
Package ‘relevent’
January 24, 2023

Version 1.2-1

Date 2023-01-24

Title Relational Event Models

Author Carter T. Butts <buttsc@uci.edu>

Maintainer Carter T. Butts <buttsc@uci.edu>

Depends trust, sna (>= 2.0), coda

Description Tools to fit and simulate realizations from relational event models.

License GPL (>= 2)

NeedsCompilation yes

Repository CRAN

Date/Publication 2023-01-24 08:10:02 UTC

R topics documented:
as.sociomatrix.eventlist . 1
rem . 3
rem.dyad . 7

Index 14

as.sociomatrix.eventlist

Convert an Event List Into a Sociomatrix

Description

Convert a dyadic event list into an adjacency matrix, such that the i, j cell value is the number of
(i, j) events in the list.

Usage

as.sociomatrix.eventlist(eventlist, n = NULL)

1

2 as.sociomatrix.eventlist

Arguments

eventlist a three-column numeric matrix (or equivalent), containing the event list to be
converted.

n the number of vertices. If omitted, this is assumed to be contained in an attribute
called "n" attached to eventlist.

Details

An event list must be a three-column matrix (or something that can be treated as one), whose second
and third columns must contain vertex IDs; these can be given as characters, but must be coercable
with as.numeric to numeric form. Vertex IDs must be integers from 1:n, where n is either supplied
as an argument, or attached as an attribute of the eventlist object. The first column of an eventlist
matrix conventionally contains the event time, and is ignored; the second and third should contain
the IDs of the senders and receivers of events (respectively). Rows with missing values for one or
both vertex IDs are removed during processing (but NAs in the first column have no effect, since the
event timing information is not used).

The resulting output is an n by n adjacency matrix, whose i,j cell is the total number of events in
eventlist from vertex i to vertex j. This can be useful for visualizing or otherwise analyzing the
time-marginalized structure of a dyadic interaction network.

Value

A sociomatrix containing the time-aggregated event counts.

Author(s)

Carter T. Butts <buttsc@uci.edu>

See Also

rem.dyad

Examples

#Create a simple event list
el <- cbind(1:6, c(4,4,4,1,3,4), c(1,2,3,3,1,1))

#Convert to matrix form
as.sociomatrix.eventlist(el, 4)

#Can also store n as an attribute
attr(el, "n") <- 4
as.sociomatrix.eventlist(el)

rem 3

rem Fit a Relational Event Model to Single or Multiple Sequence Data

Description

Fits a relational event model to general event sequence data, using either the ordinal or interval
time likelihoods. Maximum likelihood and posterior mode methods are supported, as are local (per
sequence) parameters and sequences with exogenous events.

Usage

rem(eventlist, statslist, supplist = NULL, timing = c("ordinal",
"interval"), estimator = c("BPM", "MLE", "BMCMC", "BSIR"),
prior.param = list(mu = 0, sigma = 1000, nu = 4), mcmc.draws = 1500,
mcmc.thin = 25, mcmc.burn = 2000, mcmc.chains = 3, mcmc.sd = 0.05,
mcmc.ind.int = 50, mcmc.ind.sd = 10, sir.draws = 1000,
sir.expand = 10, sir.nu = 4, verbose = FALSE)

S3 method for class 'rem'
print(x, ...)
S3 method for class 'rem'
summary(object, ...)

Arguments

eventlist a two-column matrix (or list thereof) containing the observed event sequence
and timing information.

statslist an event number by event type by statistic array (or list thereof) containing the
sufficient statistics for the model to be estimated.

supplist an event number by event type logical array (or list thereof) indicating which
events were potentially observable at each point in the event history.

timing the type of timing information to be used during estimation; "ordinal" indi-
cates that only event order should be employed, while "interval" uses the
exact inter-event times.

estimator the type of estimator to be used; "MLE" selects maximum likelihood estimation,
"BPM" selects Bayesian posterior mode estimation, "BMCMC" selects Bayesian
posterior mean estimation via MCMC, and "BSIR" selects Bayesian posterior
mean estimation via simulated importance resampling.

prior.param for the Bayesian methods, the prior parameters to be employed; currently, these
are the location, scale, and degrees of freedom parameters for independent t
priors, and may be given as vectors (to set different priors for each parameter).
(By default, a diffuse, heavy-tailed t distribution is used.)

mcmc.draws total number of posterior draws to take when using the BMCMC method.

mcmc.thin thinning interval for MCMC draws (BMCMC method).

mcmc.burn number of burn-in iterations to use for each MCMC chain (BMCMC method).

4 rem

mcmc.chains number of MCMC chains to use (BMCMC method).

mcmc.sd standard deviation for the random walk Metropolis sampler (BMCMC method).

mcmc.ind.int interval at which to take draws from the independence sampler (versus the ran-
dom walk Metropolis sampler). (BMCMC method).

mcmc.ind.sd standard deviation for the MCMC independence sampler (BMCMC method).

sir.draws number of SIR draws to take (BSIR method).

sir.expand expansion factor for the SIR sample; intitial sample size is sir.draws multi-
plied by sir.expand.

sir.nu degrees of freedom parameter for the SIR sampling distribution.

verbose logical; should verbose progress information be displayed?

x an object of class rem.

object an object of class rem.

... additional arguments.

Details

rem fits a general relational event model to one or more event sequences (or “histories”), using
either full interval or ordinal timing information. Although particularly applicable to “egocentric”
relational event data, rem can be used to fit nearly any standard relational event model; the function
depends heavily on user-supplied statistics, however, and thus lacks the built-in functionality of a
routine like rem.dyad. Four estimation methods are currently supported: maximum likelihood es-
timation, Bayesian posterior mode estimation, Bayesian posterior mean estimation via MCMC, and
Bayesian posterior mean estimation via sampling importance resampling (SIR). For the Bayesian
methods, adjustable independent t priors are employed. For both mode-based methods, estimates
of uncertainty (standard errors or posterior standard deviations) are approximated using the appro-
priate inverse hessian matrix; for the two simulation-based methods, posterior standard deviations
are estimated from the resulting sample.

Irrespective of whether Bayesian or frequentist methods are used, the relevant likelihood is ei-
ther based entirely on the order of events (timing="ordinal") or on the realized event times
(timing="interval"). In the latter case, all event times are understood to be relative to the onset
of observation (i.e., observation starts at time 0), and the last event time given is taken to be the end
of the observation period. (This should generally be marked as exogenous – see below.)

Event source/target/content are handled generically by rem via event types. Each event must be
of a given type, and any number of types may be employed (up to limits of time and memory).
Effects within the relational event model are associated with user-supplied statistics, of which any
number may again be supplied (model identification notwithstanding). At each point in the event
history, it is possible that only particular types of events may be realized; this constraint can be
specified by means of an optional user-supplied support structure. Finally, it is also possible that
an event sequence may be punctuated by exogenous events, which are unmodeled but which may
affect the endogenous event dynamics. These are supported by means of a tacit “exogenous” event
type, which is handled by the estimation routine as appropriate for the specified likelihood.

Observed event data is supplied to rem via the eventlist argument. For each event history, the ob-
served events are indicated by a two-column matrix, whose ith row contains respectively the event
type (as an integer ranging from 1 to the number of event types, inclusive) and the event time for
the ith event in the history. (The second column may be omitted in the ordinal case, and will in any

rem 5

event be ignored.) Events must be given in ascending temporal order; if multiple histories are being
modeled simultaneously (e.g., as with egocentric relational event samples), then eventlist should
be a list with one matrix per event history. Exogenous events, if present, are indicated by specifying
an event type of 0. (Note that the “type” of an exogenous event is irrelevant, since any such proper-
ties of exogenous events are handled via the model statistics.) If exact timing information is used,
the hazard for the first event implicitly begins at time 0, and observation implicitly ends with the
time of the last event (which should properly be coded as exogenous, unless the sampling design
was based on observation of an endogenous terminal event). Where applicable, censoring due to the
sampling interval is accounted for in the data likelihood (assuming that the user has set the model
statistics appropriately).

Statistics for the relational event model are specified in a manner somewhat analogous to that of
eventlist. Like the latter, statslist is generally a list with one element per event history, or a
single element where only a single history is to be examined. Each element of statslist should
be a list containing either one or two three-dimensional arrays, with the first dimension indexing
event order (from first event to last, including exogenous events where applicable), the second
indexing event type (in order corresponding to the integer values of eventlist), and the third
indexing the model statistics. The ijkth cell of a statslist array is thus the value of the kth
statistic prospectively impacting the hazard of observing an event of type j as the ith event in the
history (given the previous i− 1 realized events). Models estimated by rem are regular in the sense
that one parameter is estimated per statistic; intuitively, a large value of a ijkth statslist cell
associatd with a large (positive) parameter represents an increased hazard of observing a type j
event at the ith point in the respective history, while the same statistic associated with a highly
negative parameter represents a correspondingly diminished hazard of observing said event. (The
total hazard of a given event type is equal to exp(θT sij), where θ is the vector of model parameters
and sij is the corresponding vector of sufficient statistics for a type j event given the i−1 previously
realized events; see the reference below for details.) It is up to the user to supply these statistics,
and moreover to ensure that they are well-behaved (e.g., not linearly dependent). An array within a
statslist element may be designated as global or local by assigning it to the appropriately named
list element. Statistics belonging to a global array are assumed to correspond to parameters that
are homogeneous across event histories, and are estimated in a pooled fashion; if global arrays are
supplied, they must be given for every element of statslist (and must carry the same statistics and
event types, although these statistics will not typically take the same values). Statistics belonging to
a local array, on the other hand, are taken as idiosyncratic to the event history in question, and their
corresponding parameters are estimated locally. Both local and global statistics may be employed
simultaneously if desired, but at least one must be specified in any case. rem will return an error if
passed a statslist with obvious inconsistencies.

If desired, support constraints for the event histories can be specified using supplist. supplist
should be a list with one element per history, each of which should be an event order by event type
logical matrix. The ijth cell of this matrix should be TRUE if an event of type j was a possible
next event given the preceding code i − 1 events, and FALSE otherwise. (By default, all events are
assumed to be possible at all times.) As with the model statistics, the elements of the support list
must be user supplied, and will often be history-dependent. (E.g., in a model for spell-based data,
event types will come in onset/termination pairs, with terminal events necessarily being preceded
by corresponding onset events.)

Given the above structure, rem will attempt to find a maximum likelihood or posterior estimate for
the model parameters, as appropriate given estimator. In the latter case, the prior parameters for
each parameter may be set using prior.param. Each parameter is taken to be a priori t distributed,
with the indicated location, scale, and degree of freedom parameters; by default, a fairly diffuse

6 rem

and heavy-tailed prior is used. By specifying the elements of prior.param as vectors, it is possible
to employ different priors for each model parameter. In this case, the vector elements are used in
the order of the statistics (first global, then each local in order by event history). Standard errors or
posterior standard deviation estimates are returned as appropriate, along with various goodness-of-
fit indices. (Bear in mind that the “p-values” shown in the summary method for the posterior mode
case are based on posterior quantiles (under an assumption of asymptotic normality), and should be
interpreted in this fashion.)

For the MCMC sampling method, a combined independence and random walk Metropolis scheme
is employed. Proposals are multivariate Gaussian, with standard deviations as set via the appropriate
arguments. (These may be given as vectors, with one entry per parameter, if desired.) Gewke and
Gelman-Rubin MCMC diagnostics (produced by the coda package) are computed, and are stored
as elements geweke and gelman.rubin within the model fit object. The posterior draws themselves
are stored as an element called draws within the model fit object, with corresponding log-posterior
values lp.

The SIR method initially seeks the posterior mode (identically to the BPM method), and obtains
approximate scale information using the Hessian of the log-posterior surface. This is used to gen-
erate a set of approximate posterior draws via a multivariate t distribution centered on the posterior
mode, with degrees of freedom given by sir.nu. This crude sample is then refined by importance
resampling, the final result of which is stored as element draws (with log-posterior vector lp) in
the model fit object. As with the BMCMC procedure, posterior mean and standard deviations are
estimated from the final sample, although the mode information is retained in elements coef.mode
and cov.hess.

As a general matter, the MLE and BPM methods are most dependent upon asymptotic assumptions,
but are also (usually) the least computationally complex. BMCMC requires no such assumptions,
but can be extremely slow (and, like all MCMC methods, depends upon the quality of the MCMC
sample). The BSIR method is something of a compromise between BPM and BMCMC, starting
with a mode approximation but refining it in the direction of the true posterior surface; as one
might expect, its cost is also intermediate between these extremes. For well-behaved models on
large data sets, all methods are likely to produce nearly identical results. The simulation-based
methods (particularly BMCMC) may be safer in less salutary circumstances. (Tests conducted by
the author have so far obtained the best overall results from the BPM, particularly vis a vis estimates
of uncertainty – this advice may or may not generalize, however.)

Value

An object of class rem, for which print and summary methods currently exist.

Author(s)

Carter T. Butts <buttsc@uci.edu>

References

Butts, C.T. (2008). “A Relational Event Framework for Social Action.” Sociological Methodology,
38(1).

See Also

rem.dyad

rem.dyad 7

rem.dyad Fit a Relational Event Model to Dyadic Data

Description

Fits a relational event model to dyadic edgelist data, using either the ordinal or temporal likelihood.
Maximum likelihood, posterior mode, and posterior importance resampling methods are supported.

Usage

rem.dyad(edgelist, n, effects = NULL, ordinal = TRUE, acl = NULL,
cumideg = NULL, cumodeg = NULL, rrl = NULL, covar = NULL, ps = NULL,
tri = NULL, optim.method = "BFGS", optim.control = list(),
coef.seed = NULL, hessian = FALSE, sample.size = Inf, verbose = TRUE,
fit.method = c("BPM", "MLE", "BSIR"), conditioned.obs = 0,
prior.mean = 0, prior.scale = 100, prior.nu = 4, sir.draws = 500,
sir.expand = 10, sir.nu = 4, gof = TRUE)

S3 method for class 'rem.dyad'
print(x, ...)
S3 method for class 'rem.dyad'
summary(object, ...)
S3 method for class 'rem.dyad'
simulate(object, nsim = object$m, seed = NULL,

coef = NULL, covar = NULL, edgelist = NULL, redraw.timing = FALSE,
redraw.events = FALSE, verbose = FALSE, ...)

Arguments

edgelist a three-column edgelist matrix, with each row containing (in order) the time/order,
sender, and receiver for the event in question, or NULL to create a model skeleton
(useful for simulation).

n number of senders/receivers.

effects a character vector indicating which effects to use; see below for specification.

ordinal logical; should the ordinal likelihood be used? (If FALSE, the temporal likelihood
is used instead.)

acl optionally, a pre-computed acl structure.

cumideg optionally, a pre-computed cumulative indegree structure.

cumodeg optionally, a pre-computed cumulative outdegree stucture.

rrl optionally, a pre-computed recency-ranked communications list.

covar an optional list of sender/receiver/event covariates.

ps optionally, a pre-computed p-shift matrix.

tri optionally, a pre-computed triad statistic structure.

optim.method the method to be used by optim.

8 rem.dyad

optim.control additional control parameters to optim.

coef.seed an optional vector of coefficients to use as the starting point for the optimization
process; if edgelist==NULL, this is the vector of embedded coefficients for the
model skeleton.

hessian logical; compute the hessian of the log-likelihood/posterior surface?

sample.size sample size to use when estimating the sum of event rates.

verbose logical; deliver progress reports?

fit.method method to use when fitting the model.
conditioned.obs

the number of initial observations on which to condition when fitting the model
(defaults to 0).

prior.mean for Bayesian estimation, location vector for prior distribution (multivariate-t).
(Can be a single value.)

prior.scale for Bayesian estimation, scale vector for prior distribution. (Can be a single
value.)

prior.nu for Bayesian estimation, degrees of freedom for prior distribution. (Setting this
to Inf results in a Gaussian prior.)

sir.draws for sampling importance resampling method, the number of posterior draws to
take (post-resampling).

sir.expand for sampling importance resampling method, the expansion factor to use in the
initial (pre-resampling) sample; sample size is sir.expand*sir.draws.

sir.nu for sampling importance resampling method, the degrees of freedom for the t
distribution used to obtain initial (pre-resampling) sample.

gof logical; calculate goodness-of-fit information?

x an object of class rem.dyad.

object an object of class rem.dyad.

nsim number of events to simulate (defaults to the observed sequence length in the
fitted model).

seed random number seed to use for simulation.

coef optional vector of coefficients to override those in the fitted model object, for
simulation purposes.

redraw.timing logical; should any prespecified events in edgelist have their timings redrawn
during simulation?

redraw.events logical; should any prespecified events in edgelist have their senders and re-
ceivers redrawn during simulation?

... additional arguments.

Details

rem.dyad fits a (dyadic) relational event model to an event sequence, using either the full tem-
poral or ordinal data likelihoods. Three estimation methods are currently supported: maximum
likelihood estimation, Bayesian posterior mode estimation, and Bayesian sampling importance re-
sampling. For the Bayesian methods, an adjustable multivariate-t (or, if prior.nu==Inf, Gaussian)

rem.dyad 9

prior is employed. In the case of Bayesian sampling importance resampling, the posterior mode
(and the hessian of the posterior about it) is used as the basis for a multivariate-t sample, which is
then resampled via SIR methods to obtain an approximate set of posterior draws. While this approx-
imation is not guaranteed to work well, it is generally more robust than pure mode approximations
(or, in the case of the MLE, estimates of uncertainty derived from the inverse hessian matrix).

Whether Bayesian or frequentist methods are used, the relevant likelihood is either based entirely
on the order of events (ordinal=TRUE) or on the realized event times (ordinal=FALSE). In the latter
case, all event times are understood to be relative to the onset of observation (i.e., observation starts
at time 0), and the last event time given is taken to be the end of the observation period. (If an event
is also specified, this event is ignored.)

Effects to be fit by rem.dyad are determined by the eponymous effects argument, a character
vector which lists the effects to be used. These are as follows:

• NIDSnd: Normalized indegree of v affects v’s future sending rate

• NIDRec: Normalized indegree of v affects v’s future receiving rate

• NODSnd: Normalized outdegree of v affects v’s future sending rate

• NODRec: Normalized outdegree of v affects v’s future receiving rate

• NTDegSnd: Normalized total degree of v affects v’s future sending rate

• NTDegRec: Normalized total degree of v affects v’s future receiving rate

• FrPSndSnd: Fraction of v’s past actions directed to v′ affects v’s future rate of sending to v′

• FrRecSnd: Fraction of v’s past receipt of actions from v′ affects v’s future rate of sending to
v′

• RRecSnd: Recency of receipt of actions from v′ affects v’s future rate of sending to v′

• RSndSnd: Recency of sending to v′ affects v’s future rate of sending to v′

• CovSnd: Covariate effect for outgoing actions (requires a covar entry of the same name)

• CovRec: Covariate effect for incoming actions (requires a covar entry of the same name)

• CovInt: Covariate effect for both outgoing and incoming actions (requires a covar entry of
the same name)

• CovEvent: Covariate effect for each (v, v′) action (requires a covar entry of the same name)

• OTPSnd: Number of outbound two-paths from v to v′ affects v’s future rate of sending to v′

• ITPSnd: Number of incoming two-paths from v′ to v affects v’s future rate of sending to v′

• OSPSnd: Number of outbound shared partners for v and v′ affects v’s future rate of sending to
v′

• ISPSnd: Number of inbound shared partners for v and v′ affects v’s future rate of sending to
v′

• FESnd: Fixed effects for outgoing actions

• FERec: Fixed effects for incoming actions

• FEInt: Fixed effects for both outgoing and incoming actions

• PSAB-BA: P-Shift effect (turn receiving) – AB->BA (dyadic)

• PSAB-B0: P-Shift effect (turn receiving) – AB->B0 (non-dyadic)

• PAAB-BY: P-Shift effect (turn receiving) – AB->BY (dyadic)

10 rem.dyad

• PSA0-X0: P-Shift effect (turn claiming) – A0->X0 (non-dyadic)

• PSA0-XA: P-Shift effect (turn claiming) – A0->XA (non-dyadic)

• PSA0-XY: P-Shift effect (turn claiming) – A0->XY (non-dyadic)

• PSAB-X0: P-Shift effect (turn usurping) – AB->X0 (non-dyadic)

• PSAB-XA: P-Shift effect (turn usurping) – AB->XA (dyadic)

• PSAB-XB: P-Shift effect (turn usurping) – AB->XB (dyadic)

• PSAB-XY: P-Shift effect (turn usurping) – AB->XY (dyadic)

• PSA0-AY: P-Shift effect (turn continuing) – A0->AY (non-dyadic)

• PSAB-A0: P-Shift effect (turn continuing) – AB->A0 (non-dyadic)

• PSAB-AY: P-Shift effect (turn continuing) – AB->AY (dyadic)

Note that not all effects may lead to identified models in all cases - it is up to the user to ensure that
the postulated model makes sense.

Data to be used by rem.dyad must consist of an edgelist matrix, whose rows contain information
on successive events. This matrix must have three columns, containing (respectively) the event
times, sender IDs (as integers from 1 to n), and receiver IDs (also from 1 to n). As already noted,
event times should be relative to onset of observation where the temporal likelihood is being used;
otherwise, only event order is employed. In the temporal likelihood case, the last row should con-
tain the time for the termination of the observation period – any event on this row is ignored. If
conditioned.obs>0, the relevant number of initial observations is taken as fixed, and the likeli-
hood of the remaining sequence is calculated conditional on these values; this can be useful when
analyzing an event history with no clear starting point.

If covariates effects are indicated, then appropriate covariate values must be supplied as a list in
argument covar. The elements of covar should be given the same name as the effect type to which
they correspond (e.g., CovSnd, CovRec, etc.); any other elements will be ignored. The format of a
given covariate element depends both on the effect type and on the number of covariates specified.
The basic cases are as follows:

• Single covariate, time invariant: For CovSnd, CovRec, or CovInt, a vector or single-column
matrix/array. For CovEvent, an n by n matrix or array.

• Multiple covariates, time invariant: For CovSnd, CovRec, or CovInt, a two-dimensional n by
p matrix/array whose columns contain the respective covariates. For CovEvent, a p by n by n
array, whose first dimension indexes the covariate matrices.

• Single or multiple covariates, time varying: For CovSnd, CovRec, or CovInt, an m by p by n
array whose respective dimensions index time (i.e., event number), covariate, and actor. For
CovEvent, a m by p by n by n array, whose dimensions are analogous to the previous case.

Note that “time varying” covariates may only change values when events transpire; thus, they should
be regarded as temporally endogenous. (See the reference below for details.)

If called with edgelist==NULL, rem.dyad will produce a “model skeleton” object containing the
effects and other information, but no model fit. (The seed coefficients, if given, are entered as the
coefficients in the model, or else an uninteresting default set is used.) The main purpose for this
object is to set up an ab initio simulation, as described below: once the skeleton is created, the
simulate method can be used to generate draws from that model (without fitting to a data set).

rem.dyad 11

A simulate method is provided for rem.dyad objects, which allows simulation of new event se-
quences from a fitted or skeleton model. By default, a new sequence of length equal to the original
sequence to which the model object was fitted is simulated (if applicable), but other lengths may be
chosen using nsim. Although the coefficients in the model object are used by default, this may also
be altered by specifying coef. Note that any covariates used must be passed to the simulate com-
mand via covar (using the same format as in the original model); this is in part because rem.dyad
objects do not currently save their input data, and in part because dynamic covariates must always
be the length of the simulated sequence (and hence must be factored when a non-default nsim value
is used). For models fit using ordinal=TRUE, the overall pacing of events will be arbitrary (more
specifically, the simulation will tacitly assume that each event has a unit base hazard), but the rel-
ative timing is not. See below for examples of both simulation using a fitted model object and ab
initio simulation without fitting a model to data.

For simulation, it is possible to fix the first portion of the event history by passing an event list
matrix to the edgelist argument; this must be compatible with the target model (i.e., the vertex
IDs must match), and it cannot contain NA values. (Thus, if starting with an exact timing seqence
with a last line containing NAs, this must be removed.) If the input event list contains m events,
then these are assumed to supply the first m events of the target sequence; if m>nsim, then any
excess events are discarded. By default, the input events are taken as fixed. However, specifying
redraw.timing=TRUE will lead the event timings to be redrawn, and redraw.events will lead
the sender/reciver pairs to be redrawn. This allows e.g. for an observed ordinal time sequence
to be given a simulated exact time realization, by setting nsim to the event list length and setting
redraw.timing=TRUE. The more obvious use case is to simply extend an observed sequence, in
which case one should use nsim greater than the input sequence length (i.e., the input length plus
the number of new events to generate) and leave the redraw paraeters set to FALSE.

Value

For rem.dyad, an object of class rem.dyad. For the simulate method, an event list.

Author(s)

Carter T. Butts <buttsc@uci.edu>

References

Butts, C.T. (2008). “A Relational Event Framework for Social Action.” Sociological Methodology,
38(1).

See Also

rem

Examples

Not run:
#Generate some simple sample data based on fixed effects
roweff<-rnorm(10) #Build rate matrix
roweff<-roweff-roweff[1] #Adjust for later convenience
coleff<-rnorm(10)
coleff<-coleff-coleff[1]

12 rem.dyad

lambda<-exp(outer(roweff,coleff,"+"))
diag(lambda)<-0
ratesum<-sum(lambda)
esnd<-as.vector(row(lambda)) #List of senders/receivers
erec<-as.vector(col(lambda))
time<-0
edgelist<-vector()
while(time<15){ # Observe the system for 15 time units

drawsr<-sample(1:100,1,prob=as.vector(lambda)) #Draw from model
time<-time+rexp(1,ratesum)
if(time<=15) #Censor at 15
edgelist<-rbind(edgelist,c(time,esnd[drawsr],erec[drawsr]))

else
edgelist<-rbind(edgelist,c(15,NA,NA))

}

#Fit the model, ordinal BPM
effects<-c("FESnd","FERec")
fit.ord<-rem.dyad(edgelist,10,effects=effects,hessian=TRUE)
summary(fit.ord)
par(mfrow=c(1,2)) #Check the coefficients
plot(roweff[-1],fit.ord$coef[1:9],asp=1)
abline(0,1)
plot(coleff[-1],fit.ord$coef[10:18],asp=1)
abline(0,1)

#Now, find the temporal BPM
fit.time<-rem.dyad(edgelist,10,effects=effects,ordinal=FALSE,hessian=TRUE)
summary(fit.time)
plot(fit.ord$coef,fit.time$coef,asp=1) #Similar results
abline(0,1)

#Finally, try the BSIR method (note: a much larger expansion factor
#is recommended in practice)
fit.bsir<-rem.dyad(edgelist,10,effects=effects,fit.method="BSIR",

sir.draws=100,sir.expand=5)
summary(fit.bsir)
par(mfrow=c(3,3)) #Examine the approximate posterior marginals
for(i in 1:9){

hist(fit.bsir$post[,i],main=names(fit.bsir$coef)[i],prob=TRUE)
abline(v=roweff[i+1],col=2,lwd=3)

}
for(i in 10:18){

hist(fit.bsir$post[,i],main=names(fit.bsir$coef)[i],prob=TRUE)
abline(v=coleff[i-8],col=2,lwd=3)

}

#Simulate an event sequence from the temporal model
sim<-simulate(fit.time,nsim=50000) #Simulate 50000 events
head(sim) #Show the event list
par(mfrow=c(1,2)) #Check the behavior
esnd<-exp(c(0,fit.time$coef[1:9]))
esnd<-esnd/sum(esnd)*5e4 #Expected sending count

rem.dyad 13

erec<-exp(c(0,fit.time$coef[10:18]))
erec<-erec/sum(erec)*5e4 #Expected sending count
plot(esnd,tabulate(sim[,2]),xlab="Expected Out-events",ylab="Out-events")
abline(0,1,col=2)
plot(erec,tabulate(sim[,3]),xlab="Expected In-events",ylab="In-events")
abline(0,1,col=2)

#Keep the first 10 events of the simulated sequence, and produce 10 more
sim.pre<-sim[1:10,]
sim2<-simulate(fit.time,nsim=20,edgelist=sim.pre)
sim.pre #See the first 10 events
sim2 #First 10 events preserved
all(sim2[1:10,]==sim.pre) #All TRUE

#Repeat, but redrawing part of the input sequence
sim2.t<-simulate(fit.time,nsim=20,edgelist=sim.pre,redraw.timing=TRUE)
sim2.e<-simulate(fit.time,nsim=20,edgelist=sim.pre,redraw.events=TRUE)
sim2.t #Events kept, timings not
sim2.t[1:10,]==sim.pre #Second two columns TRUE
sim2.e #Timing kept, events not
sim2.e[1:10,]==sim.pre #(Note: some events may repeat by chance!)

End(Not run)

Index

∗ array
as.sociomatrix.eventlist, 1

∗ graphs
as.sociomatrix.eventlist, 1

∗ manip
as.sociomatrix.eventlist, 1

∗ models
rem, 3
rem.dyad, 7

as.sociomatrix.eventlist, 1

optim, 7, 8

print, 6
print.rem (rem), 3
print.rem.dyad (rem.dyad), 7
print.summary.rem (rem), 3
print.summary.rem.dyad (rem.dyad), 7

rem, 3, 11
rem.dyad, 2, 4, 6, 7

simulate, 10, 11
simulate.rem.dyad (rem.dyad), 7
summary, 6
summary.rem (rem), 3
summary.rem.dyad (rem.dyad), 7

14

	as.sociomatrix.eventlist
	rem
	rem.dyad
	Index

