
ricu: R’s Interface to Intensive Care Data

Nicolas Bennett∗

ETH Zürich
Drago Plečko∗

ETH Zürich
Ida-Fong Ukor

Monash Health

Nicolai Meinshausen
ETH Zürich

Peter Bühlmann
ETH Zürich

Abstract

Providing computational infrastructure for handling diverse intensive care unit (ICU)
datasets, the R package ricu enables writing dataset-agnostic analysis code, thereby facil-
itating multi-center training and validation of machine learning models. The package is
designed with an emphasis on extensibility both to new datasets as well as clinical data
concepts, and currently supports the loading of around 100 patient variables correspond-
ing to a total of 395,941 ICU admissions from five data sources collected in Europe and the
United States. By allowing for the addition of user-specified medical concepts and data
sources, the aim of ricu is to foster robust, data-based intensive care research, allowing
the user to externally validate their method or conclusion with relative ease, and in turn
facilitating reproducible and therefore transparent work in this field.

Keywords: electronic health records, computational physiology, critical care medicine.

1. Introduction

Collection of electronic health records has seen a significant rise in recent years (Evans 2016),
opening up opportunities and providing the grounds for a large body of data-driven research
oriented towards helping clinicians in decision-making and therefore improving patient care
and health outcomes (Jiang, Jiang, Zhi, Dong, Li, Ma, Wang, Dong, Shen, and Wang 2017).
While growing amounts of collected patient data might contribute to an increasingly hard
task for intensivists to focus on relevant subsets thereof (Pickering, Gajic, Ahmed, Herasevich,
and Keegan 2013), this poses an opportunity for the application of machine learning (ML)
methods.

One example of a problem that has received much attention from the ML community is early
prediction of sepsis in the intensive care unit (ICU; Desautels, Calvert, Hoffman, Jay, Kerem,
Shieh, Shimabukuro, Chettipally, Feldman, Barton et al. 2016; Nemati, Holder, Razmi, Stan-
ley, Clifford, and Buchman 2018; Futoma, Hariharan, Sendak, Brajer, Clement, Bedoya,
O’Brien, and Heller 2017; Kam and Kim 2017). Interestingly, there is evidence that a large
proportion of the publications are based on the same dataset (Fleuren, Klausch, Zwager,
Schoonmade, Guo, Roggeveen, Swart, Girbes, Thoral, Ercole, Hoogendoorn, and Elbers
2020), the Medical Information Mart for Intensive Care III (MIMIC-III; Johnson, Pollard,

∗These authors contributed equally.

1

Shen, Li-wei, Feng, Ghassemi, Moody, Szolovits, Celi, and Mark 2016), which shows a sys-
tematic lack of external validation. This issue has recently again been highlighted by a study
demonstrating poor performance in external validation of a widely adopted proprietary sepsis
prediction model (Wong, Otles, Donnelly, Krumm, McCullough, DeTroyer-Cooley, Pestrue,
Phillips, Konye, Penoza, Ghous, and Singh 2021).

Contributing to this problem might well be the lack of computational infrastructure handling
multiple datasets. The MIMIC-III dataset consists of 26 different tables containing about
20GB of data. While much work and care has gone into data preprocessing in order to
provide a self-contained ready-to-use data resource with MIMIC-III, seemingly simple tasks
such as computing a Sepsis-3 label (Singer, Deutschman, Seymour, Shankar-Hari, Annane,
Bauer, Bellomo, Bernard, Chiche, Coopersmith, Hotchkiss, Levy, Marshall, Martin, Opal,
Rubenfeld, van der Poll, Vincent, and Angus 2016) remain non-trivial efforts1. This is only
exacerbated when aiming to co-integrate multiple different datasets of this form, spanning
hospitals and even countries, in order to capture effects of differing practice and demographics.

The aim of ricu is to provide computational infrastructure allowing users to investigate com-
plex research questions in the context of critical care medicine as easily as possible by providing
a unified interface to a heterogeneous set of data sources. The package enables users to write
dataset-agnostic code which can simplify implementation and shorten the time necessary for
prototyping code querying different datasets. In its current form, the package handles five
large-scale, publicly available intensive care databases out of the box: MIMIC-III from the
Beth Israel Deaconess Medical Center in Boston, Massachusetts (BIDMC; Johnson et al.
2016), the eICU Collaborative Research Database (Pollard, Johnson, Raffa, Celi, Mark, and
Badawi 2018), containing data collected from 208 hospitals across the United States, the High
Time Resolution ICU Dataset (HiRID) from the Department of Intensive Care Medicine of
the Bern University Hospital, Switzerland (Faltys, Zimmermann, Lyu, Hüser, Hyland, Rätsch,
and Merz 2021), the Amsterdam University Medical Center Database (AmsterdamUMCdb)
from the Amsterdam University Medical Center (Thoral, Peppink, Driessen, Sijbrands, Kom-
panje, Kaplan, Bailey, Kesecioglu, Cecconi, Churpek, Clermont, van der Schaar, Ercole,
Girbes, Elbers, on behalf of the Amsterdam University Medical Centers Database (Amster-
damUMCdb) Collaborators, and the SCCM/ESICM Joint Data Science Task Force 2021) and
MIMIC-IV, again using data from BIDMC (Johnson, Bulgarelli, Pollard, Horng, Celi, and
Mark 2021). Furthermore, ricu was designed with extensibility in mind such that adding new
public and/or private user-provided datasets is possible. Being implemented in R, a program-
ming language popular among statisticians and data analysts, it is our hope to contribute to
accessible and reproducible research by using a familiar environment and requiring only few
system dependencies, thereby simplifying setup considerably.

To our knowledge, infrastructure that provides a common interface to multiple such datasets
is a novel contribution. While there have been efforts (Adibuzzaman, Musselman, John-
son, Brown, Pitluk, and Grama 2016; Wang, McDermott, Chauhan, Ghassemi, Hughes, and
Naumann 2020) attempting to abstract away some specifics of a dataset, these have so far

1There is considerable heterogeneity in number of patients satisfying the Sepsis-3 criterion (Singer et al.

2016) among studies investigating MIMIC-III. Reported Sepsis-3 prevalence ranges from 11.3% (Desautels
et al. 2016), over 23.9% (Nemati et al. 2018) and 25.4% (Wang, Sun, Schroeder, Ameko, Moore, and Barnes
2018), up to 49.1% (Johnson, Aboab, Raffa, Pollard, Deliberato, Celi, and Stone 2018). While some of this
variation may be explained by differing patient inclusion criteria, diversity in label implementation must also
contribute significantly.

2

exclusively focused on MIMIC-III, the most popular of public ICU datsets, and have not been
designed with dataset interoperability in mind.

Given the somewhat narrow focus of the targeted datasets, it may come as a surprise as to
how heterogeneous the resulting datasets are. In MIMIC-III and HiRID, for example, time-
stamps are reported as absolute times (albeit randomly shifted due to data privacy concerns),
whereas eICU and AmsterdamUMCdb use relative times (with origins being admission times).
Another example involves different types of patient identifiers and their use among datasets.
Common to all is the notion of an ICU admission identifier (ID), but apart from that, the
amount of available information varies: While ICU (and hospital) readmissions for a given
patient can be identified in some, this is not possible in other datasets. Furthermore, use
of identifier systems might not be consistent over tables. In MIMIC-III, for example, some
tables refer to ICU stay IDs while others use hospital stay IDs, which slightly complicates
data retrieval for a fixed ID system. Additionally, table layouts vary (long versus wide data
arrangement) and data organization in general is far from consistent over datasets.

2. Quick start guide

The following list gives a quick outline of the steps required for setting up and starting to use
ricu, alongside some section references on where to find further details. A more comprehensive
version of this overview is available as a separate vignette.

1. Package installation:

• Installation from CRAN as install.packages("ricu") provides the most re-
cently released version of ricu.

• Alternatively, the latest development version is available from GitHub by running
remotes::install_github("eth-mds/ricu").

2. Requesting access to datasets and data source setup:

• Demo datasets can be set up by installing the data packages mimic.demo and/or
eicu.demo from GitHub using install.packages() as shown in Section 3.

• The complete MIMIC-III, eICU, HiRID and MIMIC-IV datasets can be accessed
by registering and setting up a credentialed account at PhysioNet.

• Access to AmsterdamUMCdb can be requested via the Amsterdam Medical Data
Science Website.

• The obtained credentials can be configured for PhysioNet datasets by setting en-
vironment variables RICU_PHYSIONET_USER and RICU_PHYSIONET_PASS, while the
download token for AmsterdamUMCdb can be set as RICU_AUMC_TOKEN.

• Datasets are downloaded and set up either automatically upon the first access
attempt or manually by running setup_data_src(); the environment variable
RICU_DATA_PATH can be set to control data location.

• Dataset availability can be queried by calling src_data_avail().

3

https://CRAN.R-project.org/package=ricu/vignettes/ricu.html
https://CRAN.R-project.org
https://github.com/eth-mds/ricu
%22https://eth-mds.github.io/physionet-demo%22
https://physionet.org/register
https://physionet.org/settings/credentialing
https://physionet.org
https://amsterdammedicaldatascience.nl/#amsterdamumcdb
https://amsterdammedicaldatascience.nl/#amsterdamumcdb

A more detailed description of the supported datasets is given in Section 3, summarized
in Table 1, while Section 5 provides implementation details, elaborating on how datasets
are represented in code.

3. Loading of data corresponding to clinical concepts using load_concepts():

• Currently, over 100 data concepts are available for the 4 supported datasets (see
concept_availability()/explain_dictionary() for names, availability etc.).

• For example, glucose and age data can be loaded by passing c("age", "glu") to
load_concepts().

Section 4 goes into more detail on how data concepts are represented within ricu and
an overview of the preconfigured concepts is available from Section 4.2.

4. Extending the concept dictionary:

• Data concepts can be specified in code using the constructors concept()/item()

or new_concept()/new_item().

• For session persistence, data concepts can also be specified as JSON formatted
objects.

• JSON-based concept dictionaries can either extend or replace others and they can
be pointed to by setting the environment variable RICU_CONFIG_PATH.

The JSON format used to encode data concepts is discussed in more detail in Section
4.3.

5. Adding new datasets:

• A JSON-based dataset configuration file is required, from which the configuration
objects described in Section 5.3 are created.

• In order for concepts to be available from the new dataset, the dictionary requires
extension by adding new data items.

Further information about adding a new dataset is available from Section 5.4. Some
code used when AmsterdamUMCdb was not yet fully integrated with ricu is available
from GitHub and is used for demonstration purposes to set up AmsterdamUMCdb as
an external dataset aumc_ext.

Finally, Section 6 shows briefly how ricu could be used in practice to address clinical questions
by presenting two small examples.

3. Ready-to-use datasets

Several large-scale ICU datasets collected from multiple hospitals in the US and Europe
can be set up for access using ricu with minimal user effort. Provisions in terms of required
configuration information alongside functions for download and setup are part of ricu, opening
up easy access to these datasets. Data itself, however, is not part of ricu and while the

4

https://github.com/eth-mds/aumc

supported datasets are publicly available, access has to be granted by the dataset creators
individually. Four datasets, MIMIC-III, MIMIC-IV, eICU and HiRID are hosted on PhysioNet
(Goldberger, Amaral, Glass, Hausdorff, Ivanov, Mark, Mietus, Moody, Peng, and Stanley
2000), access to which requires an account, while the fifth, AmsterdamUMCdb is currently
distributed via a separate platform, requiring a download link.

For both MIMIC-III and eICU, small subsets of data are available as demo datasets that do
not require credentialed access to PhysioNet. As the terms for distribution of these demo
datasets are less restrictive, they can be made available as data packages mimic.demo and
eicu.demo. Due to size constraints, however they are not available via CRAN, but can be
installed from GitHub as

R> install.packages(

+ c("mimic.demo", "eicu.demo"),

+ repos = "https://eth-mds.github.io/physionet-demo"

+)

Provisions for datasets configured to be attached during package loading are made irrespec-
tive of whether data is actually available. Upon access of an incomplete dataset, the user
is asked for permission to download in interactive sessions and an error is thrown other-
wise. Credentials can either be provided as environment variables (RICU_PHYSIONET_USER

and RICU_PHYSIONET_PASS for access to PhysioNet data, as well as RICU_AUMC_TOKEN for
AmsterdamUMCdb) and if the corresponding variables are unset, user input is again re-
quired in interactive sessions. For non-interactive sessions, functionality is exported such
that data can be downloaded and set up ahead of first access (see ?setup_src_data).

Contingent on being granted access by the data owners, download requires a stable Internet
connection, as well as 50 to 100 GB of temporary disk storage for unpacking and preparing
the data for efficient access. In terms of permanent storage, 5 to 10 GB per dataset are
required (see Table 1), while memory requirements are kept reasonably low by iterating over
row-chunks for setup operations. Laptop class hardware (8-16 GB of memory) should suffice
for setup and many analysis tasks which focus only on subsets of rows (and columns). Initial
data source setup (depending on available download speeds and CPU/disk type) may take
upwards of an hour per dataset.

The following paragraphs serve to give quick introductions to the included datasets, outlining
some strengths and weaknesses of each of the datasets. Especially the PhysioNet datasets
MIMIC-III and MIMIC-IV, as well as eICU offer good documentation on the respective web-
sites. Datasets are listed in order of being added to ricu and the section is concluded with a
table summarizing similarities and differences among the datasets (see Table 1).

3.1. MIMIC-III

The Medical Information Mart for Intensive Care III (MIMIC-III) represents the third iter-
ation of the arguably most influential initiative for collecting and providing large-scale ICU
data to the public2. The dataset comprises de-identified health related data of roughly 46,000

2The initial MIMIC (at the time short for Multi-parameter Intelligent Monitoring for Intensive Care) data
release dates back 20 years and initially contained data on roughly 100 patients recorded from patient monitors
in the medical, surgical, and cardiac intensive care units of Boston’s Beth Israel Hospital during the years 1992-

5

https://physionet.org/register/
https://amsterdammedicaldatascience.nl/#amsterdamumcdb
https://mimic.mit.edu/docs/
https://eicu-crd.mit.edu/about/eicu/
https://physionet.org/content/mimiciii/1.4/

patients admitted to critical care units of BIDMC during the years 2001-2012. Amounting to
just over 61,000 individual ICU admission, data is available on demographics, routine vital
sign measurements (at approximately 1 hour resolution), laboratory tests, medication, as well
as critical care procedures, organized as a 26-table relational structure.

R> mimic

<mimic_env[26]>

admissions callout caregivers chartevents

[58,976 x 19] [34,499 x 24] [7,567 x 4] [330,712,483 x 15]

cptevents d_cpt d_icd_diagnoses d_icd_procedures

[573,146 x 12] [134 x 9] [14,567 x 4] [3,882 x 4]

d_items d_labitems datetimeevents diagnoses_icd

[12,487 x 10] [753 x 6] [4,485,937 x 14] [651,047 x 5]

drgcodes icustays inputevents_cv inputevents_mv

[125,557 x 8] [61,532 x 12] [17,527,935 x 22] [3,618,991 x 31]

labevents microbiologyevents noteevents outputevents

[27,854,055 x 9] [631,726 x 16] [2,083,180 x 11] [4,349,218 x 13]

patients prescriptions procedureevents_mv procedures_icd

[46,520 x 8] [4,156,450 x 19] [258,066 x 25] [240,095 x 5]

services transfers

[73,343 x 6] [261,897 x 13]

One thing of note from a data-organizational perspective is that a change in electronic health
care systems occurred in 2008. Owing to this, roughly 38,000 ICU admissions spanning
the years 2001 though 2008 are documented using the CareVue system, while for 2008 and
onwards, data was extracted from the MetaVision clinical information system. Item identifiers
differ between the two systems, requiring queries to consider both ID mappings (heart rate for
example being available both as itemid number 211 for CareVue and 220045 for MetaVision)
as does documentation of infusions and other procedures that are considered as input events
(cf., inputevents_cv and inputevents_mv tables). Especially with respect to such input
event data, MetaVision generally provides data of superior quality.

In terms of patient identifiers, MIMIC-III allows for identifying both individual patients
(subject_id) across hospital admissions (hadm_id) and for connecting ICU (re)admissions
(icustay_id) to hospital admissions. Using the respective one-to-many relationships, ricu

can retrieve patient data using any of the above IDs, irrespective of how the raw data is
organized.

3.2. eICU

Unlike the single-center focus of other datasets, the eICU Collaborative Research Database
constitutes an amalgamation of data from critical care units of over 200 hospitals throughout
the continental United States. Large-scale data collected via the Philips eICU program,
which provides telehealth infrastructure for intensive care units, is available from the Philips

1999 (Moody and Mark 1996). Significantly broadened in scope, MIMIC-II was released 10 years after, now
including data on almost 27,000 adult hospital admissions collected from ICUs of Beth Israel Deaconess Medical
Center from 2001 to 2008 (Lee, Scott, Villarroel, Clifford, Saeed, and Mark 2011).

6

https://physionet.org/content/eicu-crd/2.0/

eICU Research Institute (eRI), albeit neither publicly nor freely. Only data corresponding
to roughly 200,000 ICU admissions, sampled from a larger population of over 3 million ICU
admissions and stratified by hospital, is being made available via PhysioNet. Patients with
discharge dates in 2014 or 2015 were considered, with stays in low acuity units being removed.

R> eicu

<eicu_env[31]>

admissiondrug admissiondx allergy

[874,920 x 14] [626,858 x 6] [251,949 x 13]

apacheapsvar apachepatientresult apachepredvar

[171,177 x 26] [297,064 x 23] [171,177 x 51]

careplancareprovider careplaneol careplangeneral

[502,765 x 8] [1,433 x 5] [3,115,018 x 6]

careplangoal careplaninfectiousdisease customlab

[504,139 x 7] [8,056 x 8] [1,082 x 7]

diagnosis hospital infusiondrug

[2,710,672 x 7] [208 x 4] [4,803,719 x 9]

intakeoutput lab medication

[12,030,289 x 12] [39,132,531 x 10] [7,301,853 x 15]

microlab note nurseassessment

[16,996 x 7] [2,254,179 x 8] [15,602,498 x 8]

nursecare nursecharting pasthistory

[8,311,132 x 8] [151,604,232 x 8] [1,149,180 x 8]

patient physicalexam respiratorycare

[200,859 x 29] [9,212,316 x 6] [865,381 x 34]

respiratorycharting treatment vitalaperiodic

[20,168,176 x 7] [3,688,745 x 5] [25,075,074 x 13]

vitalperiodic

[146,671,642 x 19]

The data is organized into 31 tables and includes patient demographics, routine vital signs,
laboratory measurements, medication administrations, admission diagnoses, as well as treat-
ment information. Owing to the wide range of hospitals participating in this data collection
initiative, spanning small, rural, non-teaching health centers with fewer than 100 beds to
large teaching hospitals with an excess of 500 beds, data availability varies. Even if data was
being recorded at the bedside it might end up missing from the eICU dataset due to technical
limitations of the collection process. As for patient identifiers, while it is possible to link
ICU admissions corresponding to the same hospital stay, it is not possible to identify patients
across hospital stays.

Data resolution again varies considerably over included variables. The vitalperiodic ta-
ble stands out as one of the few examples of a wide table organization (laying out vari-
ables as columns), as opposed to the long presentation (following an entity–attribute–value
model) of most other tables containing patient measurement data. The average time step
in vitalperiodic is around 5 minutes, but data missingness ranges from around 1% for
heart rate and pulse oximetry to roughly 10% for respiration rate and up to 80% for systemic

7

and 90% for pulmonary artery blood pressure measurements, therefore giving approximately
hourly resolution for such variables.

3.3. HiRID

Developed for early prediction of circulatory failure (Hyland, Faltys, Hüser, Lyu, Gumb-
sch, Esteban, Bock, Horn, Moor, Rieck, Zimmermann, Bodenham, Borgwardt, Rätsch, and
Merz 2020), the High Time Resolution ICU Dataset (HiRID) contains data on almost 34,000
admissions to the Department of Intensive Care Medicine of the Bern University Hospital,
Switzerland, an interdisciplinary 60-bed unit. Given the clear focus on a concrete application
during data collection, this dataset is the most limited in terms of data breadth, which is also
reflected in a comparatively simple data layout comprising only 5 tables3.

R> hirid

<hirid_env[5]>

general observations ordinal pharma

[33,905 x 5] [776,921,131 x 8] [72 x 3] [16,270,399 x 14]

variables

[712 x 5]

Collected during the period of January 2008 through June 2016, roughly 700 distinct variables
covering routine vital signs, diagnostic test results and treatment parameters are available
with variables monitored at the bedside being recorded with two minute time resolution.
In terms of demographic information and patient identifier systems however, the data is
limited. It is not possible to identify subsequent ICU admissions corresponding to the same
patient and apart from patient age, sex, weight and height, very little information is available
to characterize patients. There is no medical history, no admission diagnoses, only in-ICU
mortality information, no unstructured patient data and no information on patient discharge.
Furthermore, data on body fluid sampling has been omitted, complicating for example the
construction of a Sepsis-3 label (Singer et al. 2016).

3.4. AmsterdamUMCdb

As a second European dataset, also focusing on increased time-resolution over the US datasets,
AmsterdamUMCdb has been made available in late 2019, containing data on over 23,000
intensive care unit and high dependency unit admissions of adult patients during the years
2003 through 2016. The department of Intensive Care at Amsterdam University Medical
Center is a mixed medical-surgical ICU with 32 bed intensive care and 12 bed high dependency
units with an average of 1000-2000 yearly admissions. Covering middle ground between the
US datasets and HiRID in terms of breadth of included data, while providing a maximal

3The data is available in three states: as raw data and in two intermediary preprocessing stages explained
in Hyland et al. (2020). While ricu focuses exclusively on raw data, the merged stage represents a selection
of variables that were deemed most predictive for determining circulatory failure, which are then merged into
18 meta-variables, representing different clinical concepts. Time stamps in merged data are left unchanged,
yielding irregular time series, whereas for the imputed stage, data is down-sampled to a 5 minute grid and
missing values are imputed using a scheme discussed in Hyland et al. (2020).

8

https://physionet.org/content/hirid/1.0/
https://amsterdammedicaldatascience.nl/#amsterdamumcdb

time-resolution of 1 minute, AmsterdamUMCdb constitutes a well organized high quality
ICU data resource organized succinctly as a 7-table relational structure.

R> aumc

<aumc_env[7]>

admissions drugitems freetextitems

[23,106 x 19] [4,907,269 x 31] [651,248 x 11]

listitems numericitems procedureorderitems

[30,744,065 x 11] [977,625,612 x 15] [2,188,626 x 8]

processitems

[256,715 x 6]

For data anonymization purposes, demographic information such as patient weight, height
and age only available as binned variables instead of raw numeric values. Apart from this,
there is information on patient origin, mortality, admission diagnoses, as well as numerical
measurements including vital parameters, lab results, outputs from drains and catheters,
information on administered medication, and other medical procedures. In terms of patient
identifiers, it is possible to link ICU admissions corresponding to the same individual, but it
is not possible to identify separate hospital admissions.

3.5. MIMIC-IV

The most recently released dataset and next iteration in the MIMIC line of datasets, MIMIC-
IV, has recently been released as first stable version (Johnson et al. 2021) and support in
ricu is available as dataset miiv. Compared to MIMIC-III, this release shifts focus to newer
data, dropping all CareVue-documented patients and with that, patients who were admitted
before 2008, while adding patients admitted up to and including 2019. The resulting dataset
contains data on over 256,000 patients of which, 53,000 were admitted to ICUs, resulting in
76,000 unique ICU and almost 70,000 related hospital admissions.

R> miiv

<miiv_env[27]>

admissions chartevents d_hcpcs d_icd_diagnoses

[523,740 x 15] [329,499,788 x 10] [89,200 x 4] [109,775 x 3]

d_icd_procedures d_items d_labitems datetimeevents

[85,257 x 3] [3,861 x 9] [1,630 x 5] [7,495,712 x 9]

diagnoses_icd drgcodes emar emar_detail

[5,280,351 x 5] [769,622 x 7] [27,464,367 x 11] [55,947,921 x 33]

hcpcsevents icustays inputevents labevents

[160,727 x 6] [76,540 x 8] [9,460,658 x 26] [122,103,667 x 15]

microbiologyevents outputevents patients pharmacy

[3,397,914 x 24] [4,457,381 x 8] [382,278 x 6] [14,736,386 x 27]

poe poe_detail prescriptions procedureevents

[42,483,962 x 11] [3,256,358 x 5] [17,008,053 x 17] [731,247 x 26]

procedures_icd services transfers

[779,625 x 6] [562,892 x 5] [2,189,535 x 7]

9

Table 1: Comparison of datasets supported by ricu, highlighting some of the major similarities and distinguishing features among the
five data sources described in the preceding sections. Values followed by parenthesized ranges represent medians and are accompanied
by interquartile ranges.

MIMIC-III eICU AmsterdamUMCdb HiRID MIMIC-IV

Number of tables 26 31 7 5 27
Disk storage [GB] 7.58 6.49 13.65 4.52 10.33
Largest table [rows] 330,712,483 151,604,232 977,625,612 776,921,131 329,499,788

Available concepts* 89 87 85 74 87

Data collection
Time span 2001–2012 2014–2015 2003–2016 2008–2016 2008–2019
Country of origin United States United States Netherlands Switzerland United States

Admission counts
ICU 61,532 200,859 23,106 33,904 76,540
Hospital 57,841 166,355 - - 69,300
Unique patients 46,476 - 20,109 - 53,150

Stay lengths [day]
ICU stays 2.09 (1.11–4.48) 1.57 (0.82–2.97) 1.07 (0.84–3.67) 0.99 (0.81–2.16) 1.93 (1.09–3.73)
Hospital stays 6.57 (3.80–11.86) 5.05 (2.71–9.03) - - 6.62 (3.87–11.36)

Vital signs [1/hour]
Heart rate 1.00 (1.00–1.02) 12.00 (12.00–12.00) 60.00 (60.00–60.00) 30.00 (30.00–60.00) 1.00 (1.00–1.00)
Mean arterial pressure 1.00 (1.00–1.33) 12.00 (4.00–12.00) 60.00 (60.00–60.00) 30.00 (30.00–60.00) 1.00 (1.00–1.02)

Lab tests [1/day]
Bilirubin 1.00 (0.86–1.38) 1.00 (0.91–1.20) 1.00 (0.33–1.06) 1.00 (0.98–1.04) 1.00 (0.94–1.30)
Lactate 4.72 (1.84–10.75) 3.78 (1.54–6.67) 7.42 (4.30–14.12) 4.66 (2.96–7.96) 4.68 (2.29–9.47)

* These values represent the number of atomic concepts per data source. Additionally, 27 recursive concepts are available, which
build on data source specific atomic concepts in a source agnostic manner (see Section 4.3 for details).

10

In addition to including newer ICU data, this MIMIC release puts both more emphasis on
data collected outside the ICU, newly making emergency department (ED) data available.
In a similar vein, the set of considered data types is also expanded by including chest X-
ray (CXR) imagery directly with MIMIC data, using the same patient identifiers, while
expanding the amount of unstructured text data (still to be made publicly available). Despite
these promising developments, the focus of ricu remains on data that lies in the intersection
of the supported datasets and therefore both ED and CXR data cannot be accessed by
the current miiv implementation. Finally, documentation of medication administration has
been much improved by not only reporting prescriptions, but, using an electronic Medicine
Administration Record (eMAR) system, including time-stamped data on administration of
individual formulary units.

4. Data concepts

One of the key components of ricu is a scheme for specifying how to retrieve data correspond-
ing to predefined clinical concepts from a given data source. This abstraction provides a
mechanism for hiding away the data source specific implementation of a concept, in turn en-
abling dataset agnostic code for analysis. Heart rate, for example can be loaded from datasets
mimic_demo and eicu_demo using the hr concept as

R> src <- "mimic_demo"

R> demo <- c(src, "eicu_demo")

R>

R> load_concepts("hr", demo, verbose = FALSE)

A `ts_tbl`: 152,197 x 4

Id vars: `source`, `icustay_id`

Units: `hr` [bpm]

Index var: `charttime` (1 hours)

source icustay_id charttime hr

<chr> <int> <drtn> <dbl>

1 eicu_demo 141764 0 hours 119

2 eicu_demo 141764 1 hours 105

3 eicu_demo 141764 2 hours 95

4 eicu_demo 141764 3 hours 106

5 eicu_demo 141764 4 hours 102

...

152,193 mimic_demo 298685 314 hours 60

152,194 mimic_demo 298685 315 hours 56

152,195 mimic_demo 298685 316 hours 50

152,196 mimic_demo 298685 317 hours 48

152,197 mimic_demo 298685 318 hours 0

i 152,192 more rows

This requires infrastructure for specifying how to retrieve data subsets (Section 4.3) that is
both extensible (to new concepts and new datasets) and flexible enough to handle concept-
specific preprocessing. Furthermore, allowing for code re-use for common data transformation

11

tasks is important for simplifying both code development and maintenance. Building on this
framework, ricu has included a dictionary with over 100 concepts implemented for all five
supported datasets (where possible; see also Section 4.2 for further details).

4.1. Data classes

In order to represent tabular ICU data, ricu provides several classes, all inheriting from
data.table. The most basic of which, id_tbl, marks one (or several) columns as id_vars

which serve to define a grouping (i.e., identify patients or unit stays). Inheriting from id_tbl,
ts_tbl is capable of representing grouped time series data. In addition to id_var column(s),
a single column is marked as index_var and is required to hold a base R difftime vector.
Furthermore, ts_tbl contains a scalar-valued difftime object as interval attribute, speci-
fying the time series step size. More recently, a further class, win_tbl, inheriting from ts_tbl

has been added. Objects of this class can be used for time-stamped measurements associated
with a validity period. A set of drug infusions, consisting of both rates and intervals can as
such be conveniently represented by a win_tbl object.

Metadata for classes inheriting from id_tbl is transiently added to data.table objects and
for S3 generic functions which allow for object modifications, down-casting is implicit:

R> (dat <- ts_tbl(a = 1:5, b = hours(1:5), c = rnorm(5)))

A `ts_tbl`: 5 x 3

Id var: `a`

Index var: `b` (1 hours)

a b c

<int> <drtn> <dbl>

1 1 1 hours 0.766

2 2 2 hours 0.791

3 3 3 hours -0.767

4 4 4 hours -0.974

5 5 5 hours 1.06

R> dat[["b"]] <- dat[["b"]] + mins(30)

R> dat

An `id_tbl`: 5 x 3

Id var: `a`

a b c

<int> <drtn> <dbl>

1 1 5400 secs 0.766

2 2 9000 secs 0.791

3 3 12600 secs -0.767

4 4 16200 secs -0.974

5 5 19800 secs 1.06

Due to time series step size of dat being specified as 1 hour, an internal inconsistency is
encountered when shifting time stamps by 30 minutes, as time steps are no longer multiples

12

of the time series interval, in turn causing down-casting to id_tbl. Furthermore, if column a

were to be removed, direct down-casting to data.table would be required in order to resolve
resulting inconsistencies4.

Coercion to base classes data.frame and data.table, by stripping away the extra attributes,
is easily possible using functions as.data.frame() and as.data.table(). Coercion is also
available as data.table-style by-reference operation by passing by_ref = TRUE to any of the
above coercion functions. User caution is advised, as this does break with base R by-value
(or copy-on-modify) semantics and may lead to unexpected behavior.

In its current form, win_tbl objects can both be used to represent for example drug rates
or drug amounts, administered over a specified time-period. When calling the utility func-
tion expand() however, which creates a ts_tbl from a win_tbl by assigning values to the
corresponding time steps, values are assumed to be valid for the given interval.

R> (dat <- win_tbl(a = 1:5, b = hours(1:5), c = mins(rep(90, 5)),

+ d = runif(5)))

A `win_tbl`: 5 x 4

Id var: `a`

Index var: `b` (1 hours)

Duration var: `c`

a b c d

<int> <drtn> <drtn> <dbl>

1 1 1 hours 90 mins 0.703

2 2 2 hours 90 mins 0.896

3 3 3 hours 90 mins 0.402

4 4 4 hours 90 mins 0.150

5 5 5 hours 90 mins 0.729

R> expand(dat)

A `ts_tbl`: 10 x 3

Id var: `a`

Index var: `b` (1 hours)

a b d

<int> <drtn> <dbl>

1 1 1 hours 0.703

2 1 2 hours 0.703

3 2 2 hours 0.896

4 2 3 hours 0.896

5 3 3 hours 0.402

6 3 4 hours 0.402

7 4 4 hours 0.150

8 4 5 hours 0.150

4Updating an object inheriting from id_tbl using data.table::set() bypasses consistency checks as this
is not an S3 generic function and therefore its behavior cannot be tailored to requirements of id_tbl objects.
It therefore is up to the user to avoid creating invalid id_tbl objects in such a way.

13

9 5 5 hours 0.729

10 5 6 hours 0.729

In a case where d represented drug amounts instead of drug rates, the current implementation
of expand() would produce incorrect results. One would expect the overall amount in such a
scenario to be evenly divided by – and the resulting fractions assigned to – the corresponding
time steps. Allowing for this distinction is being considered, but, as of yet, has not been
implemented.

Utilizing the attached metadata of objects inheriting from id_tbl, several utility functions
can be called with concise semantics (as seen in the above example, where expand() is able to
determine the required column names from the win_tbl object by default). Utilities include
functions for sorting, checking for duplicates, aggregating data per combination of id_vars

(and time step/time duration), checking time series data for gaps, verifying time series regu-
larity and converting between irregular and regular time series, as well as functions for several
types of moving window operations. Adding to those class-specific implementations, id_tbl

objects inherit from data.table (and therefore from data.frame), ensuring compatibility
with a wide range of functionality targeted at these base-classes.

4.2. Ready-to-use concepts

The current selection of clinical concepts that is included with ricu covers many physiological
variables that are available throughout the included datasets. Treatment-related information
on the other hand, being more heterogeneous in nature and therefore harder to harmonize
across datasets, has been added on an as-needed basis and therefore is more limited in breadth.
A quick note on loading from multiple sources simultaneously: In the introductory example,
heart rate was loaded from multiple data sources, resulting in a column source being added.
This allows for identifying patient IDs corresponding to the respective data sources and the
extra column is added to the set of id_vars. In the following calls to load_concepts(),
only data from a single source is requested and therefore no corresponding source column is
added.

Available concepts can be enumerated using load_dictionary() and the utility function
explain_dictionary() can be used to display some concept metadata.

R> dict <- load_dictionary(demo)

R> head(dict)

<concept[6]>

abx adh_rate

antibiotics <lgl_cncpt[4]> vasopressin rate <num_cncpt[3]>

adm age

patient admission type <fct_cncpt[2]> patient age <num_cncpt[2]>

alb alp

albumin <num_cncpt[2]> alkaline phosphatase <num_cncpt[2]>

R> explain_dictionary(head(dict))

14

name category description

1 abx medications antibiotics

2 adh_rate medications vasopressin rate

3 adm demographics patient admission type

4 age demographics patient age

5 alb chemistry albumin

6 alp chemistry alkaline phosphatase

The following subsections serve to introduce some of the included concepts as well as highlight
limitations that come with current implementations. Grouping the available concepts by
category yields the following counts

R> table(vapply(dict, `[[`, character(1L), "category"))

blood gas chemistry demographics hematology medications

10 21 6 20 17

microbiology neurological outcome output respiratory

1 7 19 2 10

vitals

6

Physiological data

The largest and most well established group of concepts (covering more than half of all
currently included concepts) includes physiological patient measurements such as routine
vital signs, respiratory variables, fluid discharge amounts, as well as many kinds of laboratory
tests including blood gas measurements, chemical analysis of body fluids and hematology
assays.

R> load_concepts(c("alb", "glu"), src, interval = mins(15L),

+ verbose = FALSE)

A `ts_tbl`: 1,965 x 4

Id var: `icustay_id`

Units: `alb` [g/dL], `glu` [mg/dL]

Index var: `charttime` (15 mins)

icustay_id charttime alb glu

<int> <drtn> <dbl> <dbl>

1 201006 -3495 mins NA 116

2 201006 -2745 mins NA 83

3 201006 -1275 mins NA 91

4 201006 15 mins 2.4 175

5 201006 675 mins NA 129

...

1,961 298685 15600 mins NA 159

15

1,962 298685 16365 mins 2.2 153

1,963 298685 17400 mins NA 182

1,964 298685 17595 mins NA 122

1,965 298685 17955 mins 2.5 121

i 1,960 more rows

Most concepts of this kind are represented by num_cncpt objects (see Section 4.3) with an
associated unit of measurement and a range of permissible values. Data is mainly returned as
ts_tbl objects, representing time-dependent observations. Apart from conversion to a com-
mon unit (using functionality offered by the units package (Pebesma, Mailund, and Hiebert
2016) or possibly using the convert_unit() callback function), little has to be done in terms
of preprocessing: values are simply reported at time-points rounded to the requested interval.

Patient demographics

Moving on from dynamic, time-varying patient data, this group of concepts focuses on static
patient information. While the assumption of remaining constant throughout a stay is likely
to hold for variables including patient sex or height this is only approximately true for others
such as weight. Nevertheless, such effects are ignored and concepts of this group will be
mainly returned as id_tbl objects with no corresponding time-stamps included.

Whenever requesting concepts which are returned with associated time-stamps (e.g., glucose)
alongside time-constant data (e.g., age), merging will duplicate static data over all time-points.

R> load_concepts(c("age", "glu"), src, verbose = FALSE)

A `ts_tbl`: 1,914 x 4

Id var: `icustay_id`

Units: `age` [years], `glu` [mg/dL]

Index var: `charttime` (1 hours)

icustay_id charttime age glu

<int> <drtn> <dbl> <dbl>

1 201006 -58 hours 68.9 116

2 201006 -45 hours 68.9 83

3 201006 -21 hours 68.9 91

4 201006 0 hours 68.9 175

5 201006 11 hours 68.9 129

...

1,910 298685 260 hours 80.1 159

1,911 298685 272 hours 80.1 153

1,912 298685 290 hours 80.1 182

1,913 298685 293 hours 80.1 122

1,914 298685 299 hours 80.1 121

i 1,909 more rows

Despite a best-effort approach, data availability can be a limiting factor. While for physio-
logical variables, there is good agreement even across countries, data-privacy considerations,
as well as lack of a common standard for data encoding, may cause issues that are hard to

16

resolve. In some cases, this can be somewhat mitigated while in others, this is a limitation to
be kept in mind. In AmsterdamUMCdb, for example, patient age, height and weight are not
available as continuous variables, but as factor variables with patients binned into groups.
Such variables are then approximated by returning the respective mid-points of groups for
aumc data5. Other concepts, such as adm (categorizing admission types) or a potential icd

concept (diagnoses as ICD-9 codes) can only return data if available from the data source in
question. Unfortunately, neither aumc nor hirid contain ICD-9 encoded diagnoses, and in
the case of hirid, no diagnosis information is available at all.

Treatment-related information

The largest group of concepts dealing with treatment-related information is described by the
medications category. In addition to drug administrations, only basic ventilation informa-
tion is currently provided as ready-to-use concept. Just like availability of common ICU
procedures, patient medication is also underdeveloped, covering mainly vasopressor adminis-
trations, as well as corticosteroids, antibiotics and dextrose infusions. The current concepts
retrieving treatment-related information are mostly focused on providing data required for
constructing clinical scores described in Section 4.2.4. While this group of concepts lends itself
to use of win_tbl objects, a call to load_concepts(), requesting multiple concepts which
do not all return data as win_tbl (while leaving the merge argument at default value TRUE),
all win_tbl objects are converted to ts_tbl in order to be merged with the non-win_tbl

objects.

Ventilation is represented by several concepts: a ventilation indicator variable (vent_ind),
represented by a win_tbl object is constructed from start and end events (concepts vent_start

and vent_end). This includes any kind of mechanical ventilation (invasive via an endotracheal
or tracheostomy tube), as well as non-invasive ventilation via face or nasal masks. In line with
other concepts belonging to this group, the current state is far from being comprehensive and
expansion to further ventilation parameters is desirable.

The singular concept addressing antibiotics (abx) returns an indicator signaling whenever an
antibiotic was administered. This includes any route of administration (intravenous, oral,
topical, etc.) and does neither report dosage, nor active ingredient. Finally, vasopressor ad-
ministration is reported by several concepts representing different vasoactive drugs (including
dopamine, dobutamine, epinephrine, norepinephrine and vasopressin), as well as different ad-
ministration aspects such as rate, duration and rate administered for at least 60 minutes,
which is used in Sepsis-Related Organ Failure Assessment (SOFA) scoring (Vincent, Moreno,
Takala, Willatts, De Mendonça, Bruining, Reinhart, Suter, and Thijs 1996).

R> load_concepts(c("abx", "vent_ind", "norepi_rate", "norepi_dur"), src,

+ verbose = FALSE)

A `ts_tbl`: 12,434 x 6

Id var: `icustay_id`

Units: `norepi_rate` [mcg/kg/min]

5Prioritizing consistency over accuracy, one could apply the same binning to datasets which report numeric
values, but the concepts included with ricu attempt to strike a balance between consistency and amount of
applied preprocessing. With the extensible architecture of data concepts, however, such categorical variants
of patient demographic concepts could easily be added.

17

Index var: `startdate` (1 hours)

icustay_id startdate abx vent_ind norepi_rate norepi_dur

<int> <drtn> <lgl> <lgl> <dbl> <drtn>

1 201006 7 hours TRUE NA NA NA hours

2 201006 8 hours NA TRUE NA 60 hours

3 201006 9 hours NA TRUE 0.0460 NA hours

4 201006 10 hours NA TRUE 0.0690 NA hours

5 201006 11 hours NA TRUE 0.0690 NA hours

...

12,430 298685 612 hours NA TRUE NA NA hours

12,431 298685 613 hours NA TRUE NA NA hours

12,432 298685 614 hours NA TRUE NA NA hours

12,433 298685 615 hours NA TRUE NA NA hours

12,434 298685 616 hours NA TRUE NA NA hours

i 12,429 more rows

As cautioned in Section 4.2.2, variability in data reporting across datasets can lead to issues:
the prescriptions table included with MIMIC-III, for example, reports time-stamps as dates
only, yielding a discrepancy of up to 24 hours when merged with data where time-accuracy is
on the order of minutes. Another problem exists with concepts that attempt to report admin-
istration windows, as some datasets do not describe infusions with clear cut start/endpoints
but rather report infusion parameters at (somewhat) regular time intervals. This can cause
artifacts when the requested time step-size deviates from the dataset inherent time grid and
introduces uncertainty when attempting to determine start/endpoints for creating a win_tbl

object.

R> load_concepts("dex", "mimic_demo", verbose = FALSE)

A `win_tbl`: 10 x 4

Id var: `icustay_id`

Units: `dex` [ml/hr]

Index var: `starttime` (1 hours)

Duration var: `dur_var`

icustay_id starttime dur_var dex

<int> <drtn> <drtn> <dbl>

1 216185 129 hours 1 mins 15000

2 249805 335 hours 660 mins 9.09

3 253931 159 hours 1 mins 500.

4 277238 2 hours 140 mins 100.

5 277238 3 hours 1 mins 15000

6 277238 5 hours 1 mins 15000

7 285750 4 hours 1 mins 15000

8 286072 101 hours 1 mins 7500

9 286072 118 hours 1 mins 7500

10 286072 126 hours 1 mins 7500

Furthermore for a concept like dextrose administration as implemented in dex, where infusions
are returned alongside bolus administrations, this can yield large rate values, as the returned

18

unit is ml/hr and in this particular case, values are harmonized such that they correspond
to 10% dextrose solutions. A bolus administration of 50 ml dextrose 50% will therefore be
reported as 15000 ml/hr administered within 1 minute.

Outcomes

A group of more loosely associated concepts can be used to describe patient state. This
includes common clinical endpoints, such as death or length of ICU stay, as well as scoring
systems such as SOFA, the systemic inflammatory response syndrome (SIRS; Bone, Sibbald,
and Sprung 1992) criterion, the National Early Warning Score (NEWS; Jones 2012) and the
Modified Early Warning Score (MEWS; Subbe, Kruger, Rutherford, and Gemmel 2001).

While the more straightforward outcomes can be retrieved directly from data, clinical scores
often incorporate multiple variables, based upon which a numeric score is constructed. This
can typically be achieved by using concepts of type rec_cncpt (see Section 4.3), specifying the
needed components and supplying a callback function that applies rules for score construction.

R> load_concepts(c("sirs", "death"), src, verbose = FALSE,

+ keep_components = TRUE)

A `ts_tbl`: 14,295 x 8

Id var: `icustay_id`

Index var: `charttime` (1 hours)

icustay_id charttime sirs death temp_comp hr_comp resp_comp wbc_comp

<int> <drtn> <dbl> <lgl> <int> <int> <int> <int>

1 201006 -58 hours 1 NA NA NA NA 1

2 201006 -45 hours 1 NA NA NA NA 1

3 201006 -21 hours 1 NA NA NA NA 1

4 201006 -10 hours 2 NA NA NA 1 1

5 201006 0 hours 3 NA 0 1 1 1

...

14,291 298685 314 hours 2 NA 0 0 1 1

14,292 298685 315 hours 2 NA 0 0 1 1

14,293 298685 316 hours 2 NA 0 0 1 1

14,294 298685 317 hours 1 NA 0 0 0 1

14,295 298685 318 hours 1 TRUE 0 0 NA 1

i 14,290 more rows

Callback functions can become rather involved (especially for more complex concepts such as
SOFA) and may offer arbitrary arguments to tune their behavior. As callback functions to
rec_cncpt objects are typically called internally from load_concepts(), arguments not used
by load_concepts(), such as keep_components in the above example (causing not only the
score column, but also individual score components to be retained) are forwarded. Therefore,
some care has to be taken as when requesting multiple concepts within the same call to
load_concepts(), while passing arguments intended for concept-level callback functions, as
all involved callback functions will be called with the same forwarded arguments. When for
example requesting multiple scores (such as SOFA or SIRS), it is currently not possible to

19

enable keep_components for only a subset thereof. This setup consequently also requires that
all involved callback functions are allowed to be called with the given set of extra arguments.

4.3. Concept specification

Just like data source configuration (as discussed in Section 5.3), concept specification relies on
JSON-formatted text files, parsed by jsonlite (Ooms 2014). A default dictionary of concepts
is included with ricu, containing a selection of commonly used clinical concepts. Several
types of concepts exist within ricu and with extensibility in mind, new types can easily be
added. A quick remark on terminology before diving into more details on how to specify data
concepts: A concept corresponds to a clinical variable such as a bilirubin measurement or the
ventilation status of a patient, and an item encodes how to retrieve data corresponding to a
given concept from a data source. A concept therefore contains several items (zero, one or
multiple are possible per data source).

All concepts consist of minimal metadata including a name, target class (defaults to ts_tbl;
see Section 4.1), an aggregation specification6 and class information (num_concept if not oth-
erwise specified), as well as optional description and category information. Adding to that,
depending on concept class, further fields can be supplied. In the case of the most widespread
concept type (num_cncpt; used to represent numeric data) this is unit which encodes one
(or several synonymous) unit(s) of measurement, as well as a minimal and maximal plausible
values (specified as min and max). The concept for heart rate data (hr) for example can be
specified as

{

"hr": {

"unit": ["bpm", "/min"],

"min": 0,

"max": 300,

"description": "heart rate",

"category": "routine vital signs",

"sources": {

...

}

}

}

Metadata is used during concept loading for data-preprocessing. For numeric concepts, the
specified measurement unit is compared to that of the data (if available), with messages
being displayed in case of mismatches, while the range of plausible values is used to filter
out measurements that fall outside the specified interval. Other types of concepts include

6Every concept needs a default aggregation method which can be used during data loading to return data
that is unique per key (either per id_vars group or per combination of ìd_vars and index_var) otherwise
down-stream merging of multiple concepts is ill-defined. The aggregation default can be manually overridden
during loading or automatically, by specification as part of a rec_cncpt object. If no aggregation method is
explicitly indicated the global default is first() for character, median() for numeric and any() for logical
vectors.

20

categorical concepts (fct_cncpt), concepts representing binary data (lgl_cncpt), as well as
recursive concepts (rec_cncpt), which build on other atomic concepts7.

Finally, the most recently added concept class, unt_cncpt, inheriting from num_cncpt, aims
to simplify manual conversion to target units, leveraging capabilities provided by the units

package. For this to work, both source and target units have to be recognized and convertible
(as reported by units::ud_are_convertible()). Measurement units that are not available
by default can be registered using units::install_unit().

Specification of how data can be retrieved from a data source is encoded by data items. Lists
of data items (associated with data source names) are provided as sources element. For the
demo datasets corresponding to eICU and MIMIC-III, heart rate data retrieval is specified as

{

"eicu_demo": [

{

"table": "vitalperiodic",

"val_var": "heartrate",

"class": "col_itm"

}

],

"mimic_demo": [

{

"ids": [211, 220045],

"table": "chartevents",

"sub_var": "itemid"

}

]

}

Analogously to how different concept classes are used to represent different types of data,
different item classes handle different data loading requirements. The most common scenario
is selecting a subset of rows from a table by matching a set of ID values (sub_itm). In the
above example, heart rate data in MIMIC-III can be located by searching for ID values 211
and 220045 in column itemid of table chartevents (heart rate data is stored in long format).
Conversely, heart rate data in eICU is stored in wide format, requiring no row-subsetting.
Column heartrate of table vitalperiodic contains all corresponding data and such data
situations are handled by the col_itm class. Other item classes include rgx_itm where a
regular expression is used for selecting rows and fun_itm where an arbitrary function can
be used for data loading. If a data loading scenario is not covered by these classes, adding
further itm subclasses is encouraged.

7An example for a recursive concept is the PaO2/FiO2 ratio, used for instance to assess patients with
acute respiratory distress syndrome (ARDS) or for Sepsis-Related Organ Failure Assessment (SOFA) (Villar,
Pérez-Méndez, Blanco, Añón, Blanch, Belda, Santos-Bouza, Fernández, Kacmarek, and Spanish Initiative for
Epidemiology and Therapies for ARDS (SIESTA) Network 2013; Vincent et al. 1996). Given both PaO2 and
FiO2 as individual concepts, the PaO2/FiO2 ratio is provided by ricu as a recursive concept (pafi), requesting
the two atomic concepts pao2 and fio2 and performing some form of imputation for when at a given time
step one or both values are missing.

21

In order to extend the current concept library both to new datasets and new concepts,
further JSON files can be incorporated by adding paths to their enclosing directories to
RICU_CONFIG_PATH. Concepts with names that exist in files of the same name but with higher
precedence are only used for their sources entries, such that hr for new_dataset can be spec-
ified as follows, while concepts with non-existing names are treated as new concepts.

"hr": {

"sources": {

"new_dataset": [

{

"ids": 6640,

"table": "numericitems",

"sub_var": "itemid"

}

]

}

}

Central to providing the required flexibility for loading of certain data concepts that require
some specific preprocessing are callback functions that can be specified for several item types.
Functions (with appropriate signatures), designated as callback functions, are invoked on
individual data items, before concept-related preprocessing is applied. A common scenario for
this is unit of measurement conversion: In MIMIC-III data for example, several itemid values
correspond to temperature measurements, some of which refer to temperatures measured in
degrees Celsius whereas others are used for measurements in degrees Fahrenheit. As the
information encoding which measurement corresponds to which itemid values is no longer
available during concept-related preprocessing, this is best resolved at the level of individual
data items. Several function factories are available for generating callback functions and
convert_unit() is intended for covering unit conversions8. Data items corresponding to the
temp concept for MIMIC-III are specified as

{

"mimic_demo": [

{

"ids": [676, 677, 223762],

"table": "chartevents",

"sub_var": "itemid"

},

{

"ids": [678, 679, 223761, 224027],

"table": "chartevents",

"sub_var": "itemid",

"callback": "convert_unit(fahr_to_cels, 'C', 'f')"

}

8The presented implementation of this concept predates the addition of automatic unit conversion using the
units package. While the concept definition as used by ricu will be updated to reflect these new capabilities,
this example remains for illustration purposes.

22

]

}

indicating that for ID values 676, 677 and 223762 no preprocessing is required and for the
remaining ID values the function fahr_to_cels() is applied to entries of the val_var column
where the regular expression "f" is TRUE for the unit_var column (the values of which being
ultimately replaced with "C").

5. Data sources

Every dataset is represented by an environment with class attributes and associated metadata
objects stored as object attributes to that environment. Dataset environments all inherit
from src_env and from any number of class names constructed from data source name(s)
with a suffix _env attached. The environment representing MIMIC-III, for example inherits
from src_env and mimic_env, while the corresponding demo dataset inherits from src_env,
mimic_env and mimic_demo_env. These sub-classes are later used for tailoring the process of
data loading to particularities of individual datasets.

A src_env contains an active binding per associated table, which returns a src_tbl object
representing the requested table. As is the case for src_env objects, src_tbl objects inherit
from additional classes for reasons explained above. The admissions table of the MIMIC-III
demo dataset for example, inherits from mimic_demo_tbl and mimic_tbl (alongside classes
src_tbl and prt).

R> mimic_demo$admissions

<mimic_tbl>: [129 x 19]

ID options: subject_id (patient) < hadm_id (hadm) < icustay_id (icustay)

Defaults: `admission_type` (val)

Time vars: `admittime`, `dischtime`, `deathtime`, `edregtime`,

`edouttime`

row_id subject_id hadm_id admittime dischtime

<int> <int> <int> <dttm> <dttm>

1 12258 10006 142345 2164-10-23 21:09:00 2164-11-01 17:15:00

2 12263 10011 105331 2126-08-14 22:32:00 2126-08-28 18:59:00

3 12265 10013 165520 2125-10-04 23:36:00 2125-10-07 15:13:00

4 12269 10017 199207 2149-05-26 17:19:00 2149-06-03 18:42:00

5 12270 10019 177759 2163-05-14 20:43:00 2163-05-15 12:00:00

...

125 41055 44083 198330 2112-05-28 15:45:00 2112-06-07 16:50:00

126 41070 44154 174245 2178-05-14 20:29:00 2178-05-15 09:45:00

127 41087 44212 163189 2123-11-24 14:14:00 2123-12-30 14:31:00

128 41090 44222 192189 2180-07-19 06:55:00 2180-07-20 13:00:00

129 41092 44228 103379 2170-12-15 03:14:00 2170-12-24 18:00:00

i 124 more rows

i 14 more variables: deathtime <dttm>, admission_type <chr>,

admission_location <chr>, discharge_location <chr>, insurance <chr>,

23

language <chr>, religion <chr>, marital_status <chr>, ethnicity <chr>,

edregtime <dttm>, edouttime <dttm>, diagnosis <chr>,

hospital_expire_flag <int>, has_chartevents_data <int>

Powered by the prt (Bennett 2021) package, src_tbl objects represent row-partitioned tabu-
lar data stored as multiple binary files created by the fst (Klik 2020) package. In addition to
standard subsetting, prt objects can be subsetted via the base R S3 generic function subset()

and using non-standard evaluation (NSE):

R> subset(mimic_demo$admissions, subject_id > 44000, language:ethnicity)

language religion marital_status ethnicity

1: ENGL CATHOLIC SINGLE WHITE

2: ENGL CATHOLIC SINGLE WHITE

3: ENGL CATHOLIC SINGLE WHITE

4: ENGL PROTESTANT QUAKER MARRIED WHITE

5: ENGL UNOBTAINABLE SINGLE BLACK/AFRICAN AMERICAN

6: ENGL CATHOLIC SINGLE WHITE

7: ENGL NOT SPECIFIED SINGLE WHITE

This syntax makes it possible to read row-subsets of long tables into memory with little
memory overhead. While terseness of such an API does introduce potential ambiguity, this is
mostly overcome by using the tidy eval framework provided by rlang (Henry and Wickham
2020):

R> subject_id <- 44000:45000

R> subset(mimic_demo$admissions, .data$subject_id %in% .env$subject_id,

+ subject_id:dischtime)

subject_id hadm_id admittime dischtime

1: 44083 125157 2112-05-04 08:00:00 2112-05-11 14:15:00

2: 44083 131048 2112-05-22 15:37:00 2112-05-25 13:30:00

3: 44083 198330 2112-05-28 15:45:00 2112-06-07 16:50:00

4: 44154 174245 2178-05-14 20:29:00 2178-05-15 09:45:00

5: 44212 163189 2123-11-24 14:14:00 2123-12-30 14:31:00

6: 44222 192189 2180-07-19 06:55:00 2180-07-20 13:00:00

7: 44228 103379 2170-12-15 03:14:00 2170-12-24 18:00:00

By using rlang pronouns (.data and .env), the distinction can readily be made between a
name referring to an object within the context of the data and an object within the context
of the calling environment.

5.1. Data source setup

In order to make a dataset accessible to ricu, three steps are necessary, each handled by an
exported S3 generic function: download_scr(), import_src() and attach_src(). The first

24

ricu installed
no data (apart from

demo datasets)

a

raw tables
(.csv files)

b

(partitioned) fst
tables (prt objects)

c

queryable src env

containing src tbl

objects

d

download src()

RICU PHYSIONET USER

RICU PHYSIONET PASS

RICU AUMC TOKEN

im
po
rt

sr
c(
)

RI
CU

DA
TA

PA
TH

RI
CU

CO
NF
IG

PA
TH

tb
l
cf
g

attach src()

RICU SRC LOAD

id cfg, col cfg

Figure 1: Making a dataset available to ricu involves several steps, starting with data down-
load, followed by preparation for efficient access and finalized by instantiation of data struc-
tures containing relevant metadata. The functions which are used for each step are displayed
above arrows and below (in red) are indicated specific configuration settings or environment
variables which are need for (or can be used to customize) the specific step.

two steps, data download and import, are one-time procedures, whereas attaching is carried
out every time the package namespace is loaded. By default, all data sources known to ricu

are configured to be attached and in case some data is missing for a given data source, the
missing data is downloaded and imported on first access. An outline of the steps involved for
data source setup is shown in Figure 1.

Data download

The first step towards accessing data is data download, taken care of by the S3 generic function
download_src(). For the datasets included with ricu, prior to calling download_src(), the
following environment variables can be set (indicated in red in the a → b edge in Figure 1):

• RICU_PHYSIONET_USER/RICU_PHYSIONET_PASS: PhysioNet login credentials with access
to the requested dataset(s).

• RICU_AUMC_TOKEN: Download token, extracted from the download URL received after
being granted data access.

If any of the required access credentials are not available as environment variables, they can
be supplied as function arguments to download_src() or the user is queried in interactive
sessions and an error is thrown otherwise.

As a quick reminder on system requirements for initial data setup operations: Each of the
supported datasets requires 5-10 GB disk space for permanent storage and 50-100 GB of

25

temporary disk storage during download and import. Memory requirements are kept low
(8-16 GB) by performing all setup operations only on subsets of rows at the time. Initial data
source setup can be expected to take upwards of an hour per dataset.

Data import

After successful data download, importing prepares tables for efficient random row- and
column-access, for which the raw data format (.csv) is not well suited (see edge b → c in Figure
1). Tables are read in using readr (Wickham and Hester 2020), potentially (re-)partitioned
row-wise, and re-saved using fst. Environment variables that can be set to customize ricu

data handling, relevant for import and attaching include:

• RICU_DATA_PATH: Optional data storage location (if unset, this defaults to a system-
specific, user-specific directory). The current value used for this setting can be queried
by calling data_dir().

• RICU_CONFIG_PATH: A comma-separated set of paths to directories containing config-
uration files. The current set of paths is retrievable by calling config_paths() and
the ordering of paths determines precedence of how configuration files are combined (if
multiple files of the same name are available).

For importing, the information contained in tbl_cfg configuration objects is most relevant.
This determines column data types, table partitioning and sanity checks like number of rows
per table. Please refer to Section 5.3.3 for more information on the construction of tbl_cfg

objects.

Data attaching

Finally, attaching a dataset creates a corresponding src_env object, containing a correspond-
ing src_tbl object for each table, which together with associated metadata are used by
ricu to run queries against the data (edge c → d in Figure 1). The environment variable
RICU_SRC_LOAD may contain a comma-separated list of data source names that are set up
for being automatically attached on namespace loading. This defaults to all currently sup-
ported datasets and the active set of source names is available as auto_attach_srcs().
Apart from this automatism, the process of attaching a dataset can be manually invoked by
calling attach_src(), which can be convenient when for example updating the data source
configuration after it has been modified.

Two configuration objects which are important for data loading (see the following Section
5.2) are id_cfg and col_cfg (described in Sections 5.3.1 and 5.3.2, respectively), providing
default values for certain types of columns, including time-stamp, measurement value and
measurement unit column names, as well as defining relationships between patient identifiers
(such as hospital stay ID and ICU stay ID).

5.2. Data loading

The lowest level of data access is direct subsetting of src_tbl objects as shown at the start of
Section 5. As src_tbl inherits from prt, the subset() implementation provided by prt can
be used for NSE of data-expressions against on-disk, tabular data. Building on that, several
S3 generic functions successively homogenize data representations as visualized in Figure 2.

26

src tbl object
on-disk table

a

data.table object

in-memory table

b

data.table object

minute resolution
in-data ID

c

id tbl object
requested resolution

requested ID

d

load src()

subset()

lo
ad

di
ff
ti
me
()

co
lum

n
co
nfi
g

id
or
ig
in
()

load id()/load ts()/load win()

ID config
id windows()

Figure 2: Data loading proceeds through several layers, each contributing a step towards
harmonizing discrepancies among raw data representations provided by the different data
sources. Raw data tables are represented by ricu as src_tbl objects which can be queried
using load_src(). Absolute time-stamps in the returned data.table are converted to times
relative to admission (in minutes) by load_difftime() and finally, load_id()/load_ts()/
load_win() ensure a given ID system and time interval.

27

The most basic layer in data loading is provided by the S3 generic function load_src(),
which provides a string-based interface to the cols argument of subset() while forwarding
the unevaluated expression passed as rows (see edge a → b in Figure 2).

R> load_src(mimic_demo$admissions, subject_id > 44000,

+ cols = c("hadm_id", "admittime", "dischtime"))

hadm_id admittime dischtime

1: 125157 2112-05-04 08:00:00 2112-05-11 14:15:00

2: 131048 2112-05-22 15:37:00 2112-05-25 13:30:00

3: 198330 2112-05-28 15:45:00 2112-06-07 16:50:00

4: 174245 2178-05-14 20:29:00 2178-05-15 09:45:00

5: 163189 2123-11-24 14:14:00 2123-12-30 14:31:00

6: 192189 2180-07-19 06:55:00 2180-07-20 13:00:00

7: 103379 2170-12-15 03:14:00 2170-12-24 18:00:00

As data sources differ in their representation of time-stamps, a next step in data homoge-
nization is to converge to a common format: the time difference to the origin time-point of a
given ID system (for example ICU admission).

R> load_difftime(mimic_demo$admissions, subject_id > 44000,

+ cols = c("hadm_id", "admittime", "dischtime"))

An `id_tbl`: 7 x 3

Id var: `hadm_id`

hadm_id admittime dischtime

<int> <drtn> <drtn>

1 103379 0 mins 13846 mins

2 125157 0 mins 10455 mins

3 131048 0 mins 4193 mins

4 163189 0 mins 51857 mins

5 174245 0 mins 796 mins

6 192189 0 mins 1805 mins

7 198330 0 mins 14465 mins

The function load_difftime() is expected to return timestamps as base R difftime vectors
(in minutes; edge b → c in Figure 2). The argument id_hint can be used to specify a
preferred ID system, but if not available in raw data, load_difftime() will return data
using the ID system with highest cardinality (i.e., ICU stay ID is preferred over hospital
stay ID). In the above example, if icustay_id were requested, data would be returned using
hadm_id, whereas a subject_id request would be honored, as the corresponding ID column
is available in the admissions table.

Building on load_difftime() functionality, functions load_id()/load_ts()/load_win()

return id_tbl/ts_tbl/win_tbl objects with the requested ID system (passed as id_var

argument). This uses raw data IDs if available or calls change_id() in order to convert to
the desired ID system (edge c → d in Figure 2). Similarly, where load_difftime() returns
data with fixed time interval of one minute, load_id() allows for arbitrary time intervals
(using change_interval(); defaults to 1 hour).

28

R> load_id(mimic_demo$admissions, subject_id > 44000,

+ cols = c("admittime", "dischtime"), id_var = "hadm_id")

An `id_tbl`: 7 x 3

Id var: `hadm_id`

hadm_id admittime dischtime

<int> <drtn> <drtn>

1 103379 0 hours 230 hours

2 125157 0 hours 174 hours

3 131048 0 hours 69 hours

4 163189 0 hours 864 hours

5 174245 0 hours 13 hours

6 192189 0 hours 30 hours

7 198330 0 hours 241 hours

Throughout several of theses functions, col_cfg objects are used to provide sensible de-
faults. In order to convert to relative times, load_difftime(), for example, requires names
of columns for which this applies (provided by the time_vars entry), and load_ts() needs to
know which of the time_vars to use as index_var. For more information on the construction
of col_cfg objects, please refer to Section 5.3.2.

A call to change_id() requires the construction of a table which contains the mapping be-
tween different ID systems, together with information about how to convert timestamps
between these ID systems (edge c → d in Figure 2). The function responsible for pro-
viding the necessary information is id_windows() and the associated S3 generic function
id_win_helper(). The entry point id_windows() wraps id_win_helper(), providing mem-
oization, as the resulting structure is expensive to compute relative to the frequency of being
required.

R> id_windows(mimic_demo)

An `id_tbl`: 136 x 9

Id var: `icustay_id`

icustay_id hadm_id subject_id icustay_id_start hadm_id_start

<int> <int> <int> <drtn> <drtn>

1 201006 198503 10076 0 mins -3290 mins

2 201204 114648 42321 0 mins -2 mins

3 203766 126949 10045 0 mins -1336 mins

4 204132 157609 40310 0 mins -1 mins

5 204201 177678 10104 0 mins -368 mins

...

132 295043 170883 10124 0 mins -10413 mins

133 295741 176805 10090 0 mins -1 mins

134 296804 110244 10035 0 mins -1294 mins

135 297782 167612 43909 0 mins -1 mins

136 298685 151323 42075 0 mins -1 mins

i 131 more rows

29

i 4 more variables: subject_id_start <drtn>, icustay_id_end <drtn>,

hadm_id_end <drtn>, subject_id_end <drtn>

Analogously, the function pair id_origin() and id_orig_helper(), with the former wrap-
ping the latter and again providing memoization, is used for datasets where time-stamps are
represented by absolute times, returning the origin time-points for a given ID system which
then can be used to calculate relative times (edge b → c in Figure 2).

R> id_origin(mimic_demo, "icustay_id")

An `id_tbl`: 136 x 2

Id var: `icustay_id`

icustay_id intime

<int> <dttm>

1 201006 2107-03-24 04:06:14

2 201204 2121-12-07 20:50:36

3 203766 2129-11-24 22:46:57

4 204132 2144-12-24 16:16:41

5 204201 2120-08-24 23:47:23

...

132 295043 2192-04-24 02:29:49

133 295741 2124-01-12 14:27:16

134 296804 2129-03-04 13:40:11

135 297782 2152-10-09 19:05:36

136 298685 2166-02-12 17:57:37

i 131 more rows

For the included datasets, the implementations of id_win_helper() and id_orig_helper(),
use information contained in id_cfg objects (see Section 5.3.1) to determine which columns in
which tables are required for constructing the corresponding lookup tables. Doing so, however,
is not necessary: an id_win_helper() implementation for a new dataset could forego this
by hard-coding table/column names as part of the function logic, in-turn simplifying the
corresponding id_cfg object to merely providing naming and ordering information.

5.3. Data source configuration

Data source environments (and corresponding src_tbl objects) are constructed using source
configuration objects: list-based structures, inheriting from src_cfg and from any number of
data source specific class names with suffix _cfg appended (as discussed at the beginning of
Section 5). The exported function load_src_cfg() reads a JSON formatted file and creates
a src_cfg object per data source and further therein contained objects.

R> cfg <- load_src_cfg("mimic_demo")

R> str(cfg, max.level = 3L, width = 70L)

List of 1

$ mimic_demo:List of 6

30

..$ name : chr "mimic_demo"

..$ prefix : chr [1:2] "mimic_demo" "mimic"

..$ id_cfg : mmc_dm_d [1:3] `subject_id`, `hadm_id`, `icustay_id`

..$ col_cfg: mmc_dm_c [1:25] [0, 0, 5, 0, 1], [0, 1, 6, 0, 1], [1, 0, ...

..$ tbl_cfg: mmc_dm_t [1:25] [?? x 19; 1], [?? x 24; 1], [?? x 4; 1], ...

..$ extra :List of 1

.. ..$ url: chr "https://physionet.org/files/mimiciii-demo/1.4"

..- attr(*, "class")= chr [1:3] "mimic_demo_cfg" "mimic_cfg" "src_cfg"

R> mi_cfg <- cfg[["mimic_demo"]]

In addition to required fields name and prefix (used as class prefix), as well as further
arbitrary fields contained in extra (url in this case), several configuration objects are part
of src_cfg: id_cfg, col_cfg and tbl_cfg.

ID configuration

An id_cfg object contains an ordered set of key-value pairs representing patient identifiers
in a dataset. An implicit assumption currently is that a given patient ID system is used
consistently throughout a dataset, meaning that for example an ICU stay ID is always referred
to by the same name throughout all tables containing a corresponding column. Owing to the
relational origins of these datasets this has been fulfilled in all instances encountered so far.
In MIMIC-III, ID systems

R> as_id_cfg(mi_cfg)

<mimic_demo_ids[3]>

patient hadm icustay

`subject_id` `hadm_id` `icustay_id`

are available, allowing for identification of individual patients, their (potentially multiple)
hospital admissions over the course of the years and their corresponding ICU admissions (as
well as potential re-admissions). Ordering corresponds to cardinality: moving to larger values
implies moving along a one-to-many relationship. This information is used in data-loading,
whenever the target ID system is not contained in the raw data.

Default column configuration

Again used in data loading, this per-table set of key-value pairs specifies column defaults
as col_cfg object. Each key describes a type of column with special meaning and the
corresponding value specifies said column for a given table. The print method for col_cfg

reports all keys alongside the per-table counts of accordingly registered values (i.e., columns).

R> as_col_cfg(mi_cfg)

<mimic_demo_cols[25]>

admissions callout caregivers chartevents

31

[0, 0, 5, 0, 1] [0, 1, 6, 0, 1] [1, 0, 0, 0, 1] [0, 1, 2, 1, 1]

cptevents d_cpt d_icd_diagnoses d_icd_procedures

[0, 1, 1, 0, 1] [1, 0, 0, 0, 1] [1, 0, 0, 0, 1] [1, 0, 0, 0, 1]

d_items d_labitems datetimeevents diagnoses_icd

[1, 0, 0, 0, 1] [1, 0, 0, 0, 1] [0, 1, 3, 0, 1] [0, 0, 0, 0, 1]

drgcodes icustays inputevents_cv inputevents_mv

[0, 0, 0, 0, 1] [0, 1, 2, 0, 1] [0, 1, 2, 1, 1] [0, 1, 4, 1, 1]

labevents microbiologyevents outputevents patients

[0, 1, 1, 1, 1] [0, 1, 2, 0, 1] [0, 1, 2, 1, 1] [0, 0, 4, 0, 1]

prescriptions procedureevents_mv procedures_icd services

[0, 1, 2, 1, 1] [0, 1, 4, 1, 1] [0, 0, 0, 0, 1] [0, 1, 1, 0, 1]

transfers

[0, 1, 2, 0, 1]

The following column defaults are currently in use throughout ricu but the set of keys can be
extended to arbitrary new values:

• id_var: In case a table does not contain at least one ID column corresponding to one
of the ID systems specified as id_cfg, the default ID column can be set on a per-table
basis as id_var9.

• index_var: A column that is used to define an ordering in time over rows, thereby
providing a time series index10.

• time_vars: Columns which will be treated as time variables (important for converting
between ID systems for example), but not as time series indices11.

• unit_var: Used in concept loading (more specifically for num_cncpt concepts, see Sec-
tion 4.3) to identify columns that represent unit of measurement information.

• val_var: Again used when loading data concepts, this identified a default value variable
in a table, representing the column of interest to be used as returned data column.

While id_var, index_var and time_vars are used to provide sensible defaults to functions
used for general data loading (Section 5.2), unit_var, val_var, as well as potential user-
defined defaults are only used in concept loading (see Section 4.2) and therefore need not be
prioritized when integrating new data sources until data concepts have been mapped.

Table configuration

Finally, tbl_cfg objects are used during the initial setup of a data source. In order to create
a representation of a table that is accessible by ricu from raw data, several key pieces of
information are required:

9This for example is the case for the d_items table in MIMIC-III, which does not contain any patient related
data, but holds information on items encoding types of measurements, procedures, etc., used throughout other
tables holding actual patient data.

10For the MIMIC-III table inputevents_mv, of the four available time variables (starttime, endtime,
storetime, comments_date), starttime lends itself to be used as index variable more than the other can-
didates and therefore is set as default.

11In case of the admissions table in MIMIC-III for example, a total of five columns are considered to be
time variables, none of which stands out as potential index_var.

32

• File name(s): In the simplest case, a single file corresponds to a single table. Other sce-
narios that have been encountered (and are therefore handled) include tables partitioned
into multiple files and .tar archives containing multiple tables.

• Column specification: For each column, the expected data type has to be known, as
well as a pair of names, one corresponding to the raw data column name and one
corresponding to the column name to be used within ricu.

• (Optional) number of rows: Used as sanity check whenever available.

• (Optional) partitioning information: For very long tables it can be useful to specify a
row-partitioning. This currently is only possible by applying a vector of breakpoints to
a single numeric column, thereby defining a grouping.

Table configuration objects are only used within the context of the functions download_src()

and import_src() and are therefore not required if download and import are carried out
manually.

R> as_tbl_cfg(mi_cfg)

<mimic_demo_tbls[25]>

admissions callout caregivers chartevents

[?? x 19; 1] [?? x 24; 1] [?? x 4; 1] [?? x 15; 2]

cptevents d_cpt d_icd_diagnoses d_icd_procedures

[?? x 12; 1] [?? x 9; 1] [?? x 4; 1] [?? x 4; 1]

d_items d_labitems datetimeevents diagnoses_icd

[?? x 10; 1] [?? x 6; 1] [?? x 14; 1] [?? x 5; 1]

drgcodes icustays inputevents_cv inputevents_mv

[?? x 8; 1] [?? x 12; 1] [?? x 22; 1] [?? x 31; 1]

labevents microbiologyevents outputevents patients

[?? x 9; 1] [?? x 16; 1] [?? x 13; 1] [?? x 8; 1]

prescriptions procedureevents_mv procedures_icd services

[?? x 19; 1] [?? x 25; 1] [?? x 5; 1] [?? x 6; 1]

transfers

[?? x 13; 1]

For the chartevents table of the MIMIC-III demo dataset, rows are partitioned into two
groups, while all other tables are represented by a single partition. Furthermore, the expected
number of rows is unknown (??) as this is missing from the corresponding tbl_cfg object.

5.4. Adding external datasets

In order to add a new dataset to ricu, several aspects outlined in the previous subsections
require consideration. For illustration purposes, code for integrating AmsterdamUMCdb as
external dataset is available from GitHub. While this is no longer needed for using the aumc

data source, the repository will remain as it might serve as template to integration of new
datasets. Throughout this repository (and the following paragraphs), the AmsterdamUMCdb
data treated as an ricu-external dataset is referred to as aumc_ext.

33

https://github.com/eth-mds/aumc

Adding configuration information

Central to adding a new dataset to ricu is providing some configuration information in a
data-sources.json file pointed to by the environment variable RICU_CONFIG_PATH. Depend-
ing on particularities of the dataset in question, corresponding implementations of some of
the S3 generic functions mentioned throughout Sections 5.1 and 5.2 might have to be pro-
vided. The amount of confirmation information required to get started also depends on the
desired level of integration. As data download and import are one-time procedures, these
steps can be carried out manually, negating the need for specifying column data types in
data-sources.json and providing data source specific methods for the download_src()

and import_src() generics.

The basic organization of a data source configuration entry, as it could be used for aumc_ext,
specified as JSON is as follows:

{

"name": "aumc_ext",

"id_cfg": {

"patient": {

"id": "patientid",

"position": 1

},

"icustay": {

"id": "admissionid",

"position": 2

}

},

"tables": {

...

}

}

The shown id_cfg entry represents the minimally required set of entries, where for each ID
specification, start, end and table are omitted (when compared to the aumc configuration
provided by ricu). The tables entry expands to something like the following:

"tables": {

"freetextitems": {

},

"drugitems": {

"defaults": {

"index_var": "start",

"val_var": "dose",

"unit_var": "doseunit",

"time_vars": ["start", "stop"]

}

},

"numericitems": {

34

"defaults": {

"index_var": "measuredat",

"val_var": "value",

"unit_var": "unit",

"time_vars": ["measuredat", "registeredat", "updatedat"]

},

"partitioning": {

"col": "",

"breaks": [

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0

]

}

},

...

}

Minimally required is simply an entry indicating the data source membership of a table (if
not partitioned; cf., freetextitems). This does slightly complicate data exploration, as if no
defaults are available, no default values can be provided to calls to load_ts() and related
functions and therefore repeatedly have to be specified in corresponding function calls. Also,
when specifying data items in such a setup, the per-table column names for special columns
such as index_var, val_var, etc., have to be repeated for each individual item entry.

For partitioned tables, the basic structure of a partitioning entry is required, but the content
itself is irrelevant, as this is only used for setup (cf., numericitems). The length of breaks,
however, is required to match the number of partitions (i.e., a length 23 breaks specifica-
tion corresponds to a partitioning into 24 row-groups.)12. The directory containing such a
data-sources.json can then be pointed to by the environment variable RICU_CONFIG_PATH,
making it available to ricu.

Enabling data loading

As for functions that are required, currently there is no default method available for the
loading step provided by load_difftime() and most likely an implementation of the generic
function id_win_helper() will be required as well. For aumc_ext, load_difftime() could
be implemented as

R> ms_as_min <- function(x) {

+ as.difftime(as.integer(x / 6e4), units = "mins")

+ }

R>

R> aumc_difftime <- function(x, rows, cols = colnames(x),

+ id_hint = id_vars(x),

+ time_vars = ricu::time_vars(x), ...) {

+

12Originally it was intended to use partitioning information during data loading in order to narrow down
the set of partitions that have to be accessed. So far, this optimization has not been implemented.

35

+ if (id_hint %in% colnames(x)) {

+ id_sel <- id_hint

+ } else {

+ id_opt <- id_var_opts(sort(as_id_cfg(x), decreasing = TRUE))

+ id_sel <- intersect(id_opt, colnames(x))[1L]

+ }

+

+ stopifnot(is.character(id_sel), length(id_sel) == 1L)

+

+ if (!id_sel %in% cols) {

+ cols <- c(id_sel, cols)

+ }

+

+ time_vars <- intersect(time_vars, cols)

+

+ dat <- load_src(x, {{ rows }}, cols)

+ dat <- dat[, c(time_vars) := lapply(.SD, ms_as_min),

+ .SDcols = time_vars]

+

+ as_id_tbl(dat, id_vars = id_sel, by_ref = TRUE)

+ }

Such a function attempts to use the ID as requested as id_hint, but falls back to the best
possible alternative (using the ordering as previously specified in the id_cfg JSON configu-
ration) if not provided by the data. The helper function id_var_opts() returns the dataset-
specific column names of an id_cfg object (as opposed to the dataset-agnostic ID names;
cf., subject_id and patient). Both the row-subsetting expression and column selection are
passed on to load_src() and all columns specified as time_vars are converted to difftime

vectors in minutes. Operations can safely be carried out using by-reference semantics, as
intermediate objects are not exposed to the user.

For a possible implementation of the id_win_helper() generic, column and table names to
assemble the desired lookup table are hard coded instead of provided by the corresponding
id_cfg object (as is the case in the ricu-internal implementation).

R> aumc_windows <- function(x) {

+

+ ids <- c("admissionid", "patientid")

+ sta <- c("admittedat", "firstadmittedat")

+ end <- c("dischargedat", "dateofdeath")

+

+ tbl <- as_src_tbl(x, "admissions")

+

+ res <- tbl[, c(ids, sta[1L], end)]

+ res <- res[, c(sta[2L]) := 0L]

+ res <- res[, c(sta, end) := lapply(.SD, ms_as_min),

+ .SDcols = c(sta, end)]

+

36

+ res <- data.table::setcolorder(res, c(ids, sta, end))

+ res <- rename_cols(res, c(ids, paste0(ids, "_start"),

+ paste0(ids, "_end")), by_ref = TRUE)

+

+ as_id_tbl(res, ids[2L], by_ref = TRUE)

+ }

As all the required information is available form the admissions table, aumc_windows()

simply loads the corresponding columns, converts them to minute resolution, followed by
some renaming. ICU admissions and discharges in this table are relative to initial hospital
admissions and therefore an all-zero column firstadmittedat is added and the id_var of
the resulting id_tbl is marked as patientid13.

A final step in making a new dataset accessible to ricu lies in specifying concept items. To this
end, a file concept-dict.json can be added to the directory pointed to by the environment
variable RICU_CONFIG_PATH, containing entries like the following, which will make it possible
to use the hr concept across all datasets included with ricu, alongside the newly added dataset.

{

"hr": {

"sources": {

"aumc_ext": [

{

"ids": 6640,

"table": "numericitems",

"sub_var": "itemid"

}

]

}

}

}

The above outline serves as an example on how to proceed when adding new data to ricu.
Aspects like having multiple patient IDs, for example, could be further simplified14. Owing
to the extensive use of S3 generic functions, ricu offers considerable flexibility for customiz-
ing certain behavior to specifics of a given data source, while providing fallback procedures
whenever more general treatment can be applied.

Summary of required steps

Summarizing aspects explained in more detail in the previous sections, the following points
list the required steps for adding new data in the order they should be considered in. The
approach taken here being is to start simple and expand.

13The patient ID created in this way is different to that available for MIMIC-III, where patient date of birth
is provided. An approximate date of birth could be constructed if ages were reported more precisely, but given
the rough binning available here, this might be considered an acceptable limitation of resulting patient IDs.
Nevertheless awareness of such differences in data presentation is important.

14An example for such a reduced setup is available from the AUMC GitHub repository as aumc_min. Moving
to only a single patient identifier also does away with the need for a id_win_helper() implementation, as
change_id() will not be called in such a scenario.

37

https://github.com/eth-mds/aumc

1. Tables saved as .fst files should be moved to the folder returned by src_data_dir()

when passed the dataset name (alternatively, methods implementing src_download()

and src_import() are required).

2. A minimal data source configuration file data-sources.json is required in the directory
pointed to by RICU_CONFIG_PATH. For AmsterdamUMCdb, this could be as minimal as
(assuming no partitioning):

{

"name": "aumc_min",

"id_cfg": {

"icustay": "admissionid"

},

"tables": {

"admissions": {},

"drugitems": {},

"freetextitems": {},

"listitems": {},

"numericitems": {},

"procedureorderitems": {},

"processitems": {}

}

}

File names have to match table names, i.e., the admissions table should be named
admissions.fst. Upon a call to attach_src() (or next loading of the package and
having added the data source name to RICU_SRC_LOAD) the new data source can be
explored using load_src().

3. A load_difftime() method is required, which:

• passes a row-subsetting expression to load_src() using the rlang curly-curly op-
erator,

• converts columns passed as time_vars to minute-resolution difftime vectors,
• returns an id_tbl object where patient identifiers are chosen such that time-stamps

are relative to corresponding admission,
• (optionally) uses the column passed as id_hint for patient identifiers, if multiple

identifiers are available from data.

Upon registering this method with S3 dispatch, higher-level data loading functions
such as load_ts() become available (given that no changes in patient identifiers are
requested).

4. (Optional) if the source configuration specifies multiple patient identifiers which are not
all available from all tables directly, an implementation of id_win_helper() most likely
will be required (see Section 5.2).

38

5. Now, the source configuration can be expanded with per-table column defaults and data
items can be added to the concepts included with ricu by creating a concept-dict.json

under the path pointed to by RICU_CONFIG_PATH. For more information on readily avail-
able concepts, refer to Section 4.2 and for specifying new concepts altogether, pointers
are available in section 4.3.

6. Examples

In order to briefly illustrate how ricu could be applied to real-world clinical questions, two ex-
amples are provided in the following sections. The first example fully relies on data concepts
that are included with ricu. Whereas the second one explores both how some data prepro-
cessing can be added to an existing concept, by creating a recursive concept (or rec_cncpt),
as well as how to create an entirely new data concept in code (instead of JSON specification
as outlined in Section 4.3), using constructors item() and concept().

6.1. Lactate and mortality

First, the association of lactate levels and mortality is investigated. This problem has been
studied before and it is widely accepted that both static and dynamic lactate indices are
associated with increased mortality (Haas, Lange, Saugel, Petzoldt, Fuhrmann, Metschke,
and Kluge 2016; Nichol, Bailey, Egi, Pettila, French, Stachowski, Reade, Cooper, and Bellomo
2011; Van Beest, Brander, Jansen, Rommes, Kuiper, and Spronk 2013). In order to model
this relationship, a time-varying proportional hazards Cox model (Therneau and Grambsch
2000; Therneau 2021) is fitted, which includes the SOFA score as a general predictor of illness
severity, using MIMIC-III demo data. Furthermore, for the sake of this example, the patient
cohort is defined to be patients admitted from 2008 onwards (corresponding to the MetaVision
database) of ages 20 to 90 years old.

R> src <- "mimic_demo"

R>

R> cohort <- load_id("icustays", src, dbsource == "metavision",

+ cols = NULL)

R> cohort <- load_concepts("age", src, patient_ids = cohort,

+ verbose = FALSE)

R>

R> dat <- load_concepts(c("lact", "death", "sofa"), src,

+ patient_ids = cohort[age > 20 & age < 90,],

+ verbose = FALSE)

R>

R> dat <- dat[,

+ head(.SD, n = match(TRUE, death, .N)), by = c(id_vars(dat))

+]

R>

R> dat <- fill_gaps(dat)

R>

R> dat <- replace_na(dat, c(NA, FALSE), type = c("locf", "const"),

39

+ by_ref = TRUE, vars = c("lact", "death"),

+ by = id_vars(dat))

R>

R> cox_mod <- coxph(

+ Surv(charttime - 1L, charttime, death) ~ lact + sofa,

+ data = dat

+)

After loading the data, some minor preprocessing is still required before modeling: first, data
is filtered such that only data up to (and including) the hour in which the death flag switches
to TRUE is used. Following that, missing values for lact are imputed using a last observation
carry forward (LOCF) scheme (observing the patient grouping) and missing death values are
set to FALSE. The resulting model fit can be visualized as:

lact

sofa

12477

12477

1.82 (1.25, 2.64)

0.95 (0.80, 1.12)

0.002

0.514

Variable N Hazard ratio p

1 1.5 2 2.5

A simple exploration already shows that the increased values of lactate are associated with
mortality, even after adjusting for the SOFA score. Using abstractions provided by ricu, this
analysis could now also be applied to other datasets with minimal effort.

6.2. Diabetes and insulin treatment

For the next example, again using MIMIC-III demo data, comorbidities and treatment related
information are used: the amount of insulin administered to patients in the first 24 hours from
their ICU admission is analyzed, in connection with diabetic status, in order to determine
whether diabetic patients receive more insulin over that time-span, when compared to non-
diabetic patients. For this, two concepts are introduced: ins24, a binned variable representing
the cumulative amount of insulin administered within the first 24 hours of an ICU admission,
and diab, a logical variable encoding diabetes comorbidity.

As there already is an insulin concept available, ins24 can be implemented as rec_cncpt,
requesting data from the ins concept. In order to be able to calculate the total amount of
insulin administered, it is required to change the default aggregation method from median()

to sum(). Failing to do so would yield under-reported values whenever several insulin ad-
ministrations fall within a given time-step. The callback function ins_cb() is then inserted
into the loading process, performing of the preprocessing steps outlined above: first data is

40

subsetted to fall into the first 24 hours of ICU admissions, followed by binning of summed
values.

R> ins_breaks <- c(0, 1, 10, 20, 40, Inf)

R>

R> ins_cb <- function(ins, ...) {

+

+ day_one <- function(x) x >= hours(0L) & x <= hours(24L)

+

+ idx_var <- index_var(ins)

+ ids_var <- id_vars(ins)

+

+ ins <- ins[

+ day_one(get(idx_var)), list(ins24 = sum(ins)), by = c(ids_var)

+]

+

+ ins <- ins[,

+ ins24 := list(cut(ins24, breaks = ins_breaks, right = FALSE))

+]

+

+ ins

+ }

R>

R> ins24 <- load_dictionary(src, "ins")

R> ins24 <- concept("ins24", ins24, "insulin in first 24h",

+ aggregate = "sum", callback = ins_cb,

+ target = "id_tbl", class = "rec_cncpt")

The binary diabetes concept can be implemented as lgl_cncpt, for which ICD-9 codes are
matched using a regular expression. As not only the subset of diabetic patients is of interest,
a col_itm is more suited for diabetes status retrieval over a rgx_itm. For creating the
required callback function, which produces a logical vector, the exported function factory
transform_fun() can be employed, coupled with a function like grep_diab(), performing
the desired transformation. The two concepts are then combined using c() and loaded via
load_concepts().

R> grep_diab <- function(x) {

+ grepl("^250\\.?[0-9]{2}$", x)

+ }

R>

R> diab <- item(src, table = "diagnoses_icd",

+ callback = transform_fun(grep_diab),

+ class = "col_itm")

R>

R> diab <- concept("diab", diab, "diabetes", target = "id_tbl",

+ class = "lgl_cncpt")

R>

41

R> dat <- load_concepts(c(ins24, diab), id_type = "icustay",

+ verbose = FALSE)

R> dat <- replace_na(dat, "[0,1)", vars = "ins24")

R>

R> dat

Following this, the difference between the two groups can be visualized with a histogram over
the binned insulin administration values:

0.00

0.25

0.50

0.75

[0,1) [1,10) [10,20) [20,40) [40,Inf)
Amount of administered insulin in first 24h of ICU stay [units]

P
ro

po
rt

io
n

of
 p

at
ie

nt
s

Diabetic

FALSE

TRUE

The plot suggests that for the MetaVision cohort defined in the previous example (without
age subsetting) and during the first day of ICU stay, perhaps unsurprisingly, with increasing
insulin dosage, diabetic patients receive more insulin compared to non-diabetic patients. This
effect is more pronounced when looking at the full MIMIC-III data instead of the demo subset
which includes only data corresponding to roughly 130 ICU stays.

7. Acknowledgments

Nicolas Bennett, Drago Plečko, Nicolai Meinshausen and Peter Bühlmann were supported by
grant #2017-110 of the Strategic Focal Area “Personalized Health and Related Technologies
(PHRT)” of the ETH Domain for the SPHN/PHRT Driver Project “Personalized Swiss Sepsis
Study”.

References

Adibuzzaman M, Musselman K, Johnson A, Brown P, Pitluk Z, Grama A (2016). “Closing
the Data Loop: An Integrated Open Access Analysis Platform for the MIMIC Database.”
In 2016 Computing in Cardiology Conference (CinC), pp. 137–140. Institute of Electrical
and Electronics Engineers.

42

Bennett N (2021). prt: Tabular Data Backed by Partitioned ’fst’ Files. R package version
0.1.3, URL https://CRAN.R-project.org/package=prt.

Bone RC, Sibbald WJ, Sprung CL (1992). “The ACCP-SCCM Consensus Conference on
Sepsis and Organ Failure.” Chest, 101(6), 1481–1483.

Desautels T, Calvert J, Hoffman J, Jay M, Kerem Y, Shieh L, Shimabukuro D, Chettipally U,
Feldman MD, Barton C, et al. (2016). “Prediction of Sepsis in the Intensive Care Unit with
Minimal Electronic Health Record Data: A Machine Learning Approach.” JMIR Medical
Informatics, 4(3), e28.

Evans RS (2016). “Electronic Health Records: Then, Now, and in the Future.” Yearbook of
Medical Informatics, 25(S 01), 48–61.

Faltys M, Zimmermann M, Lyu X, Hüser M, Hyland SL, Rätsch G, Merz TM (2021). “HiRID,
A High Time-Resolution ICU Dataset (Version 1.1.1).” PhysioNet.

Fleuren LM, Klausch TLT, Zwager CL, Schoonmade LJ, Guo T, Roggeveen LF, Swart EL,
Girbes ARJ, Thoral P, Ercole A, Hoogendoorn M, Elbers PWG (2020). “Machine Learning
for the Prediction of Sepsis: A Systematic Review and Meta-Analysis of Diagnostic Test
Accuracy.” Intensive Care Medicine, 46(3), 383–400.

Futoma J, Hariharan S, Sendak M, Brajer N, Clement M, Bedoya A, O’Brien C, Heller K
(2017). “An Improved Multi-Output Gaussian Process RNN With Real-Time Validation
for Early Sepsis Detection.” ArXiv:1708.05894.

Goldberger AL, Amaral LAN, Glass L, Hausdorff JM, Ivanov PC, Mark RG, Mietus JE,
Moody GB, Peng CK, Stanley HE (2000). “PhysioBank, PhysioToolkit and PhysioNet.”
Circulation, 101(23), e215–e220.

Haas SA, Lange T, Saugel B, Petzoldt M, Fuhrmann V, Metschke M, Kluge S (2016). “Severe
Hyperlactatemia, Lactate Clearance and Mortality in Unselected Critically Ill Patients.”
Intensive Care Medicine, 42(2), 202–210.

Henry L, Wickham H (2020). rlang: Functions for Base Types and Core R and ’Tidyverse’
Features. R package version 0.4.9, URL https://CRAN.R-project.org/package=rlang.

Hyland SL, Faltys M, Hüser M, Lyu X, Gumbsch T, Esteban C, Bock C, Horn M, Moor M,
Rieck B, Zimmermann M, Bodenham D, Borgwardt K, Rätsch G, Merz TM (2020). “Early
Prediction of Circulatory Failure in the Intensive Care Unit Using Machine Learning.”
Nature Medicine, 26(3), 364–373.

Jiang F, Jiang Y, Zhi H, Dong Y, Li H, Ma S, Wang Y, Dong Q, Shen H, Wang Y (2017).
“Artificial Intelligence in Healthcare: Past, Present and Future.” Stroke and Vascular
Neurology, 2(4), 230–243.

Johnson A, Bulgarelli L, Pollard T, Horng S, Celi LA, Mark R (2021). “MIMIC-IV (Version
1.0).” PhysioNet.

Johnson AE, Pollard TJ, Shen L, Li-wei HL, Feng M, Ghassemi M, Moody B, Szolovits P, Celi
LA, Mark RG (2016). “MIMIC-III, A Freely Accessible Critical Care Database.” Scientific
Data, 3, 160035.

43

https://CRAN.R-project.org/package=prt
https://CRAN.R-project.org/package=rlang

Johnson AEW, Aboab J, Raffa JD, Pollard TJ, Deliberato RO, Celi LA, Stone DJ (2018). “A
Comparative Analysis of Sepsis Identification Methods in an Electronic Database.” Critical
Care Medicine, 46(4), 494–499.

Jones M (2012). “NEWSDIG: The National Early Warning Score Development and Implemen-
tation Group.” Clinical Medicine, 12(6), 501–503. doi:10.7861/clinmedicine.12-6-501.

Kam HJ, Kim HY (2017). “Learning Representations for the Early Detection of Sepsis With
Deep Neural Networks.” Computers in Biology and Medicine, 89, 248–255.

Klik M (2020). fst: Lightning Fast Serialization of Data Frames. R package version 0.9.4,
URL https://CRAN.R-project.org/package=fst.

Lee J, Scott D, Villarroel M, Clifford G, Saeed M, Mark R (2011). “Open-access MIMIC-II
Database for Intensive Care Research.” In Annual International Conference of the IEEE
Engineering in Medicine and Biology Society, volume 2011, pp. 8315–8. Institute of Elec-
trical and Electronics Engineers.

Moody GB, Mark RG (1996). “A Database to Support Development and Evaluation of
Intelligent Intensive Care Monitoring.” In Computers in Cardiology, pp. 657–660. Institute
of Electrical and Electronics Engineers.

Nemati S, Holder A, Razmi F, Stanley MD, Clifford GD, Buchman TG (2018). “An Inter-
pretable Machine Learning Model for Accurate Prediction of Sepsis in the ICU.” Critical
Care Medicine, 46(4), 547–553.

Nichol A, Bailey M, Egi M, Pettila V, French C, Stachowski E, Reade MC, Cooper DJ,
Bellomo R (2011). “Dynamic Lactate Indices as Predictors of Outcome in Critically Ill
Patients.” Critical Care, 15(5), R242.

Ooms J (2014). “The jsonlite Package: A Practical and Consistent Mapping Between JSON
Data and R Objects.” ArXiv:1403.2805.

Pebesma E, Mailund T, Hiebert J (2016). “Measurement Units in R.” R Journal, 8(2),
486–494. doi:10.32614/RJ-2016-061.

Pickering BW, Gajic O, Ahmed A, Herasevich V, Keegan MT (2013). “Data Utilization
for Medical Decision Making at the Time of Patient Admission to ICU.” Critical Care
Medicine, 41(6), 1502–1510.

Pollard TJ, Johnson AE, Raffa JD, Celi LA, Mark RG, Badawi O (2018). “The eICU Col-
laborative Research Database, A Freely Available Multi-Center Database for Critical Care
Research.” Scientific Data, 5, 180178.

Singer M, Deutschman CS, Seymour CW, Shankar-Hari M, Annane D, Bauer M, Bellomo R,
Bernard GR, Chiche JD, Coopersmith CM, Hotchkiss RS, Levy MM, Marshall JC, Martin
GS, Opal SM, Rubenfeld GD, van der Poll T, Vincent JL, Angus DC (2016). “The Third
International Consensus Definitions for Sepsis and Septic Shock (Sepsis-3).” JAMA, 315(8),
801–810.

44

https://doi.org/10.7861/clinmedicine.12-6-501
https://CRAN.R-project.org/package=fst
https://doi.org/10.32614/RJ-2016-061

Subbe C, Kruger M, Rutherford P, Gemmel L (2001). “Validation of a Modified Early Warning
Score in Medical Admissions.” QJM: An International Journal of Medicine, 94(10), 521–
526.

Therneau TM (2021). A Package for Survival Analysis in R. R package version 3.2-11, URL
https://CRAN.R-project.org/package=survival.

Therneau TM, Grambsch PM (2000). Modeling Survival Data: Extending the Cox Model.
Springer-Verlag, New York.

Thoral PJ, Peppink JM, Driessen RH, Sijbrands EJG, Kompanje EJO, Kaplan L, Bailey H,
Kesecioglu J, Cecconi M, Churpek M, Clermont G, van der Schaar M, Ercole A, Girbes ARJ,
Elbers PWG, on behalf of the Amsterdam University Medical Centers Database (Amsterda-
mUMCdb) Collaborators, the SCCM/ESICM Joint Data Science Task Force (2021). “Shar-
ing ICU Patient Data Responsibly Under the Society of Critical Care Medicine/European
Society of Intensive Care Medicine Joint Data Science Collaboration: The Amsterdam Uni-
versity Medical Centers Database (AmsterdamUMCdb) Example.” Critical Care Medicine,
Latest Articles.

Van Beest PA, Brander L, Jansen SP, Rommes JH, Kuiper MA, Spronk PE (2013). “Cumu-
lative Lactate and Hospital Mortality in ICU Patients.” Annals of Intensive Care, 3(1),
6.

Villar J, Pérez-Méndez L, Blanco J, Añón JM, Blanch L, Belda J, Santos-Bouza A, Fernández
RL, Kacmarek RM, Spanish Initiative for Epidemiology and Therapies for ARDS (SIESTA)
Network S (2013). “A Universal Definition of ARDS: The PaO2/FiO2 Ratio Under a
Standard Ventilatory Setting — A Prospective, Multicenter Validation Study.” Intensive
Care Medicine, 39(4), 583–592.

Vincent JL, Moreno R, Takala J, Willatts S, De Mendonça A, Bruining H, Reinhart C,
Suter P, Thijs LG (1996). “The SOFA (Sepsis-Related Organ Failure Assessment) Score to
Describe Organ Dysfunction/Failure.”

Wang RZ, Sun CH, Schroeder PH, Ameko MK, Moore CC, Barnes LE (2018). “Predictive
Models of Sepsis in Adult ICU Patients.” In 2018 IEEE International Conference on Health-
care Informatics (ICHI), pp. 390–391. Institute of Electrical and Electronics Engineers.

Wang S, McDermott MB, Chauhan G, Ghassemi M, Hughes MC, Naumann T (2020).
“MIMIC-Extract: A Data Extraction, Preprocessing, and Representation Pipeline for
MIMIC-III.” In Proceedings of the ACM Conference on Health, Inference, and Learning,
pp. 222–235. Association for Computing Machinery.

Wickham H, Hester J (2020). readr: Read Rectangular Text Data. R package version 1.4.0,
URL https://CRAN.R-project.org/package=readr.

Wong A, Otles E, Donnelly JP, Krumm A, McCullough J, DeTroyer-Cooley O, Pestrue J,
Phillips M, Konye J, Penoza C, Ghous M, Singh K (2021). “External Validation of a
Widely Implemented Proprietary Sepsis Prediction Model in Hospitalized Patients.” JAMA
Internal Medicine.

45

https://CRAN.R-project.org/package=survival
https://CRAN.R-project.org/package=readr

Affiliation:

Nicolas Bennett1

ETH Zürich
Seminar for Statistics
Rämistrasse 101
CH-8092 Zurich
E-mail: nicolas.bennett@stat.math.ethz.ch

Drago Plečko1

ETH Zürich
Seminar for Statistics
Rämistrasse 101
CH-8092 Zürich
E-mail: drago.plecko@stat.math.ethz.ch

Ida-Fong Ukor
Monash Health
Department of Anaesthesiology and Perioperative Medicine
246 Clayton Road
Clayton VIC 3168
E-mail: ida-fong.ukor@monashhealth.org

Nicolai Meinshausen
ETH Zürich
Seminar for Statistics
Rämistrasse 101
CH-8092 Zürich
E-mail: meinshausen@stat.math.ethz.ch

Peter Bühlmann
ETH Zürich
Seminar for Statistics
Rämistrasse 101
CH-8092 Zürich
E-mail: peter.buehlmann@stat.math.ethz.ch

1These authors contributed equally.

46

mailto:nicolas.bennett@stat.math.ethz.ch
mailto:drago.plecko@stat.math.ethz.ch
mailto:ida-fong.ukor@monashhealth.org
mailto:meinshausen@stat.math.ethz.ch
mailto:peter.buehlmann@stat.math.ethz.ch

	Introduction
	Quick start guide
	Ready-to-use datasets
	MIMIC-III
	eICU
	HiRID
	AmsterdamUMCdb
	MIMIC-IV

	Data concepts
	Data classes
	Ready-to-use concepts
	Physiological data
	Patient demographics
	Treatment-related information
	Outcomes

	Concept specification

	Data sources
	Data source setup
	Data download
	Data import
	Data attaching

	Data loading
	Data source configuration
	ID configuration
	Default column configuration
	Table configuration

	Adding external datasets
	Adding configuration information
	Enabling data loading
	Summary of required steps

	Examples
	Lactate and mortality
	Diabetes and insulin treatment

	Acknowledgments

