Package ‘ring’

September 6, 2024
Title Circular / Ring Buffers
Version 1.0.6

Description Circular / ring buffers in R and C. There are a couple
of different buffers here with different implementations that
represent different trade-offs.

License MIT + file LICENSE
URL https://mrc-ide.gitub.io/ring, https://github.com/mrc-ide/ring

BugReports https://github.com/mrc-ide/ring/issues
Imports R6

Suggests knitr, rmarkdown, testthat

RoxygenNote 7.2.3

VignetteBuilder knitr

Language en-GB

Encoding UTF-8

NeedsCompilation yes

Author Rich FitzJohn [aut, cre],
Imperial College of Science, Technology and Medicine [cph]

Maintainer Rich FitzJohn <rich.fitzjohn@gmail.com>
Repository CRAN
Date/Publication 2024-09-06 18:50:02 UTC

Contents
ring_buffer bytes 2
ring_buffer_bytes_translate oL o 8
ring_buffer_bytes_typed L 15
ring buffer env 22
Index 29

https://mrc-ide.gitub.io/ring
https://github.com/mrc-ide/ring
https://github.com/mrc-ide/ring/issues

2 ring_buffer_bytes

ring_buffer_bytes Byte array based ring buffer

Description

Construct a ring buffer where the buffer holds a stream of bytes. Optionally, the buffer can be
"strided" so that the bytes naturally fall into chunks of exactly the same size. It is implemented in
C in the hope that it will be fast, with the limitation that any data transfer to or from R will always
involve copies.

Usage
ring_buffer_bytes(size, stride = 1L, on_overflow = "overwrite")
Arguments
size Number of elements in the buffer, each of which will be stride bytes long.
stride Number of bytes per buffer element. Defaults to 1 byte. If you want to store
anything other than a bytestream in the buffer, you will probably want more than
one byte per element; for example, on most R platforms an integer takes 4 bytes
and a double takes 8 (see .Machine, and also ring_buffer_bytes_typed).
on_overflow Behaviour on buffer overflow. The default is to overwrite the oldest elements
in the buffer ("overwrite"). Alternative actions are "error"” which will throw
an error if a function tries to add more elements than there are space for, or
"grow" which will grow the buffer to accept the new elements (this uses an
approximately golden ratio approach; see details below).
Details

In contrast with ring_buffer_env, every element of this buffer has the same size; this makes it
less flexible (because you have to decide ahead of time what you will be storing), but at the same
time this can make using the buffer easier to think about (because you decided ahead of time what
you are storing).

If you want to use this to store fixed-size arrays of integers, numerics, etc, see ring_buffer_bytes_typed
which wraps this with fast conversion functions.

If the on_overflow action is "grow"” and the buffer overflows, then the size of the buffer will grow
geometrically (this is also the case if you manually $grow() the buffer with exact = FALSE. When
used this way, let n is the number of additional elements that space is needed for; ring then looks
at the total needed capacity (used plus n relative to size()). If the buffer needs to be made larger
to fit n elements in then it is grown by a factor of phi (the golden ratio, approximately 1.6). So if to
fit n elements in the buffer needs to be increased in size by m then the smallest of size * phi, size
* phi*2, size * phi*3, ... will be used as the new size.

In contrast, using the grow() method with exact = TRUE will always increase the size of the buffer
so long as n is positive.

ring_buffer_bytes 3

Methods

Note that this methods reference section is repeated verbatim between the three main ring buffer

classes; ring_buffer_env ("env"), ring_buffer_bytes ("bytes") and ring_buffer_bytes_typed
("typed"). Almost all methods have the same arguments and behaviour, but hopefully by listing ev-

erything together, the differences between implementations will be a bit more apparent.

reset Reset the state of the buffer. This "zeros" the head and tail pointer (and may or may not
actually reset the data) so that the buffer can be used as if fresh.

Usage: reset(clear = FALSE)
Arguments:

e clear: Logical, indicating if the memory should also be cleared. Generally this is not
necessary, but with environment buffers this can let the garbage collector clean up large
elements. For the bytes buffer this zeros the memory.

Return value: Nothing; called for the side effect only.

duplicate Clone the ring buffer, creating a copy. Copies both the underlying data and the position
of the head and tail.

Usage: duplicate()
Return value: A new ring buffer object
grow Increase the size of the buffer by n elements.
Usage:
* bytes, typed: grow(n)
e env: grow(n, exact = FALSE)

Arguments:

e n: The number of additional elements that space should be reserved for (scalar non-
negative integer).

\item{\code{exact}: (For bytes buffer only) Logical scalar indicating if growth should increa:

3
Return value: Nothing; called for the side effect only.

size Return the capacity (maximum size) of the ring buffer
Usage:

e env: size()
* bytes, typed: size(bytes = FALSE)
Arguments:

* bytes: (for ring_buffer_bytes only) Logical, indicating if the size should be returned
in bytes (rather than logical entries, which is the default).

Return value: A scalar integer

bytes_data Return the total size of the data storage used in this object.
Usage:

e env: (not supported)
* bytes, typed: bytes_data()

Return value: A scalar integer

ring_buffer_bytes

stride Length of each element in the ring buffer, in bytes. Only implemented (and meaningful)
for the bytes buffer; the environment buffer does not support this function as it makes no sense
there.

Usage:
e env: (not supported)
* bytes, typed: stride()
Return value: A scalar integer
used Return the amount of space used in the ring buffer.
Usage:
e env: used()
* bytes, typed: used(bytes = FALSE)
Arguments:

* bytes: (for ring_buffer_bytes only) Logical, indicating if the size should be returned
in bytes (rather than logical entries, which is the default).

Return value: A scalar integer
free Return the amount of space free in the ring buffer.
Usage:
e env: free()
* bytes, typed: free(bytes = FALSE)
Arguments:
* bytes: (for ring_buffer_bytes only) Logical, indicating if the size should be returned
in bytes (rather than logical entries, which is the default).
Return value: A scalar integer
is_empty Test if the ring buffer is empty
Usage: is_empty()
Return value: A scalar logical
is_full Test if the ring buffer is full
Usage: is_full()
Return value: A scalar logical
head_pos Return the number of entries from the "start" of the ring buffer the head is. This is mostly
useful for debugging.
Usage:
e env: head_pos()
* bytes, typed: head_pos(bytes = FALSE)
Arguments:
* bytes: (for ring_buffer_bytes only) Logical, indicating if the position should be re-
turned in bytes (rather than logical entries, which is the default).
Return value: A scalar integer
tail_pos Return the number of entries from the "start" of the ring buffer the tail is. This is mostly
useful for debugging.
Usage:

ring_buffer_bytes 5

e env: tail_pos()
* bytes, typed: tail_pos(bytes = FALSE)

Arguments:

* bytes: (for ring_buffer_bytes only) Logical, indicating if the position should be re-
turned in bytes (rather than logical entries, which is the default).

Return value: A scalar integer

head Return the contents of the head (the most recently written element in the ring buffer).
Usage: head()
Return value: Tt depends a little here. For ring_buffer_env this is a single R object. For
ring_buffer_bytes it is a raw vector, the same length as the stride of the ring buffer. For
ring_buffer_bytes_typed, a single R object that has been translated from raw.

tail Return the contents of the tail (the least recently written element in the ring buffer).
Usage: tail()
Return value: As for head

set Set a number of ring entries to the same value. The exact behaviour here varies depending on

the type of ring buffer. This function may overflow the ring buffer; in this case the tail will be
moved.

Usage: set(data, n)
Arguments:
» data: The data to set each ring element to. For an environment buffer, this may be any R

object. For a bytes buffer it may be either a single byte (in which case each ring element
will be set to that byte, repeated stride times), or a raw vector of length stride.

\item{\code{n}: The number of entries to set to \code{data}

}

Return value: Invisibly returns the number of elements actually written (which may be less
than n if the buffer overflows). Primarily called for its side effect.

push Push elements onto the ring buffer head. This may overflow the ring buffer, destroying the
oldest elements in the buffer (and moving the position of the tail).
Usage:
e env: push(data, iterate = TRUE)
* bytes, typed: push(data)
Arguments:
* data: Data to push onto the ring buffer. For ring_buffer_bytes, this must be a raw vec-
tor with a length that is a multiple of the buffer stride. For ring_buffer_bytes_typed

it must be a vector of the appropriate type. For ring_buffer_env it may be an arbitrary
R object (but see iterate .

\item{\code{iterate}: For \code{ring_buffer_env} only, changes the behaviour with vectors anc

}

Return value: For ring_buffer_bytes, the data invisibly. For ring_buffer_bytes and
ring_buffer_bytes_typed, the position of the head pointer (relative to the beginning of the
storage region).

ring_buffer_bytes

take Destructively take elements from the ring buffer. This consumes from the tail (the least
recently added elements). It is not possibly to underflow the buffer; if more elements are
requested than can be supplied then an error will be thrown and the state of the buffer unmod-
ified.

Usage: take(n)
Arguments:
¢ n: The number of elements to take.

Return value: For ring_buffer_env a 1list of n elements. For ring_buffer_bytes, a raw
vector of n * stride bytes. For ring_buffer_bytes_typed, an vector of n elements of the
storage mode of the ring.

read Nondestructively read elements from the ring buffer. This is identical to take except that the
state of the buffer is not modified.
Usage: read(n)
Arguments:
* n: The number of elements to read.

Return value: For ring_buffer_env a list of n elements. For ring_buffer_bytes, a raw
vector of n x stride bytes. For ring_buffer_bytes_typed, an vector of n elements of the
storage mode of the ring.

copy Copy from this ring buffer into a different ring buffer. This is destructive with respect to both
ring buffers; the tail pointer will be moved in this ring buffer as data are taken, and if the
destination ring buffer overflows, the tail pointer will be moved too.

Usage: copy(dest, n)
Arguments:
* dest: The destination ring buffer - will be modified by this call.
\item{\code{n}: The number of elements to copy

b

mirror Mirror the contents of this ring buffer into a different ring buffer. This differs from copy
in that this ring buffer is unaffected and in that a/l of this ring buffer is copied over (including
head/tail positions). This provides an alternative way of duplicating state to duplicate if you
already have an appropriately sized ring buffer handy. No allocations will be done.

Usage: mirror(dest)
Arguments:
* dest: The destination ring buffer - will be modified by this call.
Return value: Nothing; called for the side effect only.
head_offset Nondestructively read the contents of the head of the buffer, offset by n entries.
Usage: head_offset(n)
Arguments:

¢ n: Head offset. This moves away from the most recently added item. An offset of O reads
the most recently added element, 1 reads the element added before that.

Return value: As for head

tail_offset Nondestructively read the contents of the tail of the buffer, offset by n entries.
Usage: tail_offset(n)
Arguments:

ring_buffer_bytes 7

e n: Tail offset. This moves away from the oldest item. An offset of O reads the oldest
element, 1 reads the element added after that.

Return value: As for tail (see head)
take_head As for take, but operating on the head rather than the tail. This is destructive with
respect to the head.
Usage: take_head(n)
Arguments:
* n: Number of elements to take.
Return value: As for take
read_head As for read, but operating on the head rather than the tail. This is not destructive with
respect to the tail.
Usage: read_head(n)
Arguments:
* n: Number of elements to read.
Return value: As for read

head_set Set data to the head without advancing. This is useful in cases where the head data will
be set and advanced separately (with head_advance). This is unlikely to be useful for all
users. It is used extensively in dde (but called from C).

Usage: head_set(data)
Arguments:

* data: Data to set into the head. For the bytes buffer this must be exactly stride bytes
long, and for the environment buffer it corresponds to a single "element".

Return value: Nothing; called for the side effect only.

head_data Retrieve the current data stored in the head but not advanced. For many cases this may
be junk - if the byte buffer has looped then it will be the bytes that will be overwritten on the
next write. However, when using head_set it will be the data that have been set into the buffer
but not yet committed with head_advance.

Usage: head_data()
Return value: As for head
head_advance Shift the head around one position. This commits any data written by head_set.
Usage: head_advance()
Return value: Nothing; called for the side effect only.

Examples

Create a ring buffer of 100 bytes
b <- ring_buffer_bytes(100)

Get the length, number of used and number of free bytes:
b$size()
b$used()
b$free()

Nothing is used because we're empty:

ring_buffer_bytes_translate

b$is_empty()

To work with a bytes buffer you need to use R's raw vectors;
here are 30 random bytes:

bytes <- as.raw(as.integer(sample(256, 30, TRUE) - 1L))

bytes

Push these onto the bytes buffer:
b$push(bytes)
b$used()

The head of the buffer points at the most recently added item
b$head()
bytes[[length(bytes)]1]

...and the tail at the oldest (first added in this case)
b$tail()
bytes[[1]]

Elements are taken from the tail; these will be the oldest items:
b$take(8)

bytes[1:8]

b$used()

To read from the buffer without removing elements, use read:
b$read(8)
bytes[9:16]

It is not possible to take or read more elements than are
present in the buffer; it will throw an error:

Not run:

b$read(50) # error because there are only 22 bytes present

End(Not run)

More elements can be pushed on:
b$push(as.raw(rep(@, 50)))
b$used()

b$read(b$used())

If many new elements are added, they will displace the old elements:
b$push(as.raw(1:75))
b$read(b$used())

ring_buffer_bytes_translate
Translating bytes ring buffer

ring_buffer_bytes_translate 9

Description

This ring buffer is based on ring_buffer_bytes but performs conversion to/from bytes to something
useful as data is stored/retrieved from the buffer. This is the interface through which ring_buffer bytes_typed
is implemented.

Usage
ring_buffer_bytes_translate(size, stride, to, from, on_overflow = "overwrite")
Arguments
size Number of elements in the buffer, each of which will be stride bytes long.
stride Number of bytes per buffer element. Defaults to 1 byte. If you want to store
anything other than a bytestream in the buffer, you will probably want more than
one byte per element; for example, on most R platforms an integer takes 4 bytes
and a double takes 8 (see .Machine, and also ring_buffer_bytes_typed).
to Function to convert an R object to a set of exactly stride bytes. It must take
one argument (being an R object) and return a raw vector of a length that is a
multiple of stride (including zero). It may throw an error if it is not possible
to convert an object to a bytes vector.
from Function to convert a set of bytes to an R object. It must take one argument
(being a raw vector of a length that is a multiple of stride, including zero). It
should not throw an error as all data added to the buffer will have passed through
to on the way in to the buffer.
on_overflow Behaviour on buffer overflow. The default is to overwrite the oldest elements
in the buffer ("overwrite"). Alternative actions are "error"” which will throw
an error if a function tries to add more elements than there are space for, or
"grow” which will grow the buffer to accept the new elements (this uses an
approximately golden ratio approach; see details below).
Details

The idea here is that manually working with raw vectors can get tedious, and if you are planning on
using a bytes-based buffer while working in R you may have a way of doing conversion from and
to R objects. This interface lets you specify the functions once and then will apply your conversion
function in every case where they are needed.

Methods

Note that this methods reference section is repeated verbatim between the three main ring buffer

classes; ring_buffer_env ("env"), ring_buffer_bytes ("bytes") and ring_buffer_bytes_typed
("typed"). Almost all methods have the same arguments and behaviour, but hopefully by listing ev-

erything together, the differences between implementations will be a bit more apparent.

reset Reset the state of the buffer. This "zeros" the head and tail pointer (and may or may not
actually reset the data) so that the buffer can be used as if fresh.

Usage: reset(clear = FALSE)
Arguments:

10 ring_buffer_bytes_translate

e clear: Logical, indicating if the memory should also be cleared. Generally this is not
necessary, but with environment buffers this can let the garbage collector clean up large
elements. For the bytes buffer this zeros the memory.

Return value: Nothing; called for the side effect only.

duplicate Clone the ring buffer, creating a copy. Copies both the underlying data and the position
of the head and tail.

Usage: duplicate()
Return value: A new ring buffer object
grow Increase the size of the buffer by n elements.
Usage:
* bytes, typed: grow(n)
e env: grow(n, exact = FALSE)
Arguments:
* n: The number of additional elements that space should be reserved for (scalar non-
negative integer).
\item{\code{exact}: (For bytes buffer only) Logical scalar indicating if growth should increa:
3
Return value: Nothing; called for the side effect only.
size Return the capacity (maximum size) of the ring buffer
Usage:
e env: size()
* bytes, typed: size(bytes = FALSE)
Arguments:

e bytes: (for ring_buffer_bytes only) Logical, indicating if the size should be returned
in bytes (rather than logical entries, which is the default).

Return value: A scalar integer
bytes_data Return the total size of the data storage used in this object.
Usage:
e env: (not supported)
* bytes, typed: bytes_data()
Return value: A scalar integer

stride Length of each element in the ring buffer, in bytes. Only implemented (and meaningful)
for the bytes buffer; the environment buffer does not support this function as it makes no sense
there.

Usage:

e env: (not supported)

* bytes, typed: stride()
Return value: A scalar integer

used Return the amount of space used in the ring buffer.
Usage:

ring_buffer_bytes_translate 11

e env: used()
* bytes, typed: used(bytes = FALSE)
Arguments:

* bytes: (for ring_buffer_bytes only) Logical, indicating if the size should be returned
in bytes (rather than logical entries, which is the default).

Return value: A scalar integer
free Return the amount of space free in the ring buffer.
Usage:
e env: free()
* bytes, typed: free(bytes = FALSE)
Arguments:

e bytes: (for ring_buffer_bytes only) Logical, indicating if the size should be returned
in bytes (rather than logical entries, which is the default).

Return value: A scalar integer
is_empty Test if the ring buffer is empty

Usage: is_empty()

Return value: A scalar logical

is_full Test if the ring buffer is full
Usage: is_full()

Return value: A scalar logical

head_pos Return the number of entries from the "start" of the ring buffer the head is. This is mostly
useful for debugging.

Usage:

e env: head_pos()

* bytes, typed: head_pos(bytes = FALSE)
Arguments:

* bytes: (for ring_buffer_bytes only) Logical, indicating if the position should be re-
turned in bytes (rather than logical entries, which is the default).

Return value: A scalar integer

tail_pos Return the number of entries from the "start" of the ring buffer the tail is. This is mostly
useful for debugging.

Usage:

e env: tail_pos()

* bytes, typed: tail_pos(bytes = FALSE)
Arguments:

* bytes: (for ring_buffer_bytes only) Logical, indicating if the position should be re-
turned in bytes (rather than logical entries, which is the default).

Return value: A scalar integer

12

ring_buffer_bytes_translate

head Return the contents of the head (the most recently written element in the ring buffer).
Usage: head()
Return value: Tt depends a little here. For ring_buffer_env this is a single R object. For
ring_buffer_bytes it is a raw vector, the same length as the stride of the ring buffer. For
ring_buffer_bytes_typed, a single R object that has been translated from raw.

tail Return the contents of the tail (the least recently written element in the ring buffer).
Usage: tail()
Return value: As for head

set Set a number of ring entries to the same value. The exact behaviour here varies depending on

the type of ring buffer. This function may overflow the ring buffer; in this case the tail will be
moved.

Usage: set(data, n)
Arguments:
» data: The data to set each ring element to. For an environment buffer, this may be any R

object. For a bytes buffer it may be either a single byte (in which case each ring element
will be set to that byte, repeated stride times), or a raw vector of length stride.

\item{\code{n}: The number of entries to set to \code{data}

}

Return value: Invisibly returns the number of elements actually written (which may be less
than n if the buffer overflows). Primarily called for its side effect.

push Push elements onto the ring buffer head. This may overflow the ring buffer, destroying the
oldest elements in the buffer (and moving the position of the tail).
Usage:
e env: push(data, iterate = TRUE)
* bytes, typed: push(data)
Arguments:
¢ data: Data to push onto the ring buffer. For ring_buffer_bytes, this must be a raw vec-
tor with a length that is a multiple of the buffer stride. For ring_buffer_bytes_typed

it must be a vector of the appropriate type. For ring_buffer_env it may be an arbitrary
R object (but see iterate .

\item{\code{iterate}: For \code{ring_buffer_env} only, changes the behaviour with vectors anc

b

Return value: For ring_buffer_bytes, the data invisibly. For ring_buffer_bytes and
ring_buffer_bytes_typed, the position of the head pointer (relative to the beginning of the
storage region).

take Destructively take elements from the ring buffer. This consumes from the tail (the least
recently added elements). It is not possibly to underflow the buffer; if more elements are
requested than can be supplied then an error will be thrown and the state of the buffer unmod-
ified.
Usage: take(n)
Arguments:

¢ n: The number of elements to take.

ring_buffer_bytes_translate 13

Return value: For ring_buffer_env a list of n elements. For ring_buffer_bytes, a raw
vector of n * stride bytes. For ring_buffer_bytes_typed, an vector of n elements of the
storage mode of the ring.

read Nondestructively read elements from the ring buffer. This is identical to take except that the
state of the buffer is not modified.
Usage: read(n)
Arguments:
* n: The number of elements to read.

Return value: For ring_buffer_env a list of n elements. For ring_buffer_bytes, a raw
vector of n * stride bytes. For ring_buffer_bytes_typed, an vector of n elements of the
storage mode of the ring.

copy Copy from this ring buffer into a different ring buffer. This is destructive with respect to both
ring buffers; the tail pointer will be moved in this ring buffer as data are taken, and if the
destination ring buffer overflows, the tail pointer will be moved too.
Usage: copy(dest, n)
Arguments:
* dest: The destination ring buffer - will be modified by this call.
\item{\code{n}: The number of elements to copy
3
mirror Mirror the contents of this ring buffer into a different ring buffer. This differs from copy
in that this ring buffer is unaffected and in that all of this ring buffer is copied over (including
head/tail positions). This provides an alternative way of duplicating state to duplicate if you
already have an appropriately sized ring buffer handy. No allocations will be done.
Usage: mirror(dest)
Arguments:

* dest: The destination ring buffer - will be modified by this call.
Return value: Nothing; called for the side effect only.

head_offset Nondestructively read the contents of the head of the buffer, offset by n entries.
Usage: head_offset(n)
Arguments:

* n: Head offset. This moves away from the most recently added item. An offset of 0 reads
the most recently added element, 1 reads the element added before that.

Return value: As for head

tail_offset Nondestructively read the contents of the tail of the buffer, offset by n entries.
Usage: tail_offset(n)
Arguments:

e n: Tail offset. This moves away from the oldest item. An offset of O reads the oldest
element, 1 reads the element added after that.
Return value: As for tail (see head)

take_head As for take, but operating on the head rather than the tail. This is destructive with
respect to the head.
Usage: take_head(n)
Arguments:

14 ring_buffer_bytes_translate

e n: Number of elements to take.
Return value: As for take
read_head As for read, but operating on the head rather than the tail. This is not destructive with
respect to the tail.
Usage: read_head(n)
Arguments:

¢ n: Number of elements to read.
Return value: As for read

head_set Set data to the head without advancing. This is useful in cases where the head data will
be set and advanced separately (with head_advance). This is unlikely to be useful for all
users. It is used extensively in dde (but called from C).

Usage: head_set(data)
Arguments:

» data: Data to set into the head. For the bytes buffer this must be exactly stride bytes
long, and for the environment buffer it corresponds to a single "element".

Return value: Nothing; called for the side effect only.

head_data Retrieve the current data stored in the head but not advanced. For many cases this may
be junk - if the byte buffer has looped then it will be the bytes that will be overwritten on the
next write. However, when using head_set it will be the data that have been set into the buffer
but not yet committed with head_advance.

Usage: head_data()
Return value: As for head
head_advance Shift the head around one position. This commits any data written by head_set.

Usage: head_advance()
Return value: Nothing; called for the side effect only.

Author(s)
Rich FitzJohn

Examples

The "typed” ring buffers do not allow for character vectors to
be stored, because strings are generally hard and have unknown
lengths. But if you wanted to store strings that are *alwaysx*
the same length, this is straightforward to do.

You can convert from string to bytes with charToRaw (or
as.raw(utf8ToInt(x))):

bytes <- charToRaw("hello!")

bytes

And back again with rawToChar (or intToUtf8(as.integer(x)))
rawToChar (bytes)

So with these functions we can make a buffer for storing

ring_buffer_bytes_typed 15

fixed-length strings:
b <- ring_buffer_bytes_translate(100, 8, charToRaw, rawToChar)

And with this we can store 8 character strings:
b$push("abcdefgh")
b$tail()

Other length strings cannot be added:
try(

b$push(”hello!")
) # error

Because the 'from' and 'to' arguments can be arbitrary R
functions we could tweak this to pad the character vector with
null bytes, and strip these off on return:
char_to_raw <- function(x, max_len) {
if (!(is.character(x) && length(x) == 1L)) {
stop("Expected a single string”)
}
n <- nchar(x)
if (n > max_len) {
stop(”"String is too long")
}
c(charToRaw(x), rep(raw(1), max_len - n))
}
char_from_raw <- function(x) {
rawToChar(x[x != raw(1)1)
}

Because max_len is the same thing as stride, wrap this all up a
little:
char_buffer <- function(size, max_len) {
to <- function(x) char_to_raw(x, max_len)
ring_buffer_bytes_translate(size, max_len, to, char_from_raw)

}

b <- char_buffer(100, 30) # 100 elements of up to 30 characters each
b$push("x")
b$tail()

b$push(”hello world!")
b$head()

try(
b$push("supercalafragalisticexpealadocious”)
) # error: string is too long

ring_buffer_bytes_typed
Typed bytes ring buffer

16

Description

ring_buffer_bytes_typed

Create a ring buffer, backed by a ring_buffer_bytes, where each element corresponds to a fixed-
size vector of one of R’s atomic numeric types (logical, integer, double, and complex).

Usage
ring_buffer_bytes_typed(size, what, len = NULL, on_overflow = "overwrite")
Arguments
size The maximum number of elements the buffer can hold. Each element will be
multiple bytes long.
what Either a vector on the style of vapply (e.g., integer(4) to indicate that each
element of the buffer is a 4-element integer, or the name of a storage mode if 1en
is also provided.
len If given, then the length of the storage. If it is given, then if length(what) is

on_overflow

Details

zero, the storage mode of what is used as the type. Otherwise what is inter-
preted as the name of the storage mode (one of "logical", "integer", "double" or
"complex".

Behaviour on buffer overflow. The default is to overwrite the oldest elements
in the buffer ("overwrite"). Alternative actions are "error"” which will throw
an error if a function tries to add more elements than there are space for, or
"grow" which will grow the buffer to accept the new elements (this uses an
approximately golden ratio approach; see details below).

Note that a logical ring buffer and an integer ring buffer take the same number of bytes because a
logical vector is stored as an integer (4 bytes per element) to deal with missing values; see "writing

R extensions".

Note that it is not possible to store character vectors in a ring buffer of this type because each
element of a character vector can be any number of bytes.

Methods

Note that this methods reference section is repeated verbatim between the three main ring buffer

classes; ring_buffer_env ("env"), ring_buffer_bytes ("bytes") and ring_buffer_bytes_typed
("typed"). Almost all methods have the same arguments and behaviour, but hopefully by listing ev-

erything together, the differences between implementations will be a bit more apparent.

reset Reset the state of the buffer. This "zeros" the head and tail pointer (and may or may not
actually reset the data) so that the buffer can be used as if fresh.

Usage: reset(clear = FALSE)

Arguments:

» clear: Logical, indicating if the memory should also be cleared. Generally this is not
necessary, but with environment buffers this can let the garbage collector clean up large
elements. For the bytes buffer this zeros the memory.

ring_buffer_bytes_typed 17

Return value: Nothing; called for the side effect only.

duplicate Clone the ring buffer, creating a copy. Copies both the underlying data and the position
of the head and tail.

Usage: duplicate()
Return value: A new ring buffer object
grow Increase the size of the buffer by n elements.
Usage:
* bytes, typed: grow(n)
e env: grow(n, exact = FALSE)
Arguments:

* n: The number of additional elements that space should be reserved for (scalar non-
negative integer).
\item{\code{exact}: (For bytes buffer only) Logical scalar indicating if growth should increa:

}
Return value: Nothing; called for the side effect only.
size Return the capacity (maximum size) of the ring buffer
Usage:
e env: size()
* bytes, typed: size(bytes = FALSE)
Arguments:

* bytes: (for ring_buffer_bytes only) Logical, indicating if the size should be returned
in bytes (rather than logical entries, which is the default).

Return value: A scalar integer
bytes_data Return the total size of the data storage used in this object.
Usage:
e env: (not supported)
* bytes, typed: bytes_data()
Return value: A scalar integer

stride Length of each element in the ring buffer, in bytes. Only implemented (and meaningful)
for the bytes buffer; the environment buffer does not support this function as it makes no sense
there.

Usage:
e env: (not supported)
* bytes, typed: stride()
Return value: A scalar integer
used Return the amount of space used in the ring buffer.
Usage:
e env: used()
* bytes, typed: used(bytes = FALSE)

Arguments:

18 ring_buffer_bytes_typed

e bytes: (for ring_buffer_bytes only) Logical, indicating if the size should be returned
in bytes (rather than logical entries, which is the default).

Return value: A scalar integer
free Return the amount of space free in the ring buffer.
Usage:
e env: free()
* bytes, typed: free(bytes = FALSE)
Arguments:

* bytes: (for ring_buffer_bytes only) Logical, indicating if the size should be returned
in bytes (rather than logical entries, which is the default).

Return value: A scalar integer
is_empty Test if the ring buffer is empty

Usage: is_empty()

Return value: A scalar logical
is_full Test if the ring buffer is full

Usage: is_full()

Return value: A scalar logical

head_pos Return the number of entries from the "start" of the ring buffer the head is. This is mostly
useful for debugging.

Usage:

e env: head_pos()

* bytes, typed: head_pos(bytes = FALSE)
Arguments:

* bytes: (for ring_buffer_bytes only) Logical, indicating if the position should be re-
turned in bytes (rather than logical entries, which is the default).

Return value: A scalar integer

tail_pos Return the number of entries from the "start" of the ring buffer the tail is. This is mostly
useful for debugging.
Usage:
e env: tail_pos()
* bytes, typed: tail_pos(bytes = FALSE)
Arguments:

* bytes: (for ring_buffer_bytes only) Logical, indicating if the position should be re-
turned in bytes (rather than logical entries, which is the default).

Return value: A scalar integer
head Return the contents of the head (the most recently written element in the ring buffer).

Usage: head()

Return value: It depends a little here. For ring_buffer_env this is a single R object. For
ring_buffer_bytes it is a raw vector, the same length as the stride of the ring buffer. For
ring_buffer_bytes_typed, a single R object that has been translated from raw.

ring_buffer bytes_typed 19

tail Return the contents of the tail (the least recently written element in the ring buffer).
Usage: tail()
Return value: As for head
set Set a number of ring entries to the same value. The exact behaviour here varies depending on

the type of ring buffer. This function may overflow the ring buffer; in this case the tail will be
moved.

Usage: set(data, n)
Arguments:

» data: The data to set each ring element to. For an environment buffer, this may be any R
object. For a bytes buffer it may be either a single byte (in which case each ring element
will be set to that byte, repeated stride times), or a raw vector of length stride.
\item{\code{n}: The number of entries to set to \code{data}

}

Return value: Invisibly returns the number of elements actually written (which may be less
than n if the buffer overflows). Primarily called for its side effect.

push Push elements onto the ring buffer head. This may overflow the ring buffer, destroying the
oldest elements in the buffer (and moving the position of the tail).
Usage:
e env: push(data, iterate = TRUE)
* bytes, typed: push(data)
Arguments:
» data: Data to push onto the ring buffer. For ring_buffer_bytes, this must be a raw vec-
tor with a length that is a multiple of the buffer stride. For ring_buffer_bytes_typed

it must be a vector of the appropriate type. For ring_buffer_env it may be an arbitrary
R object (but see iterate.

\item{\code{iterate}: For \code{ring_buffer_env} only, changes the behaviour with vectors anc

3

Return value: For ring_buffer_bytes, the data invisibly. For ring_buffer_bytes and
ring_buffer_bytes_typed, the position of the head pointer (relative to the beginning of the
storage region).

take Destructively take elements from the ring buffer. This consumes from the tail (the least
recently added elements). It is not possibly to underflow the buffer; if more elements are
requested than can be supplied then an error will be thrown and the state of the buffer unmod-
ified.

Usage: take(n)
Arguments:
¢ n: The number of elements to take.
Return value: For ring_buffer_env a list of n elements. For ring_buffer_bytes, a raw

vector of n * stride bytes. For ring_buffer_bytes_typed, an vector of n elements of the
storage mode of the ring.

read Nondestructively read elements from the ring buffer. This is identical to take except that the
state of the buffer is not modified.
Usage: read(n)
Arguments:

20 ring_buffer_bytes_typed

¢ n: The number of elements to read.

Return value: For ring_buffer_env a 1list of n elements. For ring_buffer_bytes, a raw
vector of n * stride bytes. For ring_buffer_bytes_typed, an vector of n elements of the
storage mode of the ring.

copy Copy from this ring buffer into a different ring buffer. This is destructive with respect to both
ring buffers; the tail pointer will be moved in this ring buffer as data are taken, and if the
destination ring buffer overflows, the tail pointer will be moved too.

Usage: copy(dest, n)
Arguments:
e dest: The destination ring buffer - will be modified by this call.
\item{\code{n}: The number of elements to copy

b

mirror Mirror the contents of this ring buffer into a different ring buffer. This differs from copy
in that this ring buffer is unaffected and in that all of this ring buffer is copied over (including
head/tail positions). This provides an alternative way of duplicating state to duplicate if you
already have an appropriately sized ring buffer handy. No allocations will be done.

Usage: mirror(dest)
Arguments:
¢ dest: The destination ring buffer - will be modified by this call.
Return value: Nothing; called for the side effect only.
head_offset Nondestructively read the contents of the head of the buffer, offset by n entries.
Usage: head_offset(n)
Arguments:

* n: Head offset. This moves away from the most recently added item. An offset of 0 reads
the most recently added element, 1 reads the element added before that.

Return value: As for head

tail_offset Nondestructively read the contents of the tail of the buffer, offset by n entries.
Usage: tail_offset(n)
Arguments:
e n: Tail offset. This moves away from the oldest item. An offset of O reads the oldest
element, 1 reads the element added after that.
Return value: As for tail (see head)

take_head As for take, but operating on the head rather than the tail. This is destructive with
respect to the head.
Usage: take_head(n)
Arguments:
* n: Number of elements to take.
Return value: As for take
read_head As for read, but operating on the head rather than the tail. This is not destructive with
respect to the tail.
Usage: read_head(n)
Arguments:

ring_buffer_bytes_typed 21

¢ n: Number of elements to read.
Return value: As for read

head_set Set data to the head without advancing. This is useful in cases where the head data will
be set and advanced separately (with head_advance). This is unlikely to be useful for all
users. It is used extensively in dde (but called from C).

Usage: head_set(data)
Arguments:

» data: Data to set into the head. For the bytes buffer this must be exactly stride bytes
long, and for the environment buffer it corresponds to a single "element".

Return value: Nothing; called for the side effect only.

head_data Retrieve the current data stored in the head but not advanced. For many cases this may
be junk - if the byte buffer has looped then it will be the bytes that will be overwritten on the
next write. However, when using head_set it will be the data that have been set into the buffer
but not yet committed with head_advance.

Usage: head_data()
Return value: As for head

head_advance Shift the head around one position. This commits any data written by head_set.
Usage: head_advance()
Return value: Nothing; called for the side effect only.

Author(s)
Rich FitzJohn

Examples

Create a ring buffer of 30 integers:
b <- ring_buffer_bytes_typed(30, integer(1))

Alternatively you can create the same buffer this way:
b <- ring_buffer_bytes_typed(30, "integer”, 1)

The buffer is empty to start with
b$is_empty()

Note that the buffer has a stride of 4 (see ?ring_buffer_bytes)
b$stride()

Push some numbers into the buffer:
b$push(as.integer(1:10))

Report the number of elements used:
b$used()

Get the first added element:
b$tail()

The buffer behaves basically the same way now as

22 ring_buffer_env

"ring_buffer_env"” but will typecheck all inputs:
Not run:
b$push(pi) # error because not an integer
b$push(1) # error because not an integer (you must convert to int)

End(Not run)

Recycling: the typed buffer operates by converting the input
vector to a set of bytes and then pushing them onto the buffer;
this works so long as the vector of bytes has the correct
length.

<- ring_buffer_bytes_typed(30, integer(3))

o o # o o

These both fail because 2 and 4 do not end up as multiples of 3:
Not run:

b$push(c(1L, 2L))

b$push(c(1L, 2L, 3L, 4L))

End(Not run)

But this is fine:
b$push(seq_len(6))
b$tail()
b$tail_offset(1)

ring_buffer_env Environment-based ring buffer

Description

An environment based ring buffer. In contrast with ring_buffer_bytes, this ring buffer is truly
circular, implemented as a doubly linked list that loops back on itself. Each element of the ring
buffer can hold an arbitrary R object, and no checking is done to make sure that objects are similar
types; in this way they are most similar to a circular version of an R 1ist.

Usage
ring_buffer_env(size, on_overflow = "overwrite")
Arguments
size The (maximum) number of entries the buffer can contain.
on_overflow Behaviour on buffer overflow. The default is to overwrite the oldest elements in

the buffer ("overwrite"). Alternative actions are "error" which will throw an
error if a function tries to add more elements than there are space for, or "grow"
which will grow the buffer to accept the new elements.

ring_buffer_env 23

Details

When pushing objects onto the buffer, you must be careful about the iterate argument. By default
if the object has a length() greater than 1 then $push() will iterate over the object (equivalent to
$push(datal[1]], iterate=FALSE), $push(datal[[2]], iterate=FALSE), and so on).

For more information and usage examples, see the vignette (vignette("ring")).

On underflow (and overflow if on_overflow = "error”) ring will raise custom exceptions that can
be caught specially by tryCatch. These will have class ring_underflow (and ring_overflow for
overflow). This is not supported in the bytes buffer yet. See the examples for usage.

Methods

Note that this methods reference section is repeated verbatim between the three main ring buffer

classes; ring_buffer_env ("env"), ring_buffer_bytes ("bytes") and ring_buffer_bytes_typed
("typed"). Almost all methods have the same arguments and behaviour, but hopefully by listing ev-

erything together, the differences between implementations will be a bit more apparent.

reset Reset the state of the buffer. This "zeros" the head and tail pointer (and may or may not
actually reset the data) so that the buffer can be used as if fresh.

Usage: reset(clear = FALSE)

Arguments:

* clear: Logical, indicating if the memory should also be cleared. Generally this is not
necessary, but with environment buffers this can let the garbage collector clean up large
elements. For the bytes buffer this zeros the memory.

Return value: Nothing; called for the side effect only.

duplicate Clone the ring buffer, creating a copy. Copies both the underlying data and the position
of the head and tail.

Usage: duplicate()
Return value: A new ring buffer object
grow Increase the size of the buffer by n elements.
Usage:
* bytes, typed: grow(n)
e env: grow(n, exact = FALSE)

Arguments:

* n: The number of additional elements that space should be reserved for (scalar non-
negative integer).

\item{\code{exact}: (For bytes buffer only) Logical scalar indicating if growth should increa:

}
Return value: Nothing; called for the side effect only.

size Return the capacity (maximum size) of the ring buffer
Usage:
e env: size()
* bytes, typed: size(bytes = FALSE)

Arguments:

24 ring_buffer_env

e bytes: (for ring_buffer_bytes only) Logical, indicating if the size should be returned
in bytes (rather than logical entries, which is the default).

Return value: A scalar integer
bytes_data Return the total size of the data storage used in this object.
Usage:
e env: (not supported)
* bytes, typed: bytes_data()
Return value: A scalar integer

stride Length of each element in the ring buffer, in bytes. Only implemented (and meaningful)
for the bytes buffer; the environment buffer does not support this function as it makes no sense
there.

Usage:
e env: (not supported)
* bytes, typed: stride()
Return value: A scalar integer
used Return the amount of space used in the ring buffer.
Usage:
e env: used()
* bytes, typed: used(bytes = FALSE)
Arguments:

* bytes: (for ring_buffer_bytes only) Logical, indicating if the size should be returned
in bytes (rather than logical entries, which is the default).

Return value: A scalar integer
free Return the amount of space free in the ring buffer.
Usage:
e env: free()
* bytes, typed: free(bytes = FALSE)
Arguments:

* bytes: (for ring_buffer_bytes only) Logical, indicating if the size should be returned
in bytes (rather than logical entries, which is the default).

Return value: A scalar integer
is_empty Test if the ring buffer is empty
Usage: is_empty()
Return value: A scalar logical
is_full Test if the ring buffer is full
Usage: is_full()
Return value: A scalar logical
head_pos Return the number of entries from the "start" of the ring buffer the head is. This is mostly
useful for debugging.
Usage:

ring_buffer_env 25

e env: head_pos()
* bytes, typed: head_pos(bytes = FALSE)
Arguments:

* bytes: (for ring_buffer_bytes only) Logical, indicating if the position should be re-
turned in bytes (rather than logical entries, which is the default).

Return value: A scalar integer
tail_pos Return the number of entries from the "start" of the ring buffer the tail is. This is mostly
useful for debugging.
Usage:
e env: tail_pos()
* bytes, typed: tail_pos(bytes = FALSE)
Arguments:

* bytes: (for ring_buffer_bytes only) Logical, indicating if the position should be re-
turned in bytes (rather than logical entries, which is the default).

Return value: A scalar integer

head Return the contents of the head (the most recently written element in the ring buffer).
Usage: head()
Return value: Tt depends a little here. For ring_buffer_env this is a single R object. For
ring_buffer_bytes it is a raw vector, the same length as the stride of the ring buffer. For
ring_buffer_bytes_typed, a single R object that has been translated from raw.

tail Return the contents of the tail (the least recently written element in the ring buffer).
Usage: tail()
Return value: As for head

set Set a number of ring entries to the same value. The exact behaviour here varies depending on

the type of ring buffer. This function may overflow the ring buffer; in this case the tail will be
moved.

Usage: set(data, n)
Arguments:
» data: The data to set each ring element to. For an environment buffer, this may be any R

object. For a bytes buffer it may be either a single byte (in which case each ring element
will be set to that byte, repeated stride times), or a raw vector of length stride.

\item{\code{n}: The number of entries to set to \code{data}

b

Return value: Invisibly returns the number of elements actually written (which may be less
than n if the buffer overflows). Primarily called for its side effect.

push Push elements onto the ring buffer head. This may overflow the ring buffer, destroying the
oldest elements in the buffer (and moving the position of the tail).

Usage:
e env: push(data, iterate = TRUE)
* bytes, typed: push(data)

Arguments:

ring_buffer_env

¢ data: Data to push onto the ring buffer. For ring_buffer_bytes, this must be a raw vec-
tor with a length that is a multiple of the buffer stride. For ring_buffer_bytes_typed
it must be a vector of the appropriate type. For ring_buffer_env it may be an arbitrary
R object (but see iterate .

\item{\code{iterate}: For \code{ring_buffer_env} only, changes the behaviour with vectors anc

3

Return value: For ring_buffer_bytes, the data invisibly. For ring_buffer_bytes and
ring_buffer_bytes_typed, the position of the head pointer (relative to the beginning of the
storage region).

take Destructively take elements from the ring buffer. This consumes from the tail (the least
recently added elements). It is not possibly to underflow the buffer; if more elements are
requested than can be supplied then an error will be thrown and the state of the buffer unmod-
ified.

Usage: take(n)
Arguments:

¢ n: The number of elements to take.

Return value: For ring_buffer_env a list of n elements. For ring_buffer_bytes, a raw
vector of n x stride bytes. For ring_buffer_bytes_typed, an vector of n elements of the
storage mode of the ring.

read Nondestructively read elements from the ring buffer. This is identical to take except that the
state of the buffer is not modified.
Usage: read(n)
Arguments:

¢ n: The number of elements to read.

Return value: For ring_buffer_env a 1list of n elements. For ring_buffer_bytes, a raw
vector of n * stride bytes. For ring_buffer_bytes_typed, an vector of n elements of the
storage mode of the ring.

copy Copy from this ring buffer into a different ring buffer. This is destructive with respect to both
ring buffers; the tail pointer will be moved in this ring buffer as data are taken, and if the
destination ring buffer overflows, the tail pointer will be moved too.

Usage: copy(dest, n)
Arguments:
* dest: The destination ring buffer - will be modified by this call.
\item{\code{n}: The number of elements to copy

}

mirror Mirror the contents of this ring buffer into a different ring buffer. This differs from copy
in that this ring buffer is unaffected and in that all of this ring buffer is copied over (including
head/tail positions). This provides an alternative way of duplicating state to duplicate if you
already have an appropriately sized ring buffer handy. No allocations will be done.

Usage: mirror(dest)
Arguments:

* dest: The destination ring buffer - will be modified by this call.
Return value: Nothing; called for the side effect only.

ring_buffer_env 27

head_offset Nondestructively read the contents of the head of the buffer, offset by n entries.
Usage: head_offset(n)
Arguments:

* n: Head offset. This moves away from the most recently added item. An offset of 0 reads
the most recently added element, 1 reads the element added before that.

Return value: As for head

tail_offset Nondestructively read the contents of the tail of the buffer, offset by n entries.
Usage: tail_offset(n)
Arguments:

e n: Tail offset. This moves away from the oldest item. An offset of O reads the oldest
element, 1 reads the element added after that.

Return value: As for tail (see head)
take_head As for take, but operating on the head rather than the tail. This is destructive with
respect to the head.
Usage: take_head(n)
Arguments:
* n: Number of elements to take.
Return value: As for take
read_head As for read, but operating on the head rather than the tail. This is not destructive with
respect to the tail.
Usage: read_head(n)
Arguments:

¢ n: Number of elements to read.
Return value: As for read

head_set Set data to the head without advancing. This is useful in cases where the head data will
be set and advanced separately (with head_advance). This is unlikely to be useful for all
users. It is used extensively in dde (but called from C).

Usage: head_set(data)
Arguments:

» data: Data to set into the head. For the bytes buffer this must be exactly stride bytes
long, and for the environment buffer it corresponds to a single "element".

Return value: Nothing; called for the side effect only.

head_data Retrieve the current data stored in the head but not advanced. For many cases this may
be junk - if the byte buffer has looped then it will be the bytes that will be overwritten on the
next write. However, when using head_set it will be the data that have been set into the buffer
but not yet committed with head_advance.

Usage: head_data()
Return value: As for head

head_advance Shift the head around one position. This commits any data written by head_set.
Usage: head_advance()
Return value: Nothing; called for the side effect only.

28

Author(s)

Rich FitzJohn

Examples

buf <- ring_buffer_env(10)
buf$push(1:10)

buf$take(3)
buf$push(11:15)
buf$take(2)

The "on_overflow” argument by default allows for the buffer to
overwrite on overflow.

buf <- ring_buffer_env(10)

buf$push(1:10)

unlist(buf$read(buf$used())) # 1:10

Over-write the first 5

buf$push(11:15)

unlist(buf$read(buf$used())) # 6:15

Unlike ring_buffer_bytes, these ring buffers can hold any R
object. However, you must be careful about use of iterate!
buf$push(lm(mpg ~ cyl, mtcars), iterate = FALSE)

buf$take(1)

Alternatively, grow the buffer as overwriting happens
buf <- ring_buffer_env(10, "grow")

buf$push(1:10)

buf$push(11:15)

unlist(buf$read(buf$used())) # 1:15

Or throw an error on overflow
buf <- ring_buffer_env(10, "error")
buf$push(1:10)

try(buf$push(11:15))

The errors that are thrown on underflow / overflow are typed so
can be caught by tryCatch:
tryCatch(buf$read(100),

ring_underflow = function(e) message("nope”))
tryCatch(buf$push(100),

ring_overflow = function(e) message("nope again"))

ring_buffer_env

Index

.Machine, 2, 9

list, 22
ring_buffer_bytes, 2, 9, 16, 22
ring_buffer_bytes_translate, 8
ring_buffer_bytes_typed, 2, 9, 15
ring_buffer_env, 2, 22

vapply, 16

29

	ring_buffer_bytes
	ring_buffer_bytes_translate
	ring_buffer_bytes_typed
	ring_buffer_env
	Index

