Version 1.5.2
License GPL-3

Package ‘rngtools’

October 14, 2022

Title Utility Functions for Working with Random Number Generators

Description Provides a set of functions for working with
Random Number Generators (RNGs). In particular, a generic
S4 framework is defined for getting/setting the current RNG, or RNG data
that are embedded into objects for reproducibility.
Notably, convenient default methods greatly facilitate the way current
RNG settings can be changed.

URL https://renozao.github.io/rngtools/

BugReports https://github.com/renozao/rngtools/issues

Encoding UTF-8

Depends R (>= 3.2.0), methods

Imports digest, utils, stats, parallel

Suggests covr, RUnit, testthat
RoxygenNote 7.0.2

NeedsCompilation no

Author Renaud Gaujoux [aut, cre],
Max Kuhn [ctb]

Maintainer Renaud Gaujoux <renozao@protonmail.com>
Repository CRAN
Date/Publication 2021-09-20 15:50:02 UTC

R topics documented:

getRNG

https://renozao.github.io/rngtools/
https://github.com/renozao/rngtools/issues

mg.equal e e e e e e 8
RNGseed e e e 8
RNGseq o e 10
RNGStr . . o e 11
mgLools oL 14
Index 16
.getRNG Getting RNG Seeds
Description

.getRNG is an S4 generic that extract RNG settings from a variety of object types. Its methods
define the workhorse functions that are called by getRNG.

Usage
.getRNG(object, ...)

S4 method for signature 'ANY'
.getRNG(object, ...)

S4 method for signature 'missing'’
.getRNG(object)

S4 method for signature 'list'
.getRNG(object)

S4 method for signature 'numeric'

.getRNG(object, ...)
Arguments
object an R object from which RNG settings can be extracted, e.g. an integer vector

containing a suitable value for .Random. seed or embedded RNG data, e.g., in
S3/S4 slot rng or rng$noise.

extra arguments to allow extension and passed to a suitable S4 method . getRNG
or .setRNG.

Methods (by class)

"ANY": Default method that tries to extract RNG information from object, by looking sequentially
to a slot named 'rng', a slot named 'rng.seed' or an attribute names 'rng'.

It returns NULL if no RNG data was found.

"missing": Returns the current RNG settings.

.SetRNG 3

"list": Method for S3 objects, that aims at reproducing the behaviour of the function getRNG of the
package getRNG.

It sequentially looks for RNG data in elements 'rng', noise$rng if element 'noise’ exists and is
a list, or in attribute 'rng’.

"numeric": Method for numeric vectors, which returns the object itself, coerced into an integer
vector if necessary, as it is assumed to already represent a value for .Random. seed.

.setRNG Setting RNG Seeds

Description

.SetRNG is an S4 generic that sets the current RNG settings, from a variety of specifications. Its
methods define the workhorse functions that are called by setRNG.

Usage

.setRNG(object, ...)

S4 method for signature 'character'
.setRNG(object, ...)

S4 method for signature 'numeric'

.setRNG(object, ...)
Arguments
object an R object from which RNG settings can be extracted, e.g. an integer vector

containing a suitable value for .Random. seed or embedded RNG data, e.g., in
S3/S4 slot rng or rng$noise.

extra arguments to allow extension and passed to a suitable S4 method . getRNG
or .setRNG.

Methods (by class)

"character": Sets the RNG to kind object, assuming is a valid RNG kind: it is equivalent to
RNGkind(object, All arguments in ... are passed to RNGkind.

"numeric": Sets the RNG settings using object directly the new value for .Random. seed or to
initialise it with set. seed.

Examples

set RNG kind

old <- setRNG('Marsaglia')
restore

setRNG(old)

4 checkRNG

directly set .Random.seed
rng <- getRNG()

r <- runif(10)

setRNG(rng)

rng.equal(rng)

initialise from a single number (<=> set.seed)
setRNG(123)

rng <- getRNG()

runif(10)

set.seed(123)

rng.equal(rng)

checkRNG Checking RNG Differences in Unit Tests

Description

checkRNG checks if two objects have the same RNG settings and should be used in unit tests, e.g.,
with the RUnit package.

Usage
checkRNG(x, y = getRNG(), ...)
Arguments
X,y objects from which RNG settings are extracted.
extra arguments passed to checkTrue.
Examples

#--- checkRNG ---

check for differences in RNG
set.seed(123)

checkRNG(123)

try(checkRNG(123, 123))

try(checkRNG(123, 1:3))

getRNG

getRNG

Getting/Setting RNGs

Description

getRNG returns the Random Number Generator (RNG) settings used for computing an object, using
a suitable .getRNG S4 method to extract these settings. For example, in the case of objects that
result from multiple model fits, it would return the RNG settings used to compute the best fit.

Usage

getRNG(object,
hasRNG(object)
nextRNG(object,

setRNG(object,

Arguments

object

num. ok

extract

recursive

ndraw
verbose

check

Details

., num.ok = FALSE, extract = TRUE, recursive = TRUE)

., hdraw = 0oL)

., verbose = FALSE, check = TRUE)

an R object from which RNG settings can be extracted, e.g. an integer vector
containing a suitable value for .Random. seed or embedded RNG data, e.g., in
S3/S4 slot rng or rng$noise.

extra arguments to allow extension and passed to a suitable S4 method . getRNG
or .setRNG.

logical that indicates if single numeric (not integer) RNG data should be consid-
ered as a valid RNG seed (TRUE) or passed to set. seed into a proper RNG seed
(FALSE) (See details and examples).

logical that indicates if embedded RNG data should be looked for and extracted
(TRUE) or if the object itself should be considered as an RNG specification.

logical that indicates if embedded RNG data should be extracted recursively
(TRUE) or only once (FASE).

number of draws to perform before returning the RNG seed.
a logical that indicates if the new RNG settings should be displayed.

logical that indicates if only valid RNG kinds should be accepted, or if invalid
values should just throw a warning. Note that this argument is used only on R
>=3.0.2.

This function handles single number RNG specifications in the following way:

integers Return them unchanged, considering them as encoded RNG kind specification (see RNG).
No validity check is performed.

6 getRNG

real numbers If num.ok=TRUE return them unchanged. Otherwise, consider them as (pre-)seeds
and pass them to set. seed to get a proper RNG seed. Hence calling getRNG(1234) is equiv-
alent to set.seed(1234); getRNG() (See examples).

Value

getRNG, getRNG1, nextRNG and setRNG usually return an integer vector of length > 2L, like . Random. seed.
getRNG and getRNG1 return NULL if no RNG data was found.
setRNG invisibly returns the old RNG settings as they were before changing them.

See Also

.Random. seed, showRNG

Examples

#--- getRNG ---

get current RNG settings
s <- getRNG()

head(s)

showRNG(s)

get RNG from a given single numeric seed

s1234 <- getRNG(1234)

head(s1234)

showRNG(s1234)

this is identical to the RNG seed as after set.seed()
set.seed(1234)

identical(s1234, .Random.seed)

but if num.ok=TRUE the object is returned unchanged
getRNG(1234, num.ok=TRUE)

single integer RNG data = encoded kind
head(getRNG(1L))

embedded RNG data
s <- getRNG(list(1L, rng=1234))
identical(s, s1234)

#--- hasRNG ---

test for embedded RNG data

hasRNG(1)

hasRNG(structure(1, rng=1:3))

hasRNG(list(1, 2, 3))

hasRNG(list(1, 2, 3, rng=1:3))

hasRNG(list(1, 2, 3, noise=list(1:3, rng=1)))

#--- nextRNG ---
head(nextRNG())

getRNG1 7

head (nextRNG(1234))
head(nextRNG(1234, ndraw=10))

#--- setRNG ---

obj <- list(x=1000, rng=123)
setRNG(obj)

rng <- getRNG()

runif(10)

set.seed(123)

rng.equal(rng)

getRNG1 Extracting RNG Settings from Computation Result Objects

Description

getRNG1 is an S4 generic that returns the initial RNG settings used for computing an object. For
example, in the case of results from multiple model fits, it would return the RNG settings used to
compute the first fit.

Usage
getRNG1(object, ...)

S4 method for signature 'ANY'
getRNG1 (object, ...)

Arguments

object an R object.

extra arguments to allow extension.

Details

getRNG1 is defined to provide separate access to the RNG settings as they were at the very beginning
of a whole computation, which might differ from the RNG settings returned by getRNG, that allows
to reproduce the result only.

Think of a sequence of separate computations, from which only one result is used for the result
(e.g. the one that maximizes a likelihood): getRNG1 would return the RNG settings to reproduce
the complete sequence of computations, while getRNG would return the RNG settings necessary to
reproduce only the computation whose result has maximum likelihood.

Methods (by class)

¢ ANY: Default method that is identical to getRNG(object, ...).

8 RNGseed

rng.equal Comparing RNG Settings

Description

rng.equal compares the RNG settings associated with two objects.

Usage

rng.equal(x, y)

rngl.equal(x, y)

Arguments
X objects from which RNG settings are extracted
y object from which RNG settings are extracted
Details

These functions return TRUE if the RNG settings are identical, and FALSE otherwise. The comparison
is made between the hashes returned by RNGdigest.

Value

rng.equal and rng.equall return a TRUE or FALSE.

RNGseed Directly Getting or Setting the RNG Seed

Description

These functions provide a direct access to the RNG seed object .Random. seed.

Usage

RNGseed(seed)

RNGrecovery()

Arguments

seed an RNG seed, i.e. an integer vector. No validity check is performed, so it must
be a valid seed.

RNGseed 9

Value

invisibly the current RNG seed when called with no arguments, or the — old — value of the seed
before changing it to seed.

Functions

* RNGseed: directly gets/sets the current RNG seed .Random. seed. It can typically be used to
backup and restore the RNG state on exit of functions, enabling local RNG changes.

* RNGrecovery: recovers from a broken state of .Random. seed, and reset the RNG settings to

defaults.
Examples
#--- RNGseed ---

get current seed

RNGseed ()

directly set seed

old <- RNGseed(c(401L, 1L, 1L))
show old/new seed description
showRNG(old)

showRNG()

set bad seed
RNGseed(2:3)

try(showRNG())

recover from bad state
RNGrecovery ()

showRNG()

example of backup/restore of RNG in functions
f <= function(){

orng <- RNGseed()

on.exit(RNGseed(orng))

RNGkind('Marsaglia')

runif(10)

3

sample(NA)
s <- .Random.seed

O

identical(s, .Random.seed)

10 RNGseq

RNGseq Generate Sequence of Random Streams

Description

These functions are used to generate independent streams of random numbers.

Usage
RNGseq(n, seed = NULL, ..., simplify = TRUE, version = 2)

RNGseq_seed(seed = NULL, normal.kind = NULL, sample.kind = NULL,
verbose = FALSE, version = 2)

Arguments
n Number of streams to be created
seed seed specification used to initialise the set of streams using RNGseq_seed.
extra arguments passed to RNGseq_seed.
simplify a logical that specifies if sequences of length 1 should be unlisted and returned
as a single vector.
version version of the function to use, to reproduce old behaviours. Version 1 had a

bug which made the generated stream sequences share most of their seeds (!), as
well as being not equivalent to calling set. seed(seed) ; RNGseq_seed (NULL).
Version 2 fixes this bug.

normal.kind Type of Normal random generator passed to base::RNGkind. See RNG.

sample.kind Type of Discrete Uniform random generator passed to base::RNGkind. See RNG.
Note that this argument is valid for R >= 3.6.0, and an error will be thrown if
one tries to use it in previous versions of R.

verbose logical to toggle verbose messages

Value

a list of integer vectors (or a single integer vector if n=1 and unlist=TRUE).

a 7-length numeric vector.

Functions

* RNGseq: Creates a given number of seeds for L’Ecuyer’s RNG, that can be used to seed parallel
computation, making them fully reproducible.
This ensures complete reproducibility of the set of run. The streams are created using L’Ecuyer’s
RNG, implemented in R core since version 2.14.0 under the name "L'Ecuyer-CMRG" (see
RNG).
Generating a sequence without specifying a seed uses a single draw of the current RNG. The
generation of a sequence using seed (a single or 6-length numeric) a should not affect the
current RNG state.

RNGstr 11

* RNGseq_seed: generates the — next — random seed used as the first seed in the sequence
generated by RNGseq.

See Also

RNGseq

Examples

RNGseq(3)

RNGseq(3)

RNGseq(3, seed=123)

or identically

set.seed(123)

identical (RNGseq(3), RNGseq(3, seed=123))

RNGseq(3, seed=1:6, verbose=TRUE)
select Normal kind
RNGseq(3, seed=123, normal.kind="Ahrens")

generate a seed for RNGseq
random

RNGseq_seed ()

RNGseq_seed()

RNGseq_seed (NULL)

fixed

RNGseq_seed(1)
RNGseq_seed(1:6)

“RNGseq_seed(1)" is identical to
set.seed(1)

s <- RNGseqg_seed()

identical(s, RNGseq_seed(1))

RNGstr Formatting RNG Information

Description

These functions retrieve/prints formated information about RNGs.

12 RNGstr

Usage
RNGstr(object, n = 7L, ...)
RNGtype(object, ..., provider = FALSE)
showRNG(object = getRNG(), indent = "#", ...)
RNGinfo(object = getRNG(), ...)

RNGdigest(object = getRNG())

Arguments

object RNG seed (i.e. an integer vector), or an object that contains embedded RNG
data. For RNGtype this must be either a valid RNG seed or a single integer that
must be a valid encoded RNG kind (see RNGkind).

n maximum length for a seed to be showed in full. If the seed has length greater
than n, then only the first three elements are shown and a digest hash of the
complete seed is appended to the string.

extra arguments passed to RNGtype.

provider logical that indicates if the library that provides the RNG should also be returned
as an extra element.
indent character string to use as indentation prefix in the output from showRNG.
Details

All functions can be called with objects that are — valid — RNG seeds or contain embedded RNG
data, but none of them change the current RNG setting. To effectively change the current settings
on should use setRNG.

Value

a single character string

RNGtype returns a named character vector containing the types of the random number generator,
which correspond to the arguments accepted by base::RNGkind. Note that starting with R 3.6, the
vector has length 3, while in previous R versions it has length 2 (no sample.kind element).

Functions

* RNGstr: returns a description of an RNG seed as a single character string.
It formats seeds by collapsing them in a comma separated string. By default, seeds that contain
more than 7L integers, have their 3 first values collapsed plus a digest hash of the complete
seed.

¢ RNGtype: extract the kinds of RNG and Normal RNG.

It returns the same type of values as RNGkind() (character strings), except that it can extract
the RNG settings from an object. If object is missing it returns the kinds of the current RNG
settings, i.e. it is identical to RNGkind().

RNGstr 13

* showRNG: displays human readable information about RNG settings. If object is missing it
displays information about the current RNG.

* RNGinfo: is equivalent to RNGtype but returns a named list instead of an unnamed character
vector.

Examples

default is a 626-long integer

RNGstr()

what would be the seed after seeding with set.seed(1234)
RNGstr(1234)

another RNG (short seed)

RNGstr(c(401L, 1L, 1L))

no validity check is performed

RNGstr(2:3)

get RNG type
RNGtype ()

RNGtype (provider=TRUE)
RNGtype(1:3)

type from encoded RNG kind

RNGtype (107L)

this is different from the following which treats 107 as a seed for set.seed
RNGtype(107)

showRNG ()

as after set.seed(1234)
showRNG(1234)

showRNG ()

set.seed(1234)

showRNG ()

direct seeding
showRNG(1:3)

this does not change the current RNG
showRNG()
showRNG(provider=TRUE)

get info as a list
RNGinfo()
RNGinfo(provider=TRUE)
from encoded RNG kind
RNGinfo(107)

compute digest hash from RNG settings
RNGdigest ()

RNGdigest(1234)

no validity check is performed
RNGdigest(2:3)

14 rngtools

rngtools Utility functions for working with Random Number Generators

Description

This package contains a set of functions for working with Random Number Generators (RNGs). In
particular, it defines a generic S4 framework for getting/setting the current RNG, or RNG data that
are embedded into objects for reproducibility.

Details

Notably, convenient default methods greatly facilitate the way current RNG settings can be changed.

Examples

showRNG()
s <- getRNG()
RNGstr(s)
RNGtype(s)

get what would be the RNG seed after set.seed
s <- nextRNG(1234)

showRNG(s)

showRNG(nextRNG(1234, ndraw=10))

change of RNG kind
showRNG()

k <- RNGkind()

k[2L] <- 'Ahrens'
try(RNGkind(k))
setRNG(k)

showRNG ()

set encoded kind
setRNG(501L)
showRNG ()

use as set seed
setRNG(1234)
showRNG ()

r <- getRNG()

extract embedded RNG specifications
runif(10)

setRNG(list(1, rng=1234))
rng.equal(r)

restore default RNG (e.g., after errors)
RNGrecovery()
showRNG()

rngtools

15

Index

.Random. seed, 3, 6

.getRNG, 2

.getRNG, ANY-method (. getRNG), 2
.getRNG, list-method (.getRNG), 2
.getRNG, missing-method (.getRNG), 2
.getRNG, numeric-method (. getRNG), 2
.SetRNG, 3

.setRNG, character-method (.setRNG), 3
.setRNG, numeric-method (.setRNG), 3

base: :RNGkind, /0, 12

checkRNG, 4
checkTrue, 4

getRNG, 5
getRNGT1, 7
getRNG1,ANY-method (getRNG1), 7

hasRNG (getRNG), 5
nextRNG (getRNG), 5

RNG, 5, 10

rng.equal, 8

rngl.equal (rng.equal), 8
RNGdigest (RNGstr), 11
RNGinfo (RNGstr), 11
RNGkind, 3, 12
RNGrecovery (RNGseed), 8
RNGseed, 8

RNGseq, 10, 11
RNGseq_seed, 10
RNGseq_seed (RNGseq), 10
RNGstr, 11

rngtools, 14
rngtools-package (rngtools), 14
RNGtype (RNGstr), 11

set.seed, 3,5, 6
setRNG, /2

16

setRNG (getRNG), 5
showRNG, 6
showRNG (RNGstr), 11

	.getRNG
	.setRNG
	checkRNG
	getRNG
	getRNG1
	rng.equal
	RNGseed
	RNGseq
	RNGstr
	rngtools
	Index

