## ----setup, include = FALSE--------------------------------------------------- knitr::opts_chunk$set( collapse = TRUE, comment = "#>" ) ## ----sub-pipeline-1, eval = FALSE--------------------------------------------- # # Data Preparation Sub-Pipeline # # pipelines/01_data_prep.R # library(rixpress) # # list( # rxp_r(name = raw_mtcars, expr = mtcars), # rxp_r(name = clean_mtcars, expr = dplyr::filter(raw_mtcars, am == 1)), # rxp_r(name = selected_mtcars, expr = dplyr::select(clean_mtcars, mpg, cyl, hp, wt)) # ) ## ----sub-pipeline-2, eval = FALSE--------------------------------------------- # # Analysis Sub-Pipeline # # pipelines/02_analysis.R # library(rixpress) # # list( # rxp_r(name = summary_stats, expr = summary(selected_mtcars)), # rxp_r(name = mpg_model, expr = lm(mpg ~ hp + wt, data = selected_mtcars)), # rxp_r(name = model_coefs, expr = coef(mpg_model)) # ) ## ----master-script, eval = FALSE---------------------------------------------- # # gen-pipeline.R # library(rixpress) # # # Create named pipelines with colours by pointing to the files # pipe_data_prep <- rxp_pipeline( # name = "Data Preparation", # path = "pipelines/01_data_prep.R", # color = "#E69F00" # ) # # pipe_analysis <- rxp_pipeline( # name = "Statistical Analysis", # path = "pipelines/02_analysis.R", # color = "#56B4E9" # ) # # # Build combined pipeline # rxp_populate(list(pipe_data_prep, pipe_analysis), project_path = ".", build = TRUE) ## ----color-modes, eval = FALSE------------------------------------------------ # # Dual encoding: fill = type, border = pipeline (default when pipelines are defined) # rxp_ggdag(color_by = "pipeline") # # # Colour entirely by derivation type (rxp_r, rxp_py, etc.) - original behaviour # rxp_ggdag(color_by = "type")