SP~2,

Usage

d_tang_norm(x, theta, g_scaled, d_V, d_U, log = FALSE)

r_tang_norm(n, theta, r_U, r_V)

Arguments

X locations in SP~! to evaluate the density. Either a matrix of size c(nx, p) or a
vector of length p. Normalized internally if required (with a warning message).

theta a unit norm vector of size p giving the axis of rotational symmetry.

g_scaled the scaled angular density c,g. In the form
g_scaled <- function(t, log = TRUE) {...3}. See examples.

d_v the density fy. In the form d_V <- function(v, log=TRUE) {...}. See ex-
amples.

d_u the density fy. In the form d_U <- function(u, log = TRUE) {...3}. See ex-

amples.

12 tang-norm-decomp

log flag to indicate if the logarithm of the density (or the normalizing constant) is to
be computed.

n sample size, a positive integer.

r_u a function for simulating U. Its first argument must be the sample size. See
examples.

r_v a function for simulating V. Its first argument must be the sample size. See
examples.

Details

Either g_scaled or d_V can be supplied to d_tang_norm (the rest of the arguments are compulsory).
One possible choice for g_scaled is g_vMF with scaled = TRUE. Another possible choice is the
angular function g(t) = 1—2, normalized by its normalizing constant ¢, = (I'(p/2)p)/(27"/?(p—
1)) (see examples). This angular function makes V2 to be distributed as a Beta(1/2, (p + 1)/2).

The normalizing constants and densities are computed through log-scales for numerical accuracy.

Value
Depending on the function:

* d_tang_norm: a vector of length nx or 1 with the evaluated density at x.

* r_tang_norm: a matrix of size c(n, p) with the random sample.

Author(s)

Eduardo Garcia-Portugués, Davy Paindaveine, and Thomas Verdebout.

References

Garcia-Portugués, E., Paindaveine, D., Verdebout, T. (2020) On optimal tests for rotational symme-
try against new classes of hyperspherical distributions. Journal of the American Statistical Associ-
ation, 115(532):1873-1887. doi:10.1080/01621459.2019.1665527

See Also

Gamma_theta, signs, tangent-elliptical, tangent-vMF, vMF.

Examples

Simulation and density evaluation for p = 2

Parameters

n <- 1e3

p <-2

theta <- c(rep(@, p - 1), 1)
mu <- c(rep(@, p - 2), 1)
kappa_V <- 2

kappa_U <- 0.1

https://doi.org/10.1080/01621459.2019.1665527

tang-norm-decomp

The vMF scaled angular function
g_scaled <- function(t, log) {

g VMF(t, p = p - 1, kappa = kappa_V, scaled = TRUE, log = log)
}

Cosine density for the VvMF distribution

d_V <- function(v, log) {
log_dens <- g_scaled(v, log = log) + (p - 3)/2 * log(1 - v*2)
switch(log + 1, exp(log_dens), log_dens)

}

Multivariate signs density based on a VMF
d_U <- function(x, log) d_vMF(x = x, mu = mu, kappa = kappa_U, log = log)

Simulation functions
r_V <- function(n) r_g_vMF(n = n, p = p, kappa = kappa_V)
r_U <- function(n) r_vMF(n = n, mu = mu, kappa = kappa_U)

Sample and color according to density

x <= r_tang_norm(n = n, theta = theta, r_V =r_V, r_U = r_U)

r <- runif(n, 0.95, 1.05) # Radius perturbation to improve visualization

col <- viridisLite::viridis(n)

dens <- d_tang_norm(x = x, theta = theta, g_scaled = g_scaled, d_U = d_U)

dens <- d_tang_norm(x = x, theta = theta, d_V = d_V, d_U = d_U) # The same
plot(r * x, pch = 16, col = col[rank(dens)])

Simulation and density evaluation for p = 3

Parameters

p <3

n <- 5e3

theta <- c(rep(@, p - 1), 1)
mu <- c(rep(@, p - 2), 1)
kappa_V <- 2

kappa_U <- 2

Sample and color according to density
x <= r_tang_norm(n = n, theta = theta, r_V =r_V, r_U = r_U)
col <- viridisLite::viridis(n)
dens <- d_tang_norm(x = x, theta = theta, g_scaled = g_scaled, d_U = d_U)
if (requireNamespace("rgl”)) {
rgl::plot3d(x, col = collrank(dens)], size = 5)
3

A non-vMF angular function: g(t) = 1 - t*2. It is sssociated to the
Beta(1/2, (p + 1)/2) distribution.

Scaled angular function

g_scaled <- function(t, log) {
log_c_g <- lgamma(@.5 * p) + log(@.5 * p / (p - 1)) - 0.5 * p * log(pi)
log_g <- log_c_g + log(1 - t*2)
switch(log + 1, exp(log_g), log_g)

14 tangent-elliptical

Cosine density
d_V <- function(v, log) {
log_dens <- w_p(p = p - 1, log = TRUE) + g_scaled(t
(0.5 x (p - 3)) * log(1 - v*2)
switch(log + 1, exp(log_dens), log_dens)
}

v, log = TRUE) +

Simulation
r_V <- function(n) {
sample(x = c(-1, 1), size = n, replace = TRUE) *
sqrt(rbeta(n = n, shapel = 0.5, shape2 = 0.5 x (p + 1)))
}

Sample and color according to density
r_U <- function(n) r_unif_sphere(n = n, p=p - 1)
X <- r_tang_norm(n = n, theta = theta, r_V =r_V, r_U = r_U)
col <- viridisLite::viridis(n)
dens <- d_tang_norm(x = x, theta = theta, d_V = d_V, d_U = d_unif_sphere)
dens <- d_tang_norm(x = x, theta = theta, g_scaled = g_scaled,
d_U = d_unif_sphere) # The same
if (requireNamespace("rgl”)) {
rgl::plot3d(x, col = col[rank(dens)], size = 5)
3

tangent-elliptical Tangent elliptical distribution

Description

Density and simulation of the Tangent Elliptical (TE) distribution on SP~! := {x € RP : ||x|| =
1}, p > 2. The distribution arises by considering the tangent-normal decomposition with multivari-
ate signs distributed as an Angular Central Gaussian distribution.

Usage
d_TE(x, theta, g_scaled, d_V, Lambda, log = FALSE)

r_TE(n, theta, r_V, Lambda)

Arguments
X locations in SP~! to evaluate the density. Either a matrix of size c(nx, p) or a
vector of length p. Normalized internally if required (with a warning message).
theta a unit norm vector of size p giving the axis of rotational symmetry.
g_scaled the scaled angular density c,g. In the form
g_scaled <- function(t, log =TRUE) {...}. See examples.
d_v the density fy . In the form d_V <- function(v, log =TRUE) {...}. See ex-

amples.

tangent-elliptical 15

Lambda the shape matrix A of the ACG used in the multivariate signs. A symmetric and
positive definite matrix of size c(p-1, p-1).

log flag to indicate if the logarithm of the density (or the normalizing constant) is to
be computed.

n sample size, a positive integer.

r_v a function for simulating V. Its first argument must be the sample size. See
examples.

Details

The functions are wrappers for d_tang_normand r_tang_norm with d_U = d_ACG and r_U = r _ACG.

Value

Depending on the function:

* d_TE: a vector of length nx or 1 with the evaluated density at x.

e r_TE: a matrix of size c(n, p) with the random sample.

Author(s)

Eduardo Garcia-Portugués, Davy Paindaveine, and Thomas Verdebout.

References

Garcia-Portugués, E., Paindaveine, D., Verdebout, T. (2020) On optimal tests for rotational symme-
try against new classes of hyperspherical distributions. Journal of the American Statistical Associ-
ation, 115(532):1873-1887. doi:10.1080/01621459.2019.1665527

See Also

tang-norm-decomp, tangent-vMF, ACG.

Examples

Simulation and density evaluation for p = 2

Parameters

p <-2

n <- 1e3

theta <- c(rep(@, p - 1), 1)

Lambda <- matrix(@.5, nrow = p - 1, ncol =p - 1)
diag(Lambda) <- 1

kappa_V <- 2

Required functions
r_V <- function(n) r_g_vMF(n = n, p = p, kappa = kappa_V)
g_scaled <- function(t, log) {

g VMF(t, p = p - 1, kappa = kappa_V, scaled = TRUE, log = log)
3

https://doi.org/10.1080/01621459.2019.1665527

16

tangent-elliptical

Sample and color according to density

X <= r_TE(n = n, theta = theta, r_V = r_V, Lambda = Lambda)

col <- viridisLite::viridis(n)

r <- runif(n, 0.95, 1.05) # Radius perturbation to improve visualization
dens <- d_TE(x = x, theta = theta, g_scaled = g_scaled, Lambda = Lambda)
plot(r * x, pch = 16, col = col[rank(dens)])

1
w

Simulation and density evaluation for p

Parameters

p <-3

n <- 5e3

theta <- c(rep(@, p - 1), 1)

Lambda <- matrix(@.5, nrow = p - 1, ncol = p - 1)
diag(Lambda) <- 1

kappa_V <- 2

Sample and color according to density
x <= r_TE(n = n, theta = theta, r_V = r_V, Lambda = Lambda)
col <- viridisLite::viridis(n)
dens <- d_TE(x = x, theta = theta, g_scaled = g_scaled, Lambda = Lambda)
if (requireNamespace("rgl")) {
rgl::plot3d(x, col = collrank(dens)], size = 5)
}

A non-vMF angular function: g(t) = 1 - t*2. It is sssociated to the
Beta(1/2, (p + 1)/2) distribution.

Scaled angular function

g_scaled <- function(t, log) {
log_c_g <- 1lgamma(@.5 * p) + 1log(@.5 * p / (p - 1)) - 0.5 * p * log(pi)
log_g <- log_c_g + log(1 - t*2)
switch(log + 1, exp(log_g), log_g)

3

Simulation
r_V <- function(n) {
sample(x = c(-1, 1), size = n, replace = TRUE) *
sqrt(rbeta(n = n, shapel = 0.5, shape2 = 0.5 * (p + 1)))
3

Sample and color according to density
kappa_V <- 1
Lambda <- matrix(@.75, nrow = p - 1, ncol = p - 1)
diag(Lambda) <- 1
x <= r_TE(n = n, theta = theta, r_V = r_V, Lambda = Lambda)
col <- viridisLite::viridis(n)
dens <- d_TE(x = x, theta = theta, g_scaled = g_scaled, Lambda = Lambda)
if (requireNamespace("rgl”)) {
rgl::plot3d(x, col = collrank(dens)], size = 5)
3

tangent-vMF 17

tangent-vMF Tangent von Mises—Fisher distribution

Description

Density and simulation of the Tangent von Mises—Fisher (TM) distribution on SP~! := {x € RP :
[|x|] = 1}, p > 2. The distribution arises by considering the tangent-normal decomposition with
multivariate signs distributed as a von Mises—Fisher distribution.

Usage

d_TM(x, theta, g_scaled, d_V, mu, kappa, log = FALSE)

r_TM(n, theta, r_V, mu, kappa)

Arguments
X locations in SP~! to evaluate the density. Either a matrix of size c(nx, p) or a
vector of length p. Normalized internally if required (with a warning message).
theta a unit norm vector of size p giving the axis of rotational symmetry.
g_scaled the scaled angular density c,g. In the form
g_scaled <- function(t, log = TRUE) {...3}. See examples.
d_v the density fy. In the form d_V <- function(v, log =TRUE) {...3}. See ex-
amples.
mu the directional mean g of the vMF used in the multivariate signs. A unit-norm
vector of length p - 1.
kappa concentration parameter x of the vMF used in the multivariate signs. A nonneg-
ative scalar.
log flag to indicate if the logarithm of the density (or the normalizing constant) is to
be computed.
n sample size, a positive integer.
r_v a function for simulating V. Its first argument must be the sample size. See
examples.
Details

The functions are wrappers for d_tang_normand r_tang_norm with d_U = d_vMF and r_U = r_vMF.

Value

Depending on the function:

* d_TM: a vector of length nx or 1 with the evaluated density at x.

* r_TM: a matrix of size c(n, p) with the random sample.

18 tangent-vMF

Author(s)

Eduardo Garcia-Portugués, Davy Paindaveine, and Thomas Verdebout.

References

Garcia-Portugués, E., Paindaveine, D., Verdebout, T. (2020) On optimal tests for rotational symme-
try against new classes of hyperspherical distributions. Journal of the American Statistical Associ-
ation, 115(532):1873-1887. doi:10.1080/01621459.2019.1665527

See Also

tang-norm-decomp, tangent-elliptical, vMF.

Examples

Simulation and density evaluation for p = 2

Parameters

p <-2

n <- 1e3

theta <- c(rep(@, p - 1), 1)
mu <- c(rep(@, p - 2), 1)
kappa <- 1

kappa_V <- 2

Required functions
r_V <- function(n) r_g_vMF(n = n, p = p, kappa = kappa_V)
g_scaled <- function(t, log) {

g VMF(t, p = p - 1, kappa = kappa_V, scaled = TRUE, log = log)
3

Sample and color according to density
X <= r_TM(n = n, theta = theta, r_V = r_V, mu = 1, kappa = kappa)
col <- viridisLite::viridis(n)
r <- runif(n, 0.95, 1.05) # Radius perturbation to improve visualization
dens <- d_TM(x = x, theta = theta, g_scaled = g_scaled, mu = mu,
kappa = kappa)
plot(r * x, pch = 16, col = col[rank(dens)])

Simulation and density evaluation for p = 3

Parameters

p <-3

n <- 5e3

theta <- c(rep(@, p - 1), 1)
mu <- c(rep(@, p - 2), 1)
kappa <- 1

kappa_V <- 2

Sample and color according to density
X <= r_TM(n = n, theta = theta, r_V = r_V, mu = mu, kappa = kappa)
col <- viridisLite::viridis(n)

https://doi.org/10.1080/01621459.2019.1665527

test_rotasym 19

dens <- d_TM(x = x, theta = theta, g_scaled = g_scaled, mu = mu,
kappa = kappa)
if (requireNamespace("rgl”)) {
rgl::plot3d(x, col = collrank(dens)], size = 5)
3

A non-vMF angular function: g(t) = 1 - t*2. It is sssociated to the
Beta(1/2, (p + 1)/2) distribution.

Scaled angular function

g_scaled <- function(t, log) {
log_c_g <- lgamma(@.5 * p) + log(@.5 * p / (p - 1)) - 0.5 * p * log(pi)
log_g <- log_c_g + log(1 - t*2)
switch(log + 1, exp(log_g), log_g)

3

Simulation
r_V <- function(n) {
sample(x = c(-1, 1), size = n, replace = TRUE) *
sqrt(rbeta(n = n, shapel = 0.5, shape2 = 0.5 x (p + 1)))
3

Sample and color according to density
kappa <- 0.5
X <= r_TM(n = n, theta = theta, r_V = r_V, mu = mu, kappa = kappa)
col <- viridisLite::viridis(n)
dens <- d_TM(x = x, theta = theta, g_scaled = g_scaled,
mu = mu, kappa = kappa)

if (requireNamespace("rgl”)) {

rgl::plot3d(x, col = collrank(dens)], size = 5)
}

test_rotasym Tests of rotational symmetry for hyperspherical data

Description

Tests for assessing the rotational symmetry of a unit-norm random vector X in SP~! := {x € RP :
l[x|| = 1}, p > 2, about a location @ € SP~L, from a hyperspherical sample X1,...,X,, € SP~L

The vector X is said to be rotational symmetric about @ if the distributions of OX and X coincide,
where O is any p X p rotation matrix that fixes 6, i.e., 00 = 6.

Usage

test_rotasym(data, theta = spherical_mean, type = c("sc", "loc”, "loc_vMF",
"hyb”, "hyb_vMF")[5], Fisher = FALSE, U = NULL, V = NULL)

20 test_rotasym

Arguments

data hyperspherical data, a matrix of size c(n, p) with unit norm rows. Normalized
internally if any row does not have unit norm (with a warning message). NAs
are ignored.

theta either a unit norm vector of size p giving the axis of rotational symmetry (for
the specified-@ case) or a function that implements an estimator € of @ (for
the unspecified-0 case). The default calls the spherical_mean function. See
examples.

type a character string (case insensitive) indicating the type of test to conduct:

» "sc": "scatter" test based on the statistic Qy°. Evaluates if the covariance
matrix of the multivariate signs is isotropic.
* "loc”: "location" test based on the statistic QY. Evaluates if the expecta-
tion of the multivariate signs is zero.
* "loc_vMF": adapted "location" test, based on the statistic Q'3
* "hyb": "hybrid" test based on the statistics Q3" and Q},OC.
* "hyb_vMF" (default): adapted "hybrid" test based on the statistics Q3 and
1
vOI\SIF‘
See the details below for further explanations of the tests.

Fisher if TRUE, then Fisher’s method is employed to aggregate the scatter and location
tests in the hybrid test, see details below. Otherwise, the hybrid statistic is the
sum of the scatter and location statistics. Defaults to FALSE.

U multivariate signs of data, a matrix of size c(n, p - 1). Computed if NULL (the
default).

\Y cosines of data, a vector of size n. Computed if NULL (the default).

Details

Descriptions of the tests:

* The "scatter" test is locally and asymptotically optimal against tangent elliptical alternatives
to rotational symmetry. However, it is not consistent against tangent von Mises—Fisher (vMF)
alternatives. The asymptotic null distribution of @’ is unaffected if 8 is estimated, that is, the
asymptotic null distributions of)%’ and QEC are the same.

* The "location" test is locally and asymptotically most powerful against vMF alternatives to
rotational symmetry. However, it is not consistent against tangent elliptical alternatives. The
asymptotic null distribution of QL?C for known 6 (the one implemented in test_rotasym)
does change if 0 is estimated by 6. Therefore, if the test is performed with an estimated 8 (if
theta is a function) Q};C will not be properly calibrated. test_rotasym will give a warning
in such case.

* The "vMF location" test is a modification of the "location" test designed to make its null
asymptotic distribution invariant from the estimation of @ (as the "scatter" test is). The test is
optimal against tangent vMF alternatives with a specific, vMF-based, angular function g_vMF.
Despite not being optimal against all tangent vMF alternatives, it is consistent for all of them.
As the location test, it is not consistent against tangent elliptical alternatives.

test_rotasym 21

e The "hybrid" test combines (see below how) the "scatter" and "location" tests. The test is
neither optimal against tangent elliptical nor tangent vMF alternatives, but it is consistent
against both. Since it is based on the "location" test, if computed with an estimator 0, the test
statistic will not be properly calibrated. test_rotasym will give a warning in such case.

* The "vMF hybrid" test is the analogous of the "hybrid" test but replaces the "location" test by
the "vMF location" test.

The combination of the scatter and location tests in the hybrid tests is done in two different ways:

» If Fisher = FALSE, then the scatter and location tests statistics give the hybrid test statistic
h 9
Q yb = Q:éc _’_Qg)c

* If Fisher = TRUE, then Fisher’s method for aggregating independent tests (the two test statis-
tics are independent under rotational symmetry) is considered, resulting the hybrid test statis-

tic:
gyb — —Q(IOg(pSC) =+ log(pIOC))

where ps. and pjo. are the p-values of the scatter and location tests, respectively.

hyb

The hybrid test statistic Q 1, follows analogously to ngb by replacing QX with Q'

Finally, recall that the tests are designed to test implications of rotational symmetry. Therefore, the
tests are not consistent against all types of alternatives to rotational symmetry.

Value

An object of the htest class with the following elements:

e statistic: test statistic.

* parameter: degrees of freedom of the chi-square distribution appearing in all the null asymp-
totic distributions.

¢ p.value: p-value of the test.

* method: information on the type of test performed.
* data.name: name of the value of data.

 U: multivariate signs of data.

¢ V: cosines of data.

Author(s)

Eduardo Garcia-Portugués, Davy Paindaveine, and Thomas Verdebout.

References

Garcia-Portugués, E., Paindaveine, D., Verdebout, T. (2020) On optimal tests for rotational symme-
try against new classes of hyperspherical distributions. Journal of the American Statistical Associ-
ation, 115(532):1873-1887. doi:10.1080/01621459.2019.1665527

See Also

tangent-elliptical, tangent-vMF, spherical_mean.

https://doi.org/10.1080/01621459.2019.1665527

Examples

Rotational symmetry holds

Sample data from a vMF (rotational symmetric distribution about mu)
n <- 200

p <- 10

theta <- c(1, rep(@, p - 1))

set.seed(123456789)

data_@ <- r_vMF(n = n, mu = theta, kappa = 1)

theta known

test_rotasym(data = data_0, theta = theta, type = "sc")

test_rotasym(data = data_0, theta = theta, type = "loc")

test_rotasym(data = data_0, theta = theta, type = "loc_vMF")
test_rotasym(data = data_0, theta = theta, type = "hyb")

test_rotasym(data = data_0, theta = theta, type = "hyb", Fisher = TRUE)
test_rotasym(data = data_0, theta = theta, type = "hyb_vMF")
test_rotasym(data = data_0, theta = theta, type = "hyb_vMF", Fisher = TRUE)

theta unknown (employs the spherical mean as estimator)
test_rotasym(data = data_0, type = "sc")

test_rotasym(data = data_0, type = "loc"”) # Warning
test_rotasym(data = data_0, type = "loc_vMF")

test_rotasym(data = data_0, type = "hyb") # Warning
test_rotasym(data = data_0, type = "hyb"”, Fisher = TRUE) # Warning
test_rotasym(data = data_0, type = "hyb_vMF")

test_rotasym(data = data_@, type = "hyb_vMF", Fisher = TRUE)

Rotational symmetry does not hold

Sample non-rotational symmetric data from a tangent-vMF distribution
The scatter test is blind to these deviations, while the location tests
are optimal
n <- 200
p <- 10
theta <- c(1, rep(@, p - 1))
mu <- c(rep(@, p - 2), 1)
kappa <- 2
set.seed(123456789)
r_V <- function(n) {
r_g vMF(n = n, p = p, kappa = 1)
3
data_1 <- r_TM(n = n, r_V = r_V, theta = theta, mu = mu, kappa = kappa)

theta known

test_rotasym(data = data_1, theta = theta, type = "sc")

test_rotasym(data = data_1, theta = theta, type = "loc")

test_rotasym(data = data_1, theta = theta, type = "loc_vMF")
test_rotasym(data = data_1, theta = theta, type = "hyb")

test_rotasym(data = data_1, theta = theta, type = "hyb"”, Fisher = TRUE)
test_rotasym(data = data_1, theta = theta, type = "hyb_vMF")
test_rotasym(data = data_1, theta = theta, type = "hyb_vMF", Fisher = TRUE)

test_rotasym

test_rotasym

23

theta unknown (employs the spherical mean as estimator)

test_rotasym(data = data_1, type =
test_rotasym(data = data_1, type =
test_rotasym(data = data_1, type =
test_rotasym(data = data_1, type =
test_rotasym(data = data_1, type =
test_rotasym(data = data_1, type =
test_rotasym(data = data_1, type =

"sc")

"loc") # Warning

"loc_VvMF")

"hyb") # Warning

"hyb", Fisher = TRUE) # Warning
"hyb_vMF")

"hyb_vMF”, Fisher = TRUE)

Sample non-rotational symmetric data from a tangent-elliptical distribution
The location tests are blind to these deviations, while the

scatter test is optimal

n <- 200

p <- 10

theta <- c(1, rep(@, p - 1))

Lambda <- matrix(@.5, nrow = p - 1, ncol = p - 1)
diag(Lambda) <- 1
set.seed(123456789)
r_V <- function(n) {

r_g_vF(n = n, p = p, kappa = 1)
}
data_2 <- r_TE(n = n, r_V = r_V, theta = theta, Lambda = Lambda)
theta known
test_rotasym(data = data_2, theta = theta, type = "sc")
test_rotasym(data = data_2, theta = theta, type = "loc")
test_rotasym(data = data_2, theta = theta, type = "loc_vMF")
test_rotasym(data = data_2, theta = theta, type = "hyb")
test_rotasym(data = data_2, theta = theta, type = "hyb"”, Fisher = TRUE)
test_rotasym(data = data_2, theta = theta, type = "hyb_vMF")
test_rotasym(data = data_2, theta = theta, type = "hyb_vMF", Fisher = TRUE)

theta unknown (employs the spherical mean as estimator)

test_rotasym(data = data_2, type =
test_rotasym(data = data_2, type =
test_rotasym(data = data_2, type =
test_rotasym(data = data_2, type =
test_rotasym(data = data_2, type =
test_rotasym(data = data_2, type =
test_rotasym(data = data_2, type =

Sunspots births data

Load data
data("sunspots_births")
sunspots_births$Xx <-
cbind(cos(sunspots_births$phi) =*
cos(sunspots_births$phi) =*
sin(sunspots_births$phi))

Test rotational symmetry for the

sunspots_23 <- subset(sunspots_births, cycle

"sc")

"loc") # Warning

"loc_VvMF")

"hyb") # Warning

"hyb", Fisher = TRUE) # Warning
"hyb_vMF")

"hyb_vMF”, Fisher = TRUE)

cos(sunspots_births$theta),
sin(sunspots_births$theta),

23rd cycle, specified theta
23)

24 unif
test_rotasym(data = sunspots_23$X, type = "sc”, theta = c(@, 0, 1))
test_rotasym(data = sunspots_23$X, type = "loc”, theta = c(0, 0, 1))
test_rotasym(data = sunspots_23$X, type = "hyb", theta = c(0, 0, 1))

Test rotational symmetry for the 23rd cycle, unspecified theta
spherical_loc_PCA(sunspots_23$X)
test_rotasym(data = sunspots_23$X, type = "sc"”, theta = spherical_loc_PCA)
test_rotasym(data = sunspots_23$X, type = "loc_vMF",

theta = spherical_loc_PCA)
test_rotasym(data = sunspots_23$X, type = "hyb_vMF",

theta = spherical_loc_PCA)
Test rotational symmetry for the 22nd cycle, specified theta
sunspots_22 <- subset(sunspots_births, cycle == 22)
test_rotasym(data = sunspots_22$X, type = "sc”, theta = c(0, 0, 1))
test_rotasym(data = sunspots_22$X, type = "loc”, theta = c(0, 0, 1))
test_rotasym(data = sunspots_22$X, type = "hyb", theta = c(0, 0, 1))
Test rotational symmetry for the 22nd cycle, unspecified theta
spherical_loc_PCA(sunspots_22%X)
test_rotasym(data = sunspots_22$X, type = "sc”, theta = spherical_loc_PCA)
test_rotasym(data = sunspots_22$X, type = "loc_vMF",

theta = spherical_loc_PCA)
test_rotasym(data = sunspots_22$X, type = "hyb_vMF",

theta = spherical_loc_PCA)

unif Uniform distribution on the hypersphere

Description
Density and simulation of the uniform distribution on SP~! := {x € R? : ||x|| = 1}, p > 1. The
density is just the inverse of the surface area of SP~!, given by

__ 2
wy := 2772 /T (p/2).

Usage
d_unif_sphere(x, log = FALSE)
r_unif_sphere(n, p)

w_p(p, log = FALSE)

Arguments

X locations in SP~1! to evaluate the density. Either a matrix of size c(nx, p) or a
vector of length p. Normalized internally if required (with a warning message).

log flag to indicate if the logarithm of the density (or the normalizing constant) is to

be computed.

unif

n sample size, a positive integer.
p dimension of the ambient space RP that contains SP~!. A positive integer.
Details

If p =1, then S° = {—1,1} and the "surface area" is 2. The function w_p is vectorized on p.

Value

Depending on the function:

* d_unif_sphere: a vector of length nx or 1 with the evaluated density at x.
e r_unif_sphere: a matrix of size c(n, p) with the random sample.

* w_p: the surface area of SP~!.

Author(s)

Eduardo Garcia-Portugués, Davy Paindaveine, and Thomas Verdebout.

Examples

Area of S*{p - 1}

Areas of S%@, S*1, and S*2
w_p(p = 1:3)

Area as a function of p

p <-1:20

plot(p, w_p(p = p), type = "0", pch = 16, xlab = "p"”, ylab = "Area”,
main = expression("”Surface area of " * S*{p - 1}), axes = FALSE)

box ()

axis(1, at = p)

axis(2, at = seq(@, 34, by = 2))

Simulation and density evaluation for p =1, 2, 3

#p=1

n <- 500

x <= r_unif_sphere(n = n, p = 1)
barplot(table(x) / n)
head(d_unif_sphere(x))

#p=2
x <- r_unif_sphere(n = n, p = 3)
plot(x)

head(d_unif_sphere(x))

#p=3

X <= r_unif_sphere(n = n, p = 3)

if (requireNamespace("rgl")) {
rgl::plot3d(x)

26

}

vMF

head(d_unif_sphere(x))

VvMF

von Mises—Fisher distribution

Description

Density and simulation of the von Mises—Fisher (vMF) distribution on SP~! := {x € RP : ||x|| =
1}, p > 1. The density at x € SP~! is given by

cZ?ﬁFe”x/“ with c;}\,gF = /‘i(p_2)/2/((277)1)/2](17*2)/2(H))

where u € SP~1 is the directional mean, x > 0 is the concentration parameter about u, and I, is
the order-r modified Bessel function of the first kind.

The angular function of the VMF is g(t) := e~'. The associated cosines density is g(v) :
(v)(1 — v?)P=3)/2_ where w,,_ is the surface area of SP~2.

vMF
wp-1ci g

Usage

d_vMF(x, mu, kappa, log = FALSE)

c_VvMF(p, kappa, log = FALSE)

r_vMF(n, mu, kappa)

g_VMF(t, p, kappa, scaled = TRUE, log = FALSE)

r_g_vMF(n, p, kappa)

Arguments

X

mu

kappa

log

p
n

t

scaled

locations in SP~! to evaluate the density. Either a matrix of size c(nx, p) or a
vector of length p. Normalized internally if required (with a warning message).

the directional mean p of the vMFE. A unit-norm vector of length p.

concentration parameter of the vMF. A nonnegative scalar. Can be a vector
for c_vMF.

flag to indicate if the logarithm of the density (or the normalizing constant) is to
be computed.

dimension of the ambient space RP that contains SP~!. A positive integer.
sample size, a positive integer.
a vector with values in [—1, 1].

whether to scale the angular function by the von Mises—Fisher normalizing con-
stant. Defaults to TRUE.

vMF 27

Details

r_g_vMF implements algorithm VM in Wood (1994). c_vMF is vectorized on p and kappa.

Value

Depending on the function:

* d_vMF: a vector of length nx or 1 with the evaluated density at x.

e r_vMF: a matrix of size c(n, p) with the random sample.

* c_vMF: the normalizing constant.

* g_VMF: a vector of size length(t) with the evaluated angular function.

* r_g_vMF: a vector of length n containing simulated values from the cosines density associated
to the angular function.

Author(s)

Eduardo Garcia-Portugués, Davy Paindaveine, and Thomas Verdebout.

References

Wood, A. T. A. (1994) Simulation of the von Mises Fisher distribution. Commun. Stat. Simulat.,
23(1):157-164. doi:10.1080/03610919408813161

See Also

tangent-vMF.

Examples

Simulation and density evaluation for p = 2

mu <- c(0, 1)

kappa <- 2

n <- 1e3

X <= r_vMF(n = n, mu = mu, kappa = kappa)

col <- viridisLite::viridis(n)

r <- runif(n, 0.95, 1.05) # Radius perturbation to improve visualization
plot(r * x, pch = 16, col = col[rank(d_vMF(x = x, mu = mu, kappa = kappa))l)

Simulation and density evaluation for p = 3
mu <- c(0, 0, 1)
kappa <- 2
X <= r_vMF(n = n, mu = mu, kappa = kappa)
if (requireNamespace("rgl”)) {
rgl::plot3d(x, col = col[rank(d_vMF(x = x, mu = mu, kappa = kappa))l,
size = 5)

}

Cosines density
g_tilde <- function(t, p, kappa) {
exp(w_p(p = p - 1, log = TRUE) +

https://doi.org/10.1080/03610919408813161

28

vMF

g_VMF(t = t, p = p, kappa = kappa, scaled = TRUE, log = TRUE) +
((p - 3) /7 2) » log(1 - t*2))
3

Simulated data from the cosines density

n <- 1e3

p<-3

kappa <- 2

hist(r_g_vMF(n = n, p = p, kappa = kappa), breaks = seq(-1, 1, 1 = 20),
probability = TRUE, main = "Simulated data from g_vMF", xlab = "t")

t <- seq(-1, 1, by = 0.01)

lines(t, g_tilde(t = t, p = p, kappa = kappa))

Cosine density as a function of the dimension
M <- 100
col <- viridisLite::viridis(M)
plot(t, g_tilde(t = t, p = 2, kappa = kappa), col = col[2], type = "1",
ylab = "Density")
for (p in 3:M) {
lines(t, g_tilde(t = t, p = p, kappa = kappa), col = col[pl)
3

Index

x datasets
sunspots_births, 8

ACG, 2, 15
Angular Central Gaussian, 14
angular functions, 7

Cc_ACG (ACG), 2

c_VMF (VMF), 26

cosines (cosines-signs), 4
cosines-signs, 4

d_ACG, 15

d_ACG (ACG), 2

d_tang_norm, 15, 17

d_tang_norm (tang-norm-decomp), 11
d_TE (tangent-elliptical), 14

d_TM (tangent-vMF), 17
d_unif_sphere (unif), 24

d_vMF, 17

d_vMF (VMF), 26

estimators, 6

g_VMF, 12, 20

g_VMF (VMF), 26
Gamma_theta, /1, 12
Gamma_theta (cosines-signs), 4

POSIXct, 8

r_ACG, 15

r_ACG (ACG), 2

r_g_vMF (vMF), 26
r_tang_norm, 15, 17

r_tang_norm (tang-norm-decomp), 11
r_TE (tangent-elliptical), 14

r_TM (tangent-vMF), 17
r_unif_sphere (unif), 24

r_vMF, 17

r_vMF (vMF), 26

29

rotasym (rotasym-package), 2
rotasym-package, 2

signs, 12, 14,17

signs (cosines-signs), 4
spherical_loc_PCA (estimators), 6
spherical_mean, 20, 21
spherical_mean (estimators), 6
sunspots_births, 8

tang-norm-decomp, 11

tangent elliptical, 20
tangent von Mises--Fisher, 20
tangent-elliptical, 14

tangent-normal decomposition, 14, 17

tangent-vMF, 17

TE (tangent-elliptical), 14
test_rotasym, 19

TM (tangent-vMF), 17

unif, 24

VMF, 12, 18, 26
von Mises--Fisher, 17

w_p (unif), 24

	rotasym-package
	ACG
	cosines-signs
	estimators
	sunspots_births
	tang-norm-decomp
	tangent-elliptical
	tangent-vMF
	test_rotasym
	unif
	vMF
	Index

