--- title: "IUCN red list data visualisation" output: rmarkdown::html_vignette vignette: > %\VignetteIndexEntry{IUCN red list data visualisation} %\VignetteEngine{knitr::rmarkdown} %\VignetteEncoding{UTF-8} --- ```{r setup, include = FALSE} knitr::opts_chunk$set( collapse = TRUE, comment = "#>", fig.align = "center", fig.width = 8, fig.height = 5 ) library(dplyr) library(ggplot2) library(redlist) ``` # Introduction In this vignette, I will examine assessments specific to **Benin**. I will walk through three types of visualizations: * Total number of assessments per year * Proportional breakdown of IUCN categories * Trends over time for **threatened** categories (CR, EN, VU) Refer to [this vignette](https://stangandaho.github.io/redlist/articles/get_data.html) to learn more about how to access the data. # Query Data ```{r eval=FALSE} # Load the package library(redlist) # Get all data on Benin benin_rl <- rl_countries(code = "BJ", page = NA) ``` ```{r echo=FALSE} benin_rl <- readRDS("benin_full_data.rds") ``` ```{r} # Basic overview glimpse(benin_rl) ``` The dataset includes **all species** assessed in Benin across various taxonomic groups — including **plants, animals, fungi**, and other organisms. # Number of Assessments per Year Understanding the volume of assessments over time gives insight into conservation attention and effort. ```{r plot-assessments-per-year} benin_rl %>% count(assessments_year_published) %>% ggplot(aes(x = assessments_year_published, y = n)) + geom_line(color = "steelblue") + geom_point(color = "darkblue") + labs( title = "Number of assessments per year in Benin", x = "Year", y = "Number of assessments" ) + theme_minimal() ``` # Proportion of Red List Categories Most species in Benin fall under **Least Concern (LC)**, but some are classified as threatened. This chart highlights the proportion of assessments by category. ```{r plot-category-proportions} benin_rl %>% filter(!is.na(assessments_red_list_category_code)) %>% count(assessments_red_list_category_code) %>% mutate(prop = n / sum(n)) %>% ggplot(aes(x = reorder(assessments_red_list_category_code, -prop), y = prop)) + geom_col(fill = "salmon") + scale_y_continuous(labels = scales::percent_format()) + labs( title = "Proportion of red list categories in Benin", x = "Red List Category", y = "Proportion" ) + theme_minimal() ``` # Trends in Threatened Categories Over Time Focusing on **Critically Endangered (CR)**, **Endangered (EN)**, and **Vulnerable (VU)** species helps track biodiversity risk. ```{r plot-threatened-trends} benin_rl %>% filter(assessments_red_list_category_code %in% c("CR", "EN", "VU")) %>% count(assessments_year_published, assessments_red_list_category_code) %>% ggplot(aes(x = assessments_year_published, y = n, color = assessments_red_list_category_code)) + geom_line() + geom_point() + labs( title = "Trends of Threatened Categories (CR, EN, VU) Over Time", x = "Year", y = "Number of Assessments", color = "Category" ) + theme_minimal() ```