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The rockchalk package includes functions for estimating regressions, extracting di-
agnostic information from them, preparing presentable tables, and creating helpful
two and three dimensional plots. It is primarily intended to facilitate teachers and
students who are conducting ordinary least squares and elementary generalized mod-
els. Compared to other packages that help with regression analysis, this one offers
more-than-the-usual amount of emphasis on the analysis of regression models that
include interaction terms. It includes functions that can receive a fitted model and
then return standardized, mean-centered, and residual-centered regression results.
The plotting functions address some limitations of R’s termplot function. Version
1.8 introduces a consistent framework for the creation of “newdata” objects and the
calculation of predicted values so that the marginal effects of separate predictors can
be easily explored.

1 Introduction

This is the Spring, 2019 update of the rockchalk package. I offer a course in regression anal-
ysis for social and behavioral scientists every year. As the course goes on, I keep track of
the difficulties that the students experience with R and I craft functions that facilitate their
work on particular assignments. The new features in this edition are the functions descrip-
tiveTables() and waldt() (for regression reports), tools for regression simulation, including
genCorrelatedData3() and cutFancy(), some support for common recoding support for multi-
level modeling. Finally, the regression table-writing function the outreg() can now generate
decimal-aligned columns. A new vignette demonstrating the outreg() function is introduced
with the package.
As in previous versions, a core of the effort is development of an internally coherent framework

that allows students to estimate regressions (usually with lm and glm) and then create useful
summary tables and diagnostic reports. It is easy to create “newdata” objects and interact with
fitted regressions. The newdata() function will be handy for just about any kind of regression.
For the common kinds of regression in base R and lme4, there is also a convenience function
called predictOMatic() that allows one to specify a regression model and then receive predicted
values for a range of input values. The default output will be similar to other regression software
tools that provide “marginal effect” estimates for regression analysis.
I have exerted a great deal of effort to improve the consistency of predicted value plots for

regression analysis. The plotSlopes() function is a plotter for linear models with interaction
terms. It draws a plot on the screen, but it also creates an output object that can be subjected

*In case you want to be involved in development, the source code is available on GitHub. Please
browse http://github.com/pauljohn32. The read-only git archive address is git://github.com/pauljohn32/
rockchalk.git. Once you learn how to “clone” the repository with a git client, then we can discuss ways for
you to contribute.
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to a follow-up hypothesis test (by the testSlopes() function). There is a plot method for
testSlopes objects to help with analysis of interactions.
For people who want to plot nonlinear regressions, the function plotCurves() is a replacement

for plotSlopes(). It can handle any sort of nonlinearity and interaction on the right hand side.
Where some regression formula can cause R’s termplot() function to fail, plotCurves() will
succeed.
The core functionality of many functions has not been altered. Functions to provide stan-

dardized regression coefficients, mean-centered, or residual-centered regression coefficients have
not changed much, although the plots of them are improved.

2 Facilitating Collection of Summary Information

2.1 summarize: A replacement for summary

When an R function provides output that is not suitable for a term paper, the student must
cobble together some code and assemble a customized table. In my opinion, R’s summary()
function for data frames is not adequate. It lacks summaries for diversity of observations. In
addition, the output is not formatted in a way that is conducive to the creation of plots or
tables. As a result, I offer the function summarize(), which separates the numeric from factor
variables and provides an alphabetized summary.
Consider the results of applying summarize() to Fox’s Chile data set from the carData package:

l i b r a r y ( carData )
data ( Chi l e )
( summChile <= summarize ( Chi l e ) )

Numeric v a r i a b l e s
populat ion age income statusquo

min 3750 18 2500 =1.803
med 175000 36 15000 =0.046
max 250000 70 200000 2 .049
mean 152222 .222 38 .549 33875 .865 0
sd 102198 .040 14 .756 39502 .867 1
skewness =0.269 0 .472 2 .585 0 .162
ku r t o s i s =1.719 =0.862 7 .292 =1.454
nobs 2700 2699 2602 2683
nmiss ing 0 1 98 17

Nonnumeric v a r i a b l e s
r eg i on sex educat ion

C : 600 F : 1379 P : 1107
M : 100 M: 1321 PS : 462
N : 322 S : 1120
S : 718
SA: 960
nobs : 2700 .000 nobs : 2700 nobs : 2689 .00
nmiss : 0 .000 nmiss : 0 nmiss : 11 .00
entropy : 2 .063 entropy : 1 entropy : 1 . 49
normedEntropy : 0 .888 normedEntropy : 1 normedEntropy : 0 . 94

vote
A: 187
N: 889
U: 588
Y: 868

nobs : 2532 .000
nmiss : 168 .000
entropy : 1 .826
normedEntropy : 0 .913

The result object is a list that includes a data frame for the numeric variables, with named
rows and (optionally) alphabetized columns, as well as a separate report for each factor variable.
Users who wish to summarize only the numeric variables can run summarizeNumerics() instead,
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while others who want to summarize only factors can run summarizeFactors(). The output from
summarizeFactors() is a list of factor summaries.
A companion function is centralValues(), which will provide only one number for each variable

in a data frame. For numerics, it returns the mean, while for factor variables, it returns the
mode.

c en t ra lVa lue s ( Chi l e )

r eg i on populat ion sex age educat ion income statusquo vote
1 SA 152222 . 2 F 38 .54872 S 33875 .86 =1.118151e=08 N

2.2 Easier predictions and newdata objects

Students struggle with R’s predict() methods. The primary challenge is in the creation of a new-
data object of interesting values of the predictors. If the newdata argument, here myNewDF in
predict(m1, newdata = myNewDF) is not exactly right, the command will fail. If the regression
formula uses functions like “as.numeric()” or “as.factor()”, its almost impossible for first-time
R users to get this right. In version 1.8, I believe I have solved the problem entirely with the
functions newdata() and predictOMatic().
Let’s fit an example regression with the Chile data set from the carData package.

m1 <= lm( statusquo ∼ age + income + populat ion + reg i on + sex , data = Chi le )

The default output of predictOMatic() will cycle through the predictors, one by one.

m1pred <= predictOMatic (m1)
m1pred

$age
age income populat ion r eg i on sex f i t

1 18 33868 .73 151750 SA F =0.11305577
2 26 33868 .73 151750 SA F =0.04562173
3 36 33868 .73 151750 SA F 0 .03867081
4 49 33868 .73 151750 SA F 0 .14825112
5 70 33868 .73 151750 SA F 0 .32526546

$ income
age income populat ion r eg i on sex f i t

1 38 .60116 2500 151750 SA F =0.018233384
2 38 .60116 7500 151750 SA F =0.005668318
3 38 .60116 15000 151750 SA F 0 .013179282
4 38 .60116 35000 151750 SA F 0 .063439546
5 38 .60116 200000 151750 SA F 0 .478086727

$ populat ion
age income populat ion r eg i on sex f i t

1 38 .60116 33868 .73 3750 SA F 0 .3814125
2 38 .60116 33868 .73 25000 SA F 0 .3353494
3 38 .60116 33868 .73 175000 SA F 0 .0101982
4 38 .60116 33868 .73 250000 SA F =0.1523774
5 38 .60116 33868 .73 250000 SA F =0.1523774

$ r eg i on
age income populat ion r eg i on sex f i t

1 38 .60116 33868 .73 151750 SA F 0 .06059664
2 38 .60116 33868 .73 151750 S F 0 .13954025
3 38 .60116 33868 .73 151750 C F =0.05674648
4 38 .60116 33868 .73 151750 N F 0 .16233093
5 38 .60116 33868 .73 151750 M F 0 .18826330

$ sex
age income populat ion r eg i on sex f i t

1 38 .60116 33868 .73 151750 SA F 0 .06059664
2 38 .60116 33868 .73 151750 SA M =0.10488518

The newdata() and predictOMatic() functions handle the details and allow the user to adjust
their requests to allow for very fine grained control. Here are the key arguments for these
functions.

3



1. divider. The name of an algorithm to select among observed values for which predictions
are to be calculated. These are the possibilities.

“seq” an evenly spaced sequence of values from low to high across the variable.

“quantile” quantile values that eminate from the center of the variable “outward”.

“std.dev.” the mean plus or minus the standard deviation, or 2 standard deviations, and
so forth.

“table” when a variable has only a small set of possible values, this selects the most
frequently observed values.

2. n. The number of values to be selected.

3. predVals. Where the divider argument sets the default algorithm to be used, the predVals
argument can choose variables for focus and select divider algorithms separately for the
variables. It is also allowed to declare particular values.

The user can request that particular values of the predictors are used, or can declare one of
several algorithms for selection of focal values. All of these details are managed by the argument
called predVals, which is described in the help pages (with plenty of examples).

mypred2 <= predictOMatic (m1, predVals = c ( ”age ” , ”r eg i on ”) , n = 3)
mypred2

age income populat ion r eg i on sex f i t
1 26 33868 .73 151750 SA F =0.04562173
2 36 33868 .73 151750 SA F 0 .03867081
3 49 33868 .73 151750 SA F 0 .14825112
4 26 33868 .73 151750 S F 0 .03332188
5 36 33868 .73 151750 S F 0 .11761443
6 49 33868 .73 151750 S F 0 .22719473
7 26 33868 .73 151750 C F =0.16296485
8 36 33868 .73 151750 C F =0.07867231
9 49 33868 .73 151750 C F 0 .03090800

mypred3 <= predictOMatic (m1, predVals = c ( age = ” s t d . d e v . ” , r eg i on = ”tab l e ”) , n = 3)
mypred3

age income populat ion r eg i on sex f i t
1 23 . 9 33868 .73 151750 SA F =0.06332316
2 38 . 6 33868 .73 151750 SA F 0 .06058688
3 53 . 3 33868 .73 151750 SA F 0 .18449692
4 23 . 9 33868 .73 151750 S F 0 .01562045
5 38 . 6 33868 .73 151750 S F 0 .13953049
6 53 . 3 33868 .73 151750 S F 0 .26344053
7 23 . 9 33868 .73 151750 C F =0.18066629
8 38 . 6 33868 .73 151750 C F =0.05675625
9 53 . 3 33868 .73 151750 C F 0 .06715379

mypred4 <= predictOMatic (m1, predVals = l i s t ( age = c (18 , 30 , 45) , r eg i on = c ( ”SA” , ”C” ,
”N”) ) , n = 3)

mypred4

age income populat ion r eg i on sex f i t
1 18 33868 .73 151750 SA F =0.11305577
2 30 33868 .73 151750 SA F =0.01190471
3 45 33868 .73 151750 SA F 0 .11453410
4 18 33868 .73 151750 C F =0.23039889
5 30 33868 .73 151750 C F =0.12924784
6 45 33868 .73 151750 C F =0.00280902
7 18 33868 .73 151750 N F =0.01132148
8 30 33868 .73 151750 N F 0 .08982957
9 45 33868 .73 151750 N F 0 .21626839
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I’ve invested quite a bit of effort to make sure this works dependably with complicated re-
gression formulae. All formulae, such as y ˜ x1 + log(x2 + alpha) + ploy(x3, d) will just work.
(In case one is interested to know why this works, the secret recipe is a new function called
model.data(). Under the hood, this required some hard work, a frustrating chain of trial and
error that is discussed in the vignette Rchaeology, which is distributed with this package).

The predictOMatic() function will work when the regression model provides a predict func-
tion that can handle the newdata argument. If the regression package does not provide such
a function, the user should step back and use the newdata function to create the examplar
predictor data frames and then calculate predicted values manually. The newdata() function
will set all variables to center values and then it will create a “mix and match” combination of
the ones that the user asks for. This sequence shows ways to ask for various “mix and match”
combinations of values from age and region.

mynewdf <= newdata (m1, predVals = c ( ”age ” , ”r eg i on ”) , n = 3)
mynewdf

age income populat ion r eg i on sex
1 26 33868 .73 151750 SA F
2 36 33868 .73 151750 SA F
3 49 33868 .73 151750 SA F
4 26 33868 .73 151750 S F
5 36 33868 .73 151750 S F
6 49 33868 .73 151750 S F
7 26 33868 .73 151750 C F
8 36 33868 .73 151750 C F
9 49 33868 .73 151750 C F

mynewdf2 <= newdata (m1, predVals = l i s t ( age = ” s t d . d e v . ” , r eg i on = c ( ”SA” , ”C” , ”N”) ) )
mynewdf2

age income populat ion r eg i on sex
1 23 . 9 33868 .73 151750 SA F
2 38 . 6 33868 .73 151750 SA F
3 53 . 3 33868 .73 151750 SA F
4 23 . 9 33868 .73 151750 C F
5 38 . 6 33868 .73 151750 C F
6 53 . 3 33868 .73 151750 C F
7 23 . 9 33868 .73 151750 N F
8 38 . 6 33868 .73 151750 N F
9 53 . 3 33868 .73 151750 N F

mynewdf3 <= newdata (m1, predVals = l i s t ( age = c (20 , 30 , 40) , r eg i on = c ( ”SA” , ”C” , ”N”) )
)

mynewdf3

age income populat ion r eg i on sex
1 20 33868 .73 151750 SA F
2 30 33868 .73 151750 SA F
3 40 33868 .73 151750 SA F
4 20 33868 .73 151750 C F
5 30 33868 .73 151750 C F
6 40 33868 .73 151750 C F
7 20 33868 .73 151750 N F
8 30 33868 .73 151750 N F
9 40 33868 .73 151750 N F

Of course, functions from rockchalk or any other R package can be placed into the process for
choosing focal values.

mynewdf <= newdata (m1, predVals = l i s t ( age = getFoca l ( Chi l e $age , n = 3) , r eg i on =
getFoca l ( Chi l e $ reg ion , n = 3) ) )

mynewdf

age income populat ion r eg i on sex
1 26 33868 .73 151750 SA F
2 36 33868 .73 151750 SA F
3 49 33868 .73 151750 SA F
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4 26 33868 .73 151750 S F
5 36 33868 .73 151750 S F
6 49 33868 .73 151750 S F
7 26 33868 .73 151750 C F
8 36 33868 .73 151750 C F
9 49 33868 .73 151750 C F

The function getFocal() is a generic function; it will receive variables of different types and
“do the right thing.” By default, focal values of numeric variables are quantile values. For
factor values, the most frequently observed values are selected. These are customizable, as
explained in the documentation. The newdata() output can be used in a predict() function call
as demonstrated above.
It would be nice if every regression model’s predicted values were accompanied by 95% con-

fidence intervals. Models fit by lm() can supply confidence intervals, but not glm(). At the
current time, there are many competing methods that might be used to calculate those inter-
vals; predict.glm() in R’s stats package avoids the issue entirely by not calculating intervals. In
rockchalk-1.8, I crafted some code to calculate confidence intervals for glm objects using the
(admittedly crude) Wald-based approximation. In the scale of the linear predictor, we calculate
a 95% confidence interval, and then use the inverse link function to transform that onto the
space of the observed response. In this example, I replicate an example that is an R classic,
from the help page of predict.glm. The reader will note that the output includes a warning
about the construction of the confidence interval.

df <= data . f rame ( ldo s e = rep ( 0 : 5 , 2) , sex = f a c t o r ( rep ( c ( ”M” , ”F”) , c (6 , 6) ) ) ,
SF.numdead = c (1 , 4 , 9 , 13 , 18 , 20 , 0 , 2 , 6 , 10 , 12 , 16) )

df $SF.numalive <= 20 = df $SF.numdead
budworm.lg <= glm ( cbind (SF.numdead , SF.numalive ) ∼ sex * ldose , data = df , f ami ly =

binomial )
predictOMatic ( budworm.lg , predVals = c ( ldo s e = ” s t d . d e v . ” , sex = ”tab l e ”) , i n t e r v a l = ”

con f idence ”)

rockcha lk : : : predCI : model ' s p r ed i c t method does not re turn an i n t e r v a l .
We w i l l improvize with a Wald type approximation to the con f idence i n t e r v a l

sex ldo s e f i t lwr upr
1 F =1.06 0 .01881807 0 .004677914 0 .07258339
2 F 0 .72 0 .08776815 0 .038579388 0 .18744514
3 F 2 .50 0 .32553481 0 .229753335 0 .43851358
4 F 4 .28 0 .70771129 0 .566928719 0 .81746365
5 F 6 .06 0 .92393399 0 .802113370 0 .97326083
6 M =1.06 0 .01547336 0 .003572797 0 .06444937
7 M 0 .72 0 .12874384 0 .061009646 0 .25153364
8 M 2 .50 0 .58147189 0 .454577322 0 .69842946
9 M 4 .28 0 .92888909 0 .831913678 0 .97181146
10 M 6 .06 0 .99192343 0 .959388591 0 .99843626

2.3 Descriptive Tables

In regression-based reports, it is common for authors to present a brief summary table to
represent the data. The descriptiveTable() function was created to make that process easier
and more predictable. The aim is to provide the usual summary statistics for the numeric
predictors and a table of proportions for the categorical predictors. See Table 1. The user can
customize the requested statistical summaries for numeric predictors.
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Table 1: The descriptiveTable function

de s c r i p t i v eTab l e (m1, d i g i t s =6)

va r i ab l e mean sd min max
1 statusquo =0.00872077 1 .00115 =1.74401 1 .71355
2 age 38 .6012 14 .697 18 70
3 income 33868 . 7 39557 . 5 2500 200000
4 populat ion 151750 102129 3750 250000
5 reg i on
6 C 0 .223166
7 M 0 .0359073
8 N 0 .121236
9 S 0 .266409
10 SA 0 .353282
11 sex
12 F 0 .510039
13 M 0 .489961

I my opinion, the output is, well, simple and understandable. More importantly, it will be
sufficient for a term paper, once it is converted into a presentable final format. It can be
converted into HTML or LaTeX with various R packages, such as xtable. Note that because
this descriptive table is derived from the fitted regression, it summarizes only the cases that
were actually used in the regression analysis. If cases were lost by listwise deletion, the deleted
cases are not taken into account here.

3 Better Regression Tables: Some outreg Examples.

On May 8, 2006, Dave Armstrong, who was a political science PhD student at University
of Maryland, posted a code snippet in r-help that demonstrated one way to use the “cat”
function from R to write LATEX markup. That gave me the idea to write a LATEX output scheme
that would help create some nice looking term and research papers. I wanted “just enough”
information, but not too much.
Since 2006, many new R packages have been introduced for the creation of regression tables,

but I still prefer to maintain outreg. I fight to keep this simple, but have added some features in
response to user requests. For me, the biggest question is whether the format should be “wide”
or “tight”. A tight format stacks estimates and standard errors into a single column, while a
wide format has them in separate columns. In response to user requests, stars for statistical
significance were made customizable. It is now allowed to directly insert vectors of parameter
estimates and standard errors. In this version, a new parameter centering is introduced for
decimal-centered columns.
In the following, I will demonstrate some tables for lm and glm fits on a simulated data set.

This new simulation function, genCorrelatedData3(), is a convenient way to create multiple-
predictor regression data sets of arbitrary size and complexity, allowing for interactions and
nonlinearity.

s e t . s e e d (1234)
dat <= genCorrelatedData3 (N = 100 , means = c ( x1 = 0 , x2 = 10 , x3 = 0) , sds = c (1 , 2 , 1)

, rho = c (0 , 0 , 0) , s tde = 10 , beta = c (0 , =3 , 4 , 0) , verbose = FALSE)

That creates a new matrix with variables x1, x2, x3, and y. We run some linear regressions and
then create a categorical output variable for a logistic regression.

m1 <= lm(y ∼ x1 + x2 , data = dat )
m2 <= lm(y ∼ x2 , data = dat )
m3 <= lm(y ∼ x1 + x2 + x3 , data = dat )
## Create categorical variant

myi l og i t <= f unc t i on (x ) exp (x ) / (1 + exp (x ) )
dat$y3 <= rbinom (100 , s i z e = 1 , p = myi l og i t ( s c a l e ( dat$y ) ) )
gm1 <= glm ( y3 ∼ x1 + x2 , data = dat )

7



Table 2: Decimal-centered columns in the “tight” style

M1 M2 M3
Estimate Estimate Estimate
(S.E.) (S.E.) (S.E.)

(Intercept) −4.434 −4.174 −1.740
(6.195) (6.149) (5.948)

x1 0.509 −0.187
(1.028) (1.000)

x2 −2.513*** −2.540*** −2.829***
(0.617) (0.612) (0.594)

x3 3.726**
(1.115)

N 100 100 100
RMSE 11.199 11.156 10.655
R2 0.152 0.150 0.240
adj R2 0.134 0.141 0.216
∗p ≤ 0.05∗∗ p ≤ 0.01∗∗∗p ≤ 0.001

Table 3: The wide format obtained with tight = FALSE

The First Model with a Long Title Another Model
Estimate (S.E.) Estimate (S.E.)

(Intercept) −4.434 (6.195) −1.740 (5.948)
x1 0.509 (1.028) −0.187 (1.000)
x2 −2.513*** (0.617) −2.829*** (0.594)
x3 3.726** (1.115)
N 100 100
RMSE 11.199 10.655
R2 0.152 0.240
adj R2 0.134 0.216
∗p ≤ 0.05∗∗ p ≤ 0.01∗∗∗p ≤ 0.001

The outreg examples are offered in Tables 2 through 4. Table 2 is the “tight format output
for three models, obtained from outreg(list(m1, m2, m3), centering="siunitx"). On the
other hand, as illustrated in Table 3, the author can request a wide table (tight = FALSE) and
provide more elaborate model labels and adjust the significance stars. In Table 4, observe that
the linear and generalized linear model output peacefully co-exist, side-by-side. This output is,
in my opinion, completely acceptable for inclusion in a professional presentation or conference
paper. There are some warts in this output.
The default output from outreg will have left-aligned columns. Because users requested

decimal-centered columns, the argument centering has been introduced. If centering="siunitx"
or centering=TRUE, the outreg table will be adjusted to use features in the LaTeX package
“siunitx”. The LaTeX package dcolumn is probably more familiar to users, and "dcolumn" is
also a legal value for centering, but the results are not quite as good. As a caution, I hasten to
mention that if a user asks for decimal-centered columns, the user has the duty to insert into
the document preamble either “\usepackage{siunitx}” or “\usepackage{dcolumn}”.
I understand that some authors need to include regression tables in documents that are not

prepared with LaTeX. The parameter type =“HTML”will change the output format to HTML.
An HTML file can be displayed in a web browser and it can be imported in traditional “word
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Table 4: Combined OLS and GLM Estimates

OLS:y GLM: Categorized y
Estimate Estimate
(S.E.) (S.E.)

(Intercept) -4.434 0.732**
(6.195) (0.273)

x1 0.509 0.090
(1.028) (0.045)

x2 -2.513*** -0.019
(0.617) (0.027)

N 100 100
RMSE 11.199
R2 0.152
adj R2 0.134
Deviance 23.695
−2LLR(Modelχ2) 1.145

∗p ≤ 0.05∗∗ p ≤ 0.01∗∗∗p ≤ 0.001

processor” programs.

4 Plotting Regressions with Interactions

4.1 Interaction in Linear Regression.

One of the most fundamental skills in regression analysis is the interpretation of interactive
predictors. It is much easier for students to understand the effect of an interaction if they can
create a nice plot to show how the predicted value depends on various values of a predictor. The
plotSlopes() function was introduced in 2010 when I was teaching a large first-year graduate
course (more than 50 students) and it became apparent that about 20 percent of them would not
be able to manage the R coding required to draw several lines on a single plot. Unfortunately,
R’s termplot() function will not draw regressions involving interactions.
The rockchalk package has two functions to help with this, plotSlopes() and plotCurves().

plotCurves() is more general, it can handle any kind of formula that the user estimates. plot-
Slopes() is more limited, it is only for lm objects. In return for that limitation, plotSlopes()
creates an output object which can be used to conduct post-hoc hypothesis tests.
At its most elementary level, plotSlopes() is a “one step” regression line plotter. If the

regression model includes more than one predictor, then a single predictor is displayed on the
horizontal axis and the other predictors are set on their central values. A plot for the model
m1, that was illustrated above, is presented in Figure 1. In rockchalk-1.8, new arguments were
added to allow the “see though” confidence region. The command to generate Figure 1 was

m1ps <= p l o tS l ope s (m1, p lo tx = ”x2 ” , xlab = ”x2 from model m1” , i n t e r v a l = ”con f idence ”
, opac i ty = 80 , c o l = ”red ” ,

yl im = c (=70 , 15) , legendArgs = l i s t ( x=”top r i gh t ”) )

I’ve adjusted the color and opacity to illustrate the usage of those arguments. The y range is
adjusted to make a little extra room for the legend. The plotSlopes() function is very flexible.
All of the label, color, and scale arguments of a plot function are also available. The plotSlopes
function also works well if the moderator is a categorical variable.
It is important to note that the output object, m1ps, has the information necessary to re-

create the plotted line in the form of a newdata data frame. The first few lines in the newdata
object are
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Figure 1: plotSlopes: Linear Model with Confidence Interval

m1ps$newdata [ 1 : 3 , ]

x1 x2 f i t lwr upr
1 =0.01591005 4 .535561 =15.83859 =22.74994 =8.927248
2 =0.01591005 4 .831765 =16.58289 =23.15202 =10.013758
3 =0.01591005 5 .127970 =17.32718 =23.55640 =11.097971

This is more interesting if we fit a regression with an interaction term, such as

m4 <= lm( y4 ∼ x1*x2 + x3 , data = dat )

We then ask plotSlopes to draw the predicted values using one numeric variable as the hor-
izontal axis and values of another variable (a moderator) are set at particular values. Either
x1 or x2 can be viewed as the “moderator” predictor, the one on which the effect of the other
depends. In rockchalk version 1.8, the selection of values of the moderator was generalized, so
that the user can specify either a function that selects values, or a vector of values, or the name
of an algorithm. The default algorithm will choose quantile values, but Figure 2 demonstrates
also the “std.dev.” divider algorithm. The code to produce that figure was

par ( mfcol=c (2 , 1 ) )
m4psa <= p l o tS l ope s (m4, p lo tx = ”x1 ” , modx = ”x2 ” , xlab = ”x1 i s a fun p lotx ”)
m4psb <= p l o tS l ope s (m4, p lo tx = ”x2 ” , modx = ”x1 ” , modxVals = ” s t d . d e v . ” , xlab = ”x2 i s

p lo tx ” , yl im = c (=120 , 15) ,
legendArgs = l i s t ( x = ”top r i gh t ”) )

par ( mfcol=c (1 , 1 ) )

When modx is a numeric variable, then some particular values must be selected for calculation
of predicted value lines. The modxVals argument is used to either specify moderator values or
an algorithm to select focal values. By default, three hypothetical values of plotx are selected
(the quantiles 25%, 50%, and 75%).
If modx is a factor variable, then the most frequently observed scores will be selected for

consideration. The default display will include the regression line as well as color-coded points
for the subgroups represented by values of the moderator.
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Figure 3: plotSlopes with a Categorical Moderator

Suppose we have a four-valued categorical variable, “West”,”Midwest”, “South”, and “East”. If
that variable is used in an interaction in the regression model, then the plotSlopes output will
include four lines, one for each region. For example, consider Figure 3, which is created by

m5psa <= p l o tS l ope s (m5, p lo tx = ”x1 ” , modx = ”x4 ” , xlab = ”x1 i s a Continuous Pred i c to r
” , xl im = magRange( dat$x1 , c (1 .2 , 1 ) ) )

The categorical variable is x4.
It is possible to superimpose confidence intervals for many subgroups, but sometimes these

plots start to look a little bit “busy”. The mixing of shades in overlapping intervals may help
with that problem. A plot that focuses on just two subgroups is presented in Figure 4, which
is produced by

m5psb <= p l o tS l ope s (m5, p lo tx = ”x1 ” , modx = ”x4 ” , modxVals = c ( ”West” , ”East ”) , xlab =
”x1 i s a Continuous Pred i c to r ” , xlim=magRange( dat$x1 , c (1 .2 , 1 ) ) , i n t e r v a l = ”conf ”)

In rockchalk version 1.8, I’ve exerted quite a bit of effort to make sure that colors are chosen
consistently when users remove or insert groups in these plots. The same value of the moderator
should always be plotted in the same way–the line, points, and interval colors should not change.
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Note, for example, in Figures 3 and 4, the line for East is black in both plots, while the line for
West is red in both.

4.2 testSlopes, a companion of plotSlopes

The students in psychology and political science are usually interested in conducting some
diagnostic analysis of the interactive terms. Aiken and West (1991) (and later Cohen et al.,
2002Cohen, Cohen, West, and Aiken) propose using the t test to find out if the effect of the
“plotx” variable is statistically significantly different from zero for each particular value of the
moderator variable. The new version of rockchalk declares a method plot.testSlopes that handles
the work of plotting the interaction.
The usual case would be the following. First, carry out the regression analysis. Then run

plotSlopes, and run testSlopes, and then pass that result object to the plot method.

m4 <= lm(y ∼ x1*x2 + x3 , data = dat )
m4ps <= p l o tS l ope s (m4, p lo tx = ”x1 ” , modx =”x2 ” , xlab = ”x1 i s a

Continuous Pred i c to r ”)
m4psats <= t e s t S l o p e s (m4ps)
p l o t (m4psats )

The output from testSlopes will differ, depending on whether modx is numeric or a factor. If it
is a factor, then the slope of the lines and the associated t-test for each will be presented. My
psychology students call these “simple-slopes”, following the terminology of Aiken and West.
The general idea is that we want to know if the “combined” effect of plotx is not zero. For a
model stated with predictors plotxi and modxias

yi = b0 + bplotxplotxi + bmodxmodxi + bplotx:modxplotxi · modxi + . . . + ei (1)

the null hypothesis would be
H0 : 0 = b̂simple slope = b̂plotx + b̂plotx:modxmodx (2)

If modx is a factor, then we simply calculate the slope of each line and the test is straight-forward.
If modx is a numeric variable, then we confront a problem that is a bit more interesting. We
don’t really want to say that the simple slope is different from 0 for particular values of modx,
but instead we want to answer the question, “for which values of the moderator would the
effect of the plotx variable be statistically significant?”. This necessitates the calculation of the
so-called Johnson-Neyman interval (1936), a plot of which is presented in Figure 5.
The method of calculation is outlined in Preacher et al. (2006). The values of modx associated

with a statistically significant effect of plotx on the outcome is determined from the computation
of a T statistic for b̂simple slope. The J-N interval is the set of values of modx for which the
following (quadratic equation) holds:

t̂ = b̂simple slope

std.err(b̂simple slope)

= b̂simple slope√ ̂
V ar(b̂plotx) + modx2 ̂

V ar(b̂plotx·modx) + 2modx
̂

Cov(b̂plotx, b̂plotx·modx)
≥ T α

2 ,df (3)

Suppose there are two real roots, root1 and root2. The values of modx for which the slope is
statistically significant may be a compact interval, [root1, root2], as demonstrated in Figure 5,
or it may two open intervals, (−∞, root1] and [root2, ∞). I had expected almost all applications
to result in that latter case, but the somewhat surprising case illustrated in Figure 5 is not too
infrequently observed.
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4.3 plotCurves for nonlinear predictor formulae

In the most recent revision of this package, I believe I have made the plotCurves() function
redundant. Before I delete the function entirely, I’m waiting for feedback. There was a problem
in the past. Some students used plotSlopes() (which drew straight lines) when they intended to
draw curves (and should have used plotcCurves).
plotCurves() was developed to generalize the plotting capability for regression formulas that

include nonlinear transformations. It was for models that have polynomials or terms that are
logged (or otherwise transformed). In that sense, plotCurves() is rather similar to R’s own
termplot() function, but plotCurves() has two major advantages. First, it allows interactions,
and second, it handles some complicated formulae that termplot() is not able to manage.
Suppose a dependent variable y5 is created according to a nonlinear process.

y5i = −3x1i + 7 ∗ log(x2) + 1.1x2i + 2.2x1i × x2i + ei (4)

The estimated model is

m5 <= lm( y5 ∼ l og ( x2 ) + x1 * x2 , data = dat )

In the new version, the function calls for plotSlopes() and plotCurves() are the same:

m5pc <= plotCurves (m5, p lo tx = ”x2 ” , modx = ”x1 ” , main = ”plotCurves output ” , ylim = c (
=210 , 330) ,

legendArgs = l i s t ( x = ” t o p l e f t ” , t i t l e = ”x1 ” , cex = 0 . 8 ) )

m5ps <= p l o tS l ope s (m5, p lo tx = ”x2 ” , modx = ”x1 ” , main = ”p l o tS l ope s outout ” , yl im = c (
=210 , 330) ,

legendArgs = l i s t ( x = ” t o p l e f t ” , t i t l e = ”x1 ” , cex = 0 . 8 ) )

So far as I have been able to tell, the results are the same. See Figure 6.

4.4 plotPlane

The persp() function in R works well, but its interface is too complicated for most elementary
and intermediate R users. To facilitate its use for regression users, the plotPlane() function is
offered.
The plotPlane function offers a visualization of the mutual effect of two predictors, whether

or not the regression model is linear. plotPlane() is designed to work like plotCurves(), to
tolerate nonlinear components in the regression formula. plotPlane() allows the depiction of a
3 dimensional curving plane that “sits” in the cloud of data points. The variables that are not
explicitly pictured in the plotPlane() figure are set to central reference values. Recall model
m4, which used the formula y4 ∼x1*x2 + x3. As illustrated in Figure 7, plotCurves() presents
a reasonable view of the predicted values.
Because plotPlane() is a simple convenience wrapper for R’s persp() function, it responds

to the same customizing arguments that perp would allow. The arguments phi and theta will
rotate the figure, for example. The output in Figure 7 is produced by the following.

p100 <= plotPlane (m4, p lotx1 = ”x1 ” , p lotx2 = ”x2 ” , phi = 10 , theta = =80 , l c o l = gray (
. 70 ) )

One of the major educational benefits of the 3-D figure is that students can easily see that a
model with a simple interaction effect is not a linear model any more. We will return to that
point in the discussion of mean centering in regression analysis.
Recall that model m5 is the rather complicated nonlinear formula log(x2*x2) + x1 * x2. The

plotCurves() output for that was already presented in Figure 6. The three dimensional view of
the same is presented in Figure 8, but with an added twist. The twist is that the predicted value
lines from the 2-D plot functions can be superimposed on the plane. The function addLines()
does the work for translating 2-D plot object onto the regression plane.
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Figure 7: plotPlane for the Interactive Model m4
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5 Standardized, Mean-Centered, and Residual-Centered Regressions

5.1 Standardized regression

Many of us learned to conduct regression analysis with SPSS, which reported both the ordinary
(unstandardized) regression coefficients as well as a column of “beta weights”, the output of a
“standardized”regression analysis. Each variable, for example x1i, was replaced by an estimated
Z − score : (x1i − x1)/std.dev.(x1i). Some people think these coefficients are easier to interpret
(but, for a strong cautionary argument against them, see King, 1986). R offers no such thing
as standardized regression, probably because this practice is thought to be mistaken. The
automatic standardization of all predictors, no matter whether they are categorical, interaction
terms, or transformed values (such as logs) is dangerous.
To illustrate that, the rockchalk introduces a function called standardize(). Each column

of the design matrix is scaled to a new variable with mean 0 and standard deviation 1. The
result from standardize() will be an R lm object, which will respond to any follow-up analysis
commands. For example:

m4 <= lm ( y4 ∼ x1 * x2 , data = dat )
m4s <= s tandard i z e (m4)

I doubt that a reasonable person would actually want a standardized regression and have
tried to warn users in the output.

summary(m4s)

Al l v a r i a b l e s in the model matrix and the dependent va r i ab l e
were c en t e r ed . The centered v a r i a b l e s have the l e t t e r ”s ” appended to t h e i r
non=centered counterparts , even cons t ruc ted
v a r i a b l e s l i k e `x1 : x2` and poly ( x1 , 2 ) . We agree , that ' s probably
i l l=adv i s ed , but you asked f o r i t by running s tandard i z e ( ) .

The rockcha lk func t i on meanCenter i s a smarter option , probab ly .

The summary s t a t i s t i c s o f the v a r i a b l e s in the des ign matr ix .
mean s t d . d e v .

y4s 0 1
x1s 0 1
x2s 0 1
`x1 : x2s ` 0 1

Cal l :
lm( formula = y4s ∼ =1 + x1s + x2s + `x1 : x2s ` , data = stddat )

Res idua l s :
Min 1Q Median 3Q Max

=1.72507 =0.46354 =0.03264 0 .40507 1 .87269

Co e f f i c i e n t s :
Estimate Std . Error t va lue Pr(>| t | )

x1s 0 .17451 0 .50032 0 .349 0 .728
x2s =0.65681 0 .06654 =9.871 2 .55e=16 ***

`x1 : x2s ` 0 .15602 0 .49986 0 .312 0 .756
===

S i g n i f . codes : 0 ' *** ' 0 .001 ' ** ' 0 .01 ' * ' 0 .05 ' . ' 0 . 1 ' ' 1

Res idua l standard e r r o r : 0 .6575 on 97 degree s o f freedom
Mult ip l e R2 : 0 .5764 , Adjusted R2 : 0 .5633
F= s t a t i s t i c : 44 . 01 on 3 and 97 DF, p=value : < 2 .2e=16

5.2 Mean-centered Interaction Models

Sometimes people will fit a model like this

yi = bo + b1x1i + b2x2i + ei (5)
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Table 5: Comparing Ordinary and Standardized Regression

Not Standardized Standardized
Estimate (S.E.) Estimate (S.E.)

(Intercept) -8.211 (6.077)
x1 2.627 (7.572)
x2 -5.929*** (0.604)
x1:x2 0.242 (0.781)
x1s 0.175 (0.500)
x2s -0.657*** (0.067)
‘x1:x2s‘ 0.156 (0.500)

N 100 100
RMSE 10.934 0.657
R2 0.576 0.576
adj R2 0.563 0.563

∗p ≤ 0.05∗∗ p ≤ 0.01∗∗∗p ≤ 0.001

and then wonder, “is there an interaction between x1i and x2i?” The natural inclination is to
run this model,

m1 <= lm(y ∼ x1*x2 )

or its equivalent

m2 <= lm(y ∼ x1 + x2 + x1 : x2 )

Researchers have been advised that they should not run the ordinary interaction model without
“mean-centering” the predictors (Aiken and West, 1991). They are advised to replace x1i with
(x1i − x1) and x2i with (x2i − x2), so that the fitted model will

yi = bo + b1(x1i − x1) + b2(x2i − x2) + b3(x1i − x1)(x2i − x2) + ei (6)

This is a little tedious to do in R, so I provide a function meanCenter() that can handle the
details. meanCenter() will receive a model, scan it for interaction terms, and then center the
variables that are involved in interactions. We previously fit the model m4, and now we center
it.

m4mc <= meanCenter (m4)
summary(m4mc)

These v a r i a b l e s were mean=centered be f o r e any t rans fo rmat i ons were made on the des ign
matr ix .

[ 1 ] ”x1c ” ”x2c ”
The c en t e r s and s c a l e f a c t o r s were

x1c x2c
mean =0.01591005 9 .882781
s c a l e 1 .00000000 1 .000000
The summary s t a t i s t i c s o f the v a r i a b l e s in the des ign matrix ( a f t e r c en t e r i ng ) .

mean s t d . d e v .
y4 =66.93072 16 .54351
x1c 0 .00000 1 .09885
x2c 0 .00000 1 .83261
x1c : x2c =0.17691 1 .44789

The f o l l ow i ng r e s u l t s were produced from :
meanCenter .de fau lt (model = m4)

Cal l :
lm( formula = y4 ∼ x1c * x2c , data = stddat )

Res idua l s :
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Min 1Q Median 3Q Max
=28.5387 =7.6686 =0.5399 6 .7013 30 .9809

Co e f f i c i e n t s :
Estimate Std . Error t va lue Pr(>| t | )

( I n t e r c ep t ) =66.8878 1 .1021 =60.694 < 2e=16 ***

x1c 5 .0238 1 .0263 4 .895 3 .97e=06 ***

x2c =5.9331 0 .6049 =9.809 3 .83e=16 ***

x1c : x2c 0 .2425 0 .7809 0 .311 0 .757
===

S i g n i f . codes : 0 ' *** ' 0 .001 ' ** ' 0 .01 ' * ' 0 .05 ' . ' 0 . 1 ' ' 1

Res idua l standard e r r o r : 10 .93 on 96 degree s o f freedom
Mult ip l e R2 : 0 .5764 , Adjusted R2 : 0 .5632
F= s t a t i s t i c : 43 . 55 on 3 and 96 DF, p=value : < 2 .2e=16

By default, meanCenter() will only center the variables involved in an interaction, and it leaves
the others unchanged. The user can request a different treatment of the variables. Version 1.8
introduces the argument “terms”, which allows the user to list the names of the predictors that
should be centered. If the user wants all of the numeric predictors to be mean-centered, the
usage of the argument centerOnlyInteractors would be appropriate:

m4mc <= meanCenter (m4, c en t e rOn ly In t e ra c to r s = FALSE)

By default, it does not standardize while centering (but the user can request standardization
with the argument standardize = TRUE. The option centerDV causes the dependent variable
to be centered as well.

5.3 Residual-centered Models

Residual-centering (Little et al., 2006) is another adjustment that has been recommended for
models that include interactions or squared terms. Like mean-centering, it is often recommended
as a way to obtain smaller standard errors or to make estimates more numerically stable. Like
mean centering, it causes a superficial change in the estimated coefficients, but the predicted
values and the regression relationship is not actually changed. Nothing of substance is altered.

The residualCenter() function is used in the same manner as meanCenter(). The user fits an
interactive model and the result object is passed to residualCenter() like so:

m4rc <= r e s i dua lCent e r (m4)
summary(m4rc )

Ca l l :
lm( formula = y4 ∼ x1 + x2 + x1.X.x2 , data = mfnew)

Res idua l s :
Min 1Q Median 3Q Max

=28.5387 =7.6686 =0.5399 6 .7013 30 .9809

Co e f f i c i e n t s :
Estimate Std . Error t va lue Pr(>| t | )

( I n t e r c ep t ) =8.3976 6 .0476 =1.389 0 .168
x1 4 .9576 1 .0040 4 .938 3 .33e=06 ***

x2 =5.9148 0 .6020 =9.825 3 .53e=16 ***

x1.X.x2 0 .2425 0 .7809 0 .311 0 .757
===

S i g n i f . codes : 0 ' *** ' 0 .001 ' ** ' 0 .01 ' * ' 0 .05 ' . ' 0 . 1 ' ' 1

Res idua l standard e r r o r : 10 .93 on 96 degree s o f freedom
Mult ip l e R2 : 0 .5764 , Adjusted R2 : 0 .5632
F= s t a t i s t i c : 43 . 55 on 3 and 96 DF, p=value : < 2 .2e=16

I would explain residual-centering as follows. Suppose we fit the linear model, with no inter-
action (note, I’m calling the coefficients cj , not bj as usual):

y = c0 + c1x1 + c2x2 + ei. (7)
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Let’s proceed as if those parameter estimates, ĉ1, ĉ2, are the “right ones” for our analytical
purpose. We’d like to fit an interactive model, but protect the linear parts from fluctuation. In
R, when we run the model lm(y ∼x1 * x2), we are allowing all of the coefficients of all variables
to fluctuate

yi = bo + b1x1i + b2x2i + b3x1i × x2i + ei (8)

Residual centering is one way to stabilize the estimation by assuring that b̂1 = ĉ1 and b̂2 = ĉ2.
Only the coefficient b̂3 floats freely.
One of the reasons that residual-centering is so appealing is that its stabilizing benefit is

obtained almost by accident. Here is the gist of the calculations. First, estimate a regression in
which the left hand side is the interaction product term:

(x1i × x2i) = d0 + d1x1i + d2x2 + ui (9)

The residuals from that regression are, by definition, orthogonal to both x1 and x2. Call those
fitted residuals ûi. The we run the interactive regression, replacing the column of the predictor
x1i × x2i, with ûi. That is to say, the model we want, equation (8), is estimated as:

yi = b0 + b1x1i + b2x2i + b3ûi + ei, (10)

In essence, we have taken the interaction (x1i × x2i), and purged it of its parts that are linearly
related to x1i and x2i.

rockchalk 1.6 included summary, print, and predict methods for the residual-centered regres-
sion objects. It is worth mentioning that the code can handle interactions of arbitrarily many
predictors. If the formula has lm(y ∼x1 * x2 * x3 * x4), for example, this implies many sepa-
rate interactions must be calculated. We need to calculate residual-centered residuals for x1 ·x2,
x1 ·x3, x1 ·x4, x2 ·x3 and so forth, and then use them as predictors to get centered estimates of
terms x1 · x2 · x3, and then their centered values are predictors four term interactions. Aspiring
R programmers who want to learn about programming with R formula objects might benefit
from the study of the function residualCenter.R in the rockchalk source code.

6 A Brief Analysis of Mean-Centering

We can put the tools together by making a little detour into the question that seems to plague
every regression analyst at one time or another: What does that interaction term really mean?
Along the way, we will try to dispel the idea that centering somehow makes estimates“better”or
more numerically precise. The primary advocates of centering as a way to deal with numerical
instability are Aiken and West (1991), who integrated that advice into the very widely used re-
gression textbook, Applied Multiple Regression/Correlation for the Behavioral Sciences (Cohen
et al., 2002). They claim that the inclusion of interactions causes “inessential multicollinearity”
that is alleviated by centering. The advice is widely followed. One statistics book intended for
biologists observed, for example, “We support the recommendation of Aiken & West (1991) and
others that multiple regression with interaction terms should be fitted to data with centered
predictor values” (Quinn, 2002, Chapter 6).
Technical rebuttals have been published already (Kromrey, 1998), but the matter still seems

not widely understood. The argument is not that mean-centering (or residual-centering) is
wrong, but rather that it is unnecessary. It is irrelevant, and possibly, misleading.
At the core of the matter is the fact that our uncertainty about regression estimates depends

on our point of view. Please review the confidence interval in Figure 1. The y axis is not even
“in the picture.” Would one’s appreciation of the regression’s predictive line be enhanced if the
y axis were moved into the picture?
We can move the y axis by centering the predictor variable. Suppose we replace xi with xi −5

and then re-estimate the model. That has the simple effect of moving the y axis 5 units to the
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Table 6: Comparing Regressions

Linear Interaction Mean-centered Residual-centered
Estimate (S.E.) Estimate (S.E.) Estimate (S.E.) Estimate (S.E.)

(Intercept) -285.237** (97.299) -170.869 (380.318) 623.450** (15.805) -285.237** (97.410)
x1 19.506** ( 1.612) 17.233* ( 7.483) 19.506** ( 1.614)
x2 -1.383 ( 1.634) -3.732 ( 7.727) -1.383 ( 1.636)
x1:x2 0.046 ( 0.148)
x1c 19.536** ( 1.617)
x2c -1.415 ( 1.640)
x1c:x2c 0.046 ( 0.148)
x1.X.x2 0.046 ( 0.148)

N 400 400 400 400
RMSE 303.894 304.241 304.241 304.241
R2 0.281 0.281 0.281 0.281
adj R2 0.277 0.275 0.275 0.275

∗p ≤ 0.05∗∗ p ≤ 0.01

right. The slope is unchanged, and the reported intercept is changed in a completely superficial
way. The predicted value line, the slope estimates, the residual standard error, and so forth,
are not changed in any substantial way. This is simply a matter of user convenience. I believe
that no reasonable person can say the regression is “better” after centering xi.
However, there is a superficial difference that has deceived many authors. Notice that the

confidence interval is hourglass shaped. At the new y axis, our prediction is more precise. If
we move the y axis further to the right, into the center of the data, say by mean-centering
(xi − 10), we move to the position that allows an even more precise prediction. The estimate of
the intercept’s standard error will be smaller for the obvious reason. We are not actually gaining
certainty, we are simply reporting our most favorable “snapshot” of it. The predicted value, and
the confidence interval for any observed value of xi is completely unchanged by centering.
It should not surprise the reader to learn that mean-centering interactive predictors enhances

the standard errors in the same illusory way. Let’s work though an example to see why this is
so tempting. Suppose the true data generating mechanism is an interaction like so

yi = 2 + 0.1x1i + 0.1x2i + 0.2 · (x1i × x2i) + ei, (11)

where ei ∼ N(0, 3002) and ρx1,x2 = 0.4.
A regression analysis that ignores the interaction,

lm(y ∼ x1 + x2 , data = dat2 )

is reported in the first column of Table 6. I’ve used outreg’s new alpha argument to emphasize
the “really good” estimates with more stars. Notice that everything is “statistically significant!”
Unable to leave well enough alone, the researcher wonders, “is there an interaction between

x1 and x2?” Run

lm(y ∼ x1 * x2 , data = dat2 )

The second column in Table 6 summarizes that regression. Be prepared for a shock when you
scan the estimates. Almost everybody I know has said “what the heck?” or “Holy Cow!” or
“Oh My God, my great result went to Hell, I’ll never get tenure!” Neither of the key variables
is “statistically significant” any more.

Cohen, et al. claim that the apparent instability of the coefficients is a reflection of“inessential
collinearity,” due to the fact that x1 and x2 are correlated with the new term, x1 × x2. They
advised their readers to “mean-center” their predictors and run the regression again.
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Remember the hourglass shape of the confidence interval. By mean-centering, we are re-
positioning ourself for a much more favorable snapshot. The welcoming effect of the centered
estimates is found in the third column of Table 6. The point estimates in that snapshot are
“significant again.” It appears we have “solved” the problem of inessential collinearity.

The first hint of trouble is in the fact that the coefficients of the interactive effects in columns
2 and 3 are identical. Those coefficients are the same because they are estimates of the cross
partial derivative ∂2y/∂x1∂x2. That particular value is the same, no matter where we position
the y axis, as it should be. Note as well that the root mean square and R2 estimates are
identical. Everything that we expect to remain the same is the same. Except for the fact that
the slopes and their hypothesis tests seem better in the centered model, we would think there
is nothing interesting here.
Here’s a puzzle for you. Consider Figure 9, which shows the predicted values and confidence

intervals from the centered and uncentered regressions. Is there any substantively important
difference between these two regressions?
Perhaps the 2-D plots are not persuasive. Don’t stop yet. In the 3-D plots will help quite

a bit. We have not yet grasped the most fundamental changed caused by the insertion of the
interaction term. When we insert x1i × x2i, we change the fudamental nature of the regression
surface. The surface of the fitted model is no longer a “flat” plane, but rather it is a curving
surface.
I’ve assembled 3-D plots in Figure 10. We see that the ordinary interaction, mean-centered,

and residual-centered models produce identical predicted values! The only difference in the
figures is that the axes of the predictors have been re-scaled, so that the y axis is (implicitly)
re-positioned. Now that we understand the situation, we could play around with the data
and move the axis back and forth until we arrive at a position that is most favorable to our
interpretation.
The regression coefficient estimates are snapshots, each summarizing the curvature at one

particular point in a curving surface. It seems quite apparent in Figure 10 that the models are
identical, and yet we receive different regression reports from different spots. The non-centered
data offers us the slope estimate from the“front-left”part of the graph. Mean-centered estimates
report on the slope in the middle of the graph. In the rockchalk examples folder, one can find
a file called “centeredRegression.R” that walks through this argument step by step.
What about residual-centering? Because the transformation that it employs is more abstract,

I initially thought it was actually a different model. And yet it is not. The residual-centered
model is completely equivalent to the ordinary interaction model and the mean-centered model.
For a given combination of the input values, the predicted values and confidence intervals are
the same. The predicted values of the ordinary interactive model, the mean-centered model,
and the residual-centered models are illustrated in Figure 11.
The take-away point from this is that there is no free lunch in regression analysis. If re-scaling

a variable by adding or subtracting a constant seems to change a result, one should be cautious
and suspect an error.
In order to drive the point home, I’d like to show that it is possible to translate between the

estimates of any one of these fitted models and the estimates of the others. The ordinary model
is

yi = b0 + b1x1i + b2x2i + b3(x1i × x2i) + e1i (12)

The mean-centered model is

yi = c0 + c1(x1i − x1) + c2(x2i − x2) + c3(x1i − x1) · (x2i − x2) + e2i (13)

In order to compare with equation 12, we would re-arrange like so

yi = c0 + c1(x1i) − c1x1 + c2(x2i) − c2x2 + c3(x1ix2i + x1x2 − x1x2i − x2x1i) + e2i (14)
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Figure 9: plotSlopes for the centered and non-centered regressions
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Figure 11: Predicted Values of Mean and Residual-centered Models
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yi = c0 + c1(x1i) − c1x1 + c2(x2i) − c2x2 + c3(x1ix2i) + c3x1x2 − c3x1x2i − c3x2x1i) + e2i (15)

yi = {c0 − c1x1 − c2x2 + c3x1x2} + {c1 − c3x2}x1i + {c2 − c3x1}x2i + c3(x1ix2i) + e2i (16)

One can then compare the parameter estimates from equations 12 and 16. Both 12 and 16
include a single parameter times (x1ix2i), leading one to expect that the estimate b̂3 should be
equal to the estimate of ĉ3, and they are! Less obviously, one can use the fitted coefficients from
either model to deduce the fitted coefficients from the other. The following equalities describe
that relationship.

b̂0 = ĉ0 − ĉ1x1 − ĉ2x2 + ĉ3x1x2 (17)

b̂1 = ĉ1 − ĉ3x2 (18)

b̂2 = ĉ2 − ĉ3x1 (19)

b̂3 = ĉ3 (20)

The estimated fit of equation 13 would provide estimated coefficients ĉj , j = 0, ..., 3, which
would then be used to calculate the estimates from the non-centered model.
The estimation of the residual-centered model requires two steps. The residual from this

regression model ̂(x1i × x2i) = d̂0 + d̂1x1i + d̂2x2i. (21)

is
ûi = (x1i × x2i) − ̂(x1i × x2i), (22)

which is inserted into equation 12.

yi = h0 + h1x1i + h2x2i + h3{x1i × x2i − ̂x1i × x2i} + e3i (23)

Replacing ̂x1i × x2i with d̂0 + d̂1x1i + d̂2x2i, 23 becomes

yi = h0 + h1x1i + h2x2i + h3{x1i × x2i − d̂0 − d̂1x1i − d̂2x2i} + e3i (24)

= h0 + h1x1i + h2x2i + h3{x1i × x2i} − h3d̂0 − h3d̂1x1i − h3d̂2x2i} + e3i (25)

{h0 − h3d̂0} + {h1 − h3d̂1}x1i + {h2 − h3d̂2}x2i + h3{x1i × x2i} + e3i (26)

As in the previous comparison, we can translate coefficient estimates between the ordinary
specification and the residual-centered model. The coefficient estimated for the product term,
ĥ3, should be equal to b̂3 and ĉ3 (and it is!). If we fit the residual centered model, 23, we can
re-generate the coefficients of the other models like so:

b̂0 = ĉ0 − ĉ1x1 − ĉ2x2 + ĉ3x1x2 = h0 − h3d̂0 (27)

b̂1 = ĉ1 − ĉ3x2 = h1 − h3d̂1 (28)

b̂2 = ĉ2 − ĉ3x1 = h2 − h3d̂2 (29)

From the preceding, it should be clear enough that the three models are equivalent.
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7 Conclusion

The rockchalk package is offered as a system of support for teachers and students of regression
analysis. It should help with the preparation of plots, summary tables, and other diagnostics.
A number of functions are currently offered in this package that have not been emphasized

in this writeup. I would draw the reader to the help pages for these functions

combineLevels a recoder for factor variables

mcDiagnose a one stop shop for multicollinearity diagnostic information

getDeltaRsquare calculate the change in the R2 that results from the omission of each variable.
This is the squared semi-partial correlation coefficient.

getPartialCor calculates the partial correlation matrix of the predictors in a regression model

lazyCor and lazyCov convenient ways to create correlation and covariance matrices that are
needed in many simulation exercises

mvrnorm a slightly improved version of the MASS package’s multivariate normal generator.
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