Package 'redistmetrics'

April 29, 2025

Title Redistricting Metrics

Version 1.0.9

Date 2025-04-27

Description Reliable and flexible tools for scoring redistricting plans using common measures and metrics. These functions provide key direct access to tools useful for non-simulation analyses of redistricting plans, such as for measuring compactness or partisan fairness. Tools are designed to work with the 'redist' package seamlessly.

Depends R (>= 4.1.0)

Imports sf, Rcpp, vctrs, cli, foreach, doParallel, magrittr, dplyr, rlang, geos, wk

Suggests rmarkdown, knitr, testthat (>= 3.0.0), ggplot2

LinkingTo Rcpp, RcppArmadillo, RcppThread

License MIT + file LICENSE

Encoding UTF-8

LazyData true

SystemRequirements C++17

RoxygenNote 7.3.2

URL https://alarm-redist.org/redistmetrics/,

https://github.com/alarm-redist/redistmetrics

BugReports https://github.com/alarm-redist/redistmetrics/issues

VignetteBuilder knitr

Config/testthat/edition 3

NeedsCompilation yes

Author Christopher T. Kenny [aut, cre], Cory McCartan [aut], Ben Fifield [aut], Kosuke Imai [aut]

Maintainer Christopher T. Kenny <christopherkenny@fas.harvard.edu> Repository CRAN Date/Publication 2025-04-29 20:20:05 UTC

Contents

by_plan	3
compet_talisman	3
comp_bc	4
comp_box_reock	5
comp_ch	6
comp_edges_rem	7
comp_fh	8
comp_frac_kept	9
comp_log_st	10
comp_lw	11
comp_polsby	12
comp_reock	13
comp_schwartz	14
comp_skew	15
comp_x_sym	16
comp_y_sym	17
dist_euc	18
dist_ham	18
dist_info	19
dist_man	20
inc_pairs	20
list_fn	21
nh	22
nh_m	24
nh_map	24
nh_plans	26
part_bias	27
part_decl	28
part_decl_simple	29
part_dil_asym	30
part_dseats	31
part_dvs	31
- part_egap	32
part_egap_ep	33
part_lop_wins	34
part_mean_median	35
part_resp	36
part_rmd	37
part_sscd	38
part_tau_gap	39
prep_perims	40
seg_dissim	40
splits_admin	41
splits_count	42
splits_district_fuzzy	43
splits_multi	44

by_plan

tally	•	•	•	•	•	•	•		•	•	•	•	 •	•	•	•	·		•	•	 •	•	•	•	•	•	•	•	 2	47
splits_total																														
splits_sub_count													 •					•			 •								 4	45
splits_sub_admin																														

Index

by_plan

Shorten District by Plan vector

Description

If x is repeated for each district, it returns a plan level value. Otherwise it returns x.

Usage

by_plan(x, ndists)

Arguments

Х	summary statistic at the district level
ndists	numeric. Number of districts. Estimated as the gcd of the unique run length encodings if missing.

Value

x or plan level subset of x

Examples

```
by_plan(letters)
by_plan(rep(letters, each = 2))
```

compet_talisman	Compute Talismanic Redistricting	g Competitiveness Metric

Description

Compute Talismanic Redistricting Competitiveness Metric

Usage

```
compet_talisman(plans, shp, rvote, dvote, alpha = 1, beta = 1)
```

Arguments

plans	A redist_plans object or plans_matrix where each row indicates a district assignment and each column is a plan.
shp	A redist_map object, tibble, or data frame containing other columns.
rvote	Unqouted name of column in shp with group population.
dvote	Unqouted name of column in shp with total population.
alpha	Numeric scaling value
beta	Numeric scaling value

Value

A numeric vector. Can be shaped into a district-by-plan matrix.

References

Wendy K. Tam Cho and Yan Y. Liu Toward a Talismanic Redistricting Tool. Election Law Journal. 15, 4. Pp. 351-366.

Examples

```
data(nh)
data(nh_m)
# For a single plan:
compet_talisman(plans = nh$r_2020, shp = nh, rvote = nrv, dvote = ndv)
# Or many plans:
compet_talisman(plans = nh_m[, 3:5], shp = nh, rvote = nrv, dvote = ndv)
```

comp_bc

Calculate Boyce Clark Ratio

Description

Calculate Boyce Clark Ratio

Usage

```
comp_bc(plans, shp, epsg = 3857, ncores = 1)
```

Arguments

plans	A redist_plans object or plans_matrix where each row indicates a district assignment and each column is a plan.
shp	A redist_map object, tibble, or data frame with an sf geometry column.
epsg	Numeric EPSG code to use to project the shapefile, if needed. Default is 3857.
ncores	Integer number of cores to use. Default is 1.

```
comp_box_reock
```

Value

A numeric vector. Can be shaped into a district-by-plan matrix.

References

Boyce, R., & Clark, W. 1964. The Concept of Shape in Geography. Geographical Review, 54(4), 561-572.

Examples

```
data(nh)
data(nh_m)
# For a single plan:
comp_bc(plans = nh$r_2020, shp = nh)
# Or many plans:
# slower, beware!
comp_bc(plans = nh_m[, 3:5], shp = nh)
```

comp_box_reock Calculate Box Reock Compactness

Description

Box reock is the ratio of the area of the district by the area of the minimum bounding box (of any rotation). Scores are bounded between 0 and 1, where 1 is most compact.

Usage

```
comp_box_reock(plans, shp, epsg = 3857, ncores = 1)
```

Arguments

plans	A redist_plans object or plans_matrix where each row indicates a district assignment and each column is a plan.
shp	A redist_map object, tibble, or data frame with an sf geometry column.
epsg	Numeric EPSG code to use to project the shapefile, if needed. Default is 3857.
ncores	Integer number of cores to use. Default is 1.

Value

A numeric vector. Can be shaped into a district-by-plan matrix.

Examples

```
#' data(nh)
data(nh_m)
# For a single plan:
comp_box_reock(plans = nh$r_2020, shp = nh)
# Or many plans:
# slower, beware!
comp_box_reock(plans = nh_m[, 3:5], shp = nh)
```

comp_ch

Calculate Convex Hull Compactness

Description

Calculate Convex Hull Compactness

Usage

comp_ch(plans, shp, epsg = 3857, ncores = 1)

Arguments

plans	A redist_plans object or plans_matrix where each row indicates a district assignment and each column is a plan.
shp	A redist_map object, tibble, or data frame with an sf geometry column.
epsg	Numeric EPSG code to use to project the shapefile, if needed. Default is 3857.
ncores	Integer number of cores to use. Default is 1.

Value

A numeric vector. Can be shaped into a district-by-plan matrix.

Examples

```
data(nh)
data(nh_m)
# For a single plan:
comp_ch(plans = nh$r_2020, shp = nh)
# Or many plans:
comp_ch(plans = nh_m[, 3:5], shp = nh)
```

6

comp_edges_rem

Description

Calculate Edges Removed Compactness

Usage

comp_edges_rem(plans, shp, adj)

Arguments

plans	A redist_plans object or plans_matrix where each row indicates a district assignment and each column is a plan.
shp	A redist_map object, tibble, or data frame with an sf geometry column.
adj	Zero-indexed adjacency list. Not required if a redist_map is supplied for shp.

Value

A numeric vector. Can be shaped into a district-by-plan matrix.

References

Matthew P. Dube and Jesse Tyler Clark. 2016. Beyond the circle: Measuring district compactness using graph theory. In Annual Meeting of the Northeastern Political Science Association

```
data(nh)
data(nh_m)
# For a single plan:
comp_edges_rem(plans = nh$r_2020, shp = nh, nh$adj)
# Or many plans:
comp_edges_rem(plans = nh_m[, 3:5], shp = nh, nh$adj)
```

 $comp_fh$

Description

Calculate Fryer Holden Compactness

Usage

```
comp_fh(plans, shp, total_pop, epsg = 3857, ncores = 1)
```

Arguments

plans	A redist_plans object or plans_matrix where each row indicates a district assignment and each column is a plan.
shp	A redist_map object, tibble, or data frame with an sf geometry column.
total_pop	A numeric vector with the population for every observation.
epsg	Numeric EPSG code to use to project the shapefile, if needed. Default is 3857.
ncores	TRUE

Value

A numeric vector. Can be shaped into a district-by-plan matrix.

References

Fryer R, Holden R. 2011. Measuring the Compactness of Political Districting Plans. Journal of Law and Economics.

Examples

```
data(nh)
data(nh_m)
# For a single plan:
comp_fh(plans = nh$r_2020, shp = nh, total_pop = pop)
# Or many plans:
```

comp_fh(plans = nh_m[, 3:5], shp = nh, pop)

comp_frac_kept Calculate Fraction Kept Compactness

Description

Calculate Fraction Kept Compactness

Usage

comp_frac_kept(plans, shp, adj)

Arguments

plans	A redist_plans object or plans_matrix where each row indicates a district assignment and each column is a plan.
shp	A redist_map object, tibble, or data frame with an sf geometry column.
adj	Zero-indexed adjacency list. Not required if a redist_map is supplied for shp.

Value

A numeric vector. Can be shaped into a district-by-plan matrix.

References

Matthew P. Dube and Jesse Tyler Clark. 2016. Beyond the circle: Measuring district compactness using graph theory. In Annual Meeting of the Northeastern Political Science Association

```
data(nh)
data(nh_m)
# For a single plan:
comp_frac_kept(plans = nh$r_2020, shp = nh, nh$adj)
# Or many plans:
comp_frac_kept(plans = nh_m[, 3:5], shp = nh, nh$adj)
```

comp_log_st

Description

Calculate Log Spanning Tree Compactness

Usage

```
comp_log_st(plans, shp, counties = NULL, adj)
```

Arguments

plans	A redist_plans object or plans_matrix where each row indicates a district assignment and each column is a plan.
shp	A redist_map object, tibble, or data frame with an sf geometry column.
counties	column name in shp containing counties
adj	Zero-indexed adjacency list. Not required if a redist_map is supplied for shp.

Value

A numeric vector. Can be shaped into a district-by-plan matrix.

References

Cory McCartan and Kosuke Imai. 2020. Sequential Monte Carlo for Sampling Balanced and Compact Redistricting Plans.

```
data(nh)
data(nh_m)
# For a single plan:
comp_log_st(plans = nh$r_2020, shp = nh, counties = county, adj = nh$adj)
# Or many plans:
comp_log_st(plans = nh_m[, 3:5], shp = nh, counties = county, adj = nh$adj)
```

comp_lw

Description

Calculate Length Width Compactness

Usage

comp_lw(plans, shp, epsg = 3857, ncores = 1)

Arguments

plans	A redist_plans object or plans_matrix where each row indicates a district assignment and each column is a plan.
shp	A redist_map object, tibble, or data frame with an sf geometry column.
epsg	Numeric EPSG code to use to project the shapefile, if needed. Default is 3857.
ncores	Integer number of cores to use. Default is 1.

Value

A numeric vector. Can be shaped into a district-by-plan matrix.

References

Harris, Curtis C. 1964. "A scientific method of districting". Behavioral Science 3(9), 219-225.

Examples

```
data(nh)
data(nh_m)
# For a single plan:
comp_lw(plans = nh$r_2020, shp = nh)
# Or many plans:
```

slower, beware! comp_lw(plans = nh_m[, 3:5], shp = nh) comp_polsby

Description

Calculate Polsby Popper Compactness

Usage

```
comp_polsby(
   plans,
   shp,
   use_Rcpp,
   perim_path,
   perim_df,
   epsg = 3857,
   ncores = 1
)
```

Arguments

plans	A redist_plans object or plans_matrix where each row indicates a district assignment and each column is a plan.
shp	A redist_map object, tibble, or data frame with an sf geometry column.
use_Rcpp	If TRUE (the default for more than 8 plans), precompute boundaries shared by each pair of units and use them to quickly compute the compactness score.
perim_path	Path to perimeter tibble saved by prep_perims()
perim_df	Tibble of perimeters from prep_perims()
epsg	Numeric EPSG code to use to project the shapefile, if needed. Default is 3857.
ncores	Integer number of cores to use. Default is 1.

Value

A numeric vector. Can be shaped into a district-by-plan matrix.

References

Cox, E. 1927. A Method of Assigning Numerical and Percentage Values to the Degree of Roundness of Sand Grains. Journal of Paleontology, 1(3), 179-183.

Polsby, Daniel D., and Robert D. Popper. 1991. "The Third Criterion: Compactness as a procedural safeguard against partisan gerrymandering." Yale Law & Policy Review 9 (2): 301–353.

comp_reock

Examples

```
data(nh)
data(nh_m)
# For a single plan:
comp_polsby(plans = nh$r_2020, shp = nh)
# Or many plans:
```

comp_polsby(plans = nh_m[, 3:5], shp = nh)

comp_reock

Calculate Reock Compactness

Description

Calculate Reock Compactness

Usage

```
comp_reock(plans, shp, epsg = 3857, ncores = 1)
```

Arguments

plans	A redist_plans object or plans_matrix where each row indicates a district assignment and each column is a plan.
shp	A redist_map object, tibble, or data frame with an sf geometry column.
epsg	Numeric EPSG code to use to project the shapefile, if needed. Default is 3857.
ncores	Integer number of cores to use. Default is 1.

Value

A numeric vector. Can be shaped into a district-by-plan matrix.

References

Reock, E. 1961. A Note: Measuring Compactness as a Requirement of Legislative Apportionment. Midwest Journal of Political Science, 5(1), 70-74.

```
data(nh)
data(nh_m)
# For a single plan:
comp_reock(plans = nh$r_2020, shp = nh)
# Or many plans:
comp_reock(plans = nh_m[, 3:5], shp = nh)
```

comp_schwartz

Description

Calculate Schwartzberg Compactness

Usage

```
comp_schwartz(
   plans,
   shp,
   use_Rcpp,
   perim_path,
   perim_df,
   epsg = 3857,
   ncores = 1
)
```

Arguments

plans	A redist_plans object or plans_matrix where each row indicates a district assignment and each column is a plan.
shp	A redist_map object, tibble, or data frame with an sf geometry column.
use_Rcpp	Logical. Use Rcpp?
perim_path	path to perimeter tibble saved by prep_perims()
perim_df	tibble of perimeters from prep_perims()
epsg	Numeric EPSG code to use to project the shapefile, if needed. Default is 3857.
ncores	Integer number of cores to use. Default is 1.

Value

A numeric vector. Can be shaped into a district-by-plan matrix.

References

Schwartzberg, Joseph E. 1966. Reapportionment, Gerrymanders, and the Notion of Compactness. Minnesota Law Review. 1701.

```
data(nh)
data(nh_m)
# For a single plan:
comp_schwartz(plans = nh$r_2020, shp = nh)
```

comp_skew

```
# Or many plans:
comp_schwartz(plans = nh_m[, 3:5], shp = nh)
```

comp_skew

Calculate Skew Compactness

Description

Skew is defined as the ratio of the radii of the largest inscribed circle with the smallest bounding circle. Scores are bounded between 0 and 1, where 1 is most compact.

Usage

comp_skew(plans, shp, epsg = 3857, ncores = 1)

Arguments

plans	A redist_plans object or plans_matrix where each row indicates a district assignment and each column is a plan.
shp	A redist_map object, tibble, or data frame with an sf geometry column.
epsg	Numeric EPSG code to use to project the shapefile, if needed. Default is 3857.
ncores	Integer number of cores to use. Default is 1.

Value

A numeric vector. Can be shaped into a district-by-plan matrix.

References

S.N. Schumm. 1963. Sinuosity of alluvial rivers on the Great Plains. Bulletin of the Geological Society of America, 74. 1089-1100.

```
data(nh)
data(nh_m)
# For a single plan:
comp_skew(plans = nh$r_2020, shp = nh)
# Or many plans:
# slower, beware!
comp_skew(plans = nh_m[, 3:5], shp = nh)
```

comp_x_sym

Description

X symmetry is the overlapping area of a shape and its projection over the x-axis.

Usage

comp_x_sym(plans, shp, epsg = 3857, ncores = 1)

Arguments

plans	A redist_plans object or plans_matrix where each row indicates a district assignment and each column is a plan.
shp	A redist_map object, tibble, or data frame with an sf geometry column.
epsg	Numeric EPSG code to use to project the shapefile, if needed. Default is 3857.
ncores	Integer number of cores to use. Default is 1.

Value

A numeric vector. Can be shaped into a district-by-plan matrix.

References

Aaron Kaufman, Gary King, and Mayya Komisarchik. 2021. How to Measure Legislative District Compactness If You Only Know it When You See It. American Journal of Political Science. 65, 3. Pp. 533-550.

```
#' data(nh)
data(nh_m)
# For a single plan:
comp_x_sym(plans = nh$r_2020, shp = nh)
# Or many plans:
# slower, beware!
comp_x_sym(plans = nh_m[, 3:5], shp = nh)
```

comp_y_sym

Description

Y symmetry is the overlapping area of a shape and its projection over the y-axis.

Usage

comp_y_sym(plans, shp, epsg = 3857, ncores = 1)

Arguments

plans	A redist_plans object or plans_matrix where each row indicates a district assignment and each column is a plan.
shp	A redist_map object, tibble, or data frame with an sf geometry column.
epsg	Numeric EPSG code to use to project the shapefile, if needed. Default is 3857.
ncores	Integer number of cores to use. Default is 1.

Value

A numeric vector. Can be shaped into a district-by-plan matrix.

References

Aaron Kaufman, Gary King, and Mayya Komisarchik. 2021. How to Measure Legislative District Compactness If You Only Know it When You See It. American Journal of Political Science. 65, 3. Pp. 533-550.

```
#' data(nh)
data(nh_m)
# For a single plan:
comp_y_sym(plans = nh$r_2020, shp = nh)
# Or many plans:
# slower, beware!
comp_y_sym(plans = nh_m[, 3:5], shp = nh)
```

dist_euc

Description

Calculate Euclidean Distances

Usage

dist_euc(plans, ncores = 1)

Arguments

plans	A redist_plans object or plans_matrix where each row indicates a district
	assignment and each column is a plan.
ncores	Integer number of cores to use. Default is 1.

Value

matrix of plan distances

Examples

```
data(nh)
data(nh_m)
# For a single plan (distance is trivial, 0):
dist_euc(plans = nh$r_2020)
# Or many plans:
dist_euc(plans = nh_m[, 3:5])
```

dist_ham

Calculate Hamming Distances

Description

Calculate Hamming Distances

Usage

dist_ham(plans, ncores = 1)

Arguments

plans	A redist_plans object or plans_matrix where each row indicates a district
	assignment and each column is a plan.
ncores	Integer number of cores to use. Default is 1.

dist_info

Value

matrix of plan distances

Examples

```
data(nh)
data(nh_m)
# For a single plan (distance is trivial, 0):
dist_ham(plans = nh$r_2020)
# Or many plans:
dist_ham(plans = nh_m[, 3:5])
```

dist_info

Calculate Variation of Information Distances

Description

Calculate Variation of Information Distances

Usage

```
dist_info(plans, shp, total_pop, ncores = 1)
```

Arguments

plans	A redist_plans object or plans_matrix where each row indicates a district assignment and each column is a plan.
shp	A redist_map object, tibble, or data frame containing other columns.
total_pop	Unqouted name of column in shp with total population.
ncores	Integer number of cores to use. Default is 1.

Value

matrix of plan distances

```
data(nh)
data(nh_m)
# For a single plan (distance is trivial, 0):
dist_info(plans = nh$r_2020, shp = nh, total_pop = pop)
# Or many plans:
dist_info(plans = nh_m[, 3:5], shp = nh, total_pop = pop)
```

dist_man

Description

Calculate Manhattan Distances

Usage

dist_man(plans, ncores = 1)

Arguments

plans	A redist_plans object or plans_matrix where each row indicates a district
	assignment and each column is a plan.
ncores	Integer number of cores to use. Default is 1.

Value

matrix of plan distances

Examples

```
data(nh)
data(nh_m)
# For a single plan (distance is trivial, 0):
dist_man(plans = nh$r_2020)
# Or many plans:
```

dist_man(plans = nh_m[, 3:5])

inc_pairs

Count Incumbent Pairings

Description

Count the number of incumbents paired with at least one other incumbent.

Usage

inc_pairs(plans, shp, inc)

list_fn

Arguments

plans	A redist_plans object or plans_matrix where each row indicates a district assignment and each column is a plan.
shp	A redist_map object, tibble, or data frame containing other columns.
inc	Unquited name of logical column in shp indicating where incumbents live.

Value

vector of number of incumbents paired

Examples

```
data(nh)
data(nh_m)
# Use incumbent data:
fake_inc <- rep(FALSE, nrow(nh))
fake_inc[3:4] <- TRUE
# For a single plan:
inc_pairs(plans = nh$r_2020, shp = nh, inc = fake_inc)
# Or many plans:
inc_pairs(plans = nh_m[, 3:5], shp = nh, inc = fake_inc)</pre>
```

1	i	s	t		f	n	
-	-	-	с,	_		••	

Return Functions Matching a Prefix

Description

This package uses prefixes for each function that correspond to the type of measure. This function returns the functions

Usage

list_fn(prefix)

Arguments

prefix character prefix of functions to return

Value

character vector of functions

Examples

list_fn('part_')

Description

This data set contains demographic, election, and geographic information for the 326 voting tabulation districts in New Hampshire in 2020.

Usage

data("nh")

Format

A tibble with 326 rows and 45 columns

- GEOID20: 2020 VTD GEOID
- state: state name
- county: county name
- vtd: VTD portion of GEOID
- pop: total population
- pop_hisp: Hispanic population
- pop_white: White, not Hispanic population
- pop_black: Black, not Hispanic population
- pop_aian: American Indian and Alaska Native, not Hispanic population
- pop_asian: Asian, not Hispanic population
- pop_nhpi: Native Hawaiian and Pacific Islander, not Hispanic population
- pop_other: other race, not Hispanic population
- pop_two: multi-race, not Hispanic population
- vap: total voting-age population
- vap_hisp: Hispanic voting-age population
- vap_white: White, not Hispanic voting-age population
- vap_black: Black, not Hispanic voting-age population
- vap_aian: American Indian and Alaska Native, not Hispanic voting-age population
- vap_asian: Asian, not Hispanic voting-age population
- vap_nhpi: Native Hawaiian and Pacific Islander, not Hispanic voting-age population
- vap_other: other race, not Hispanic voting-age population
- vap_two: multi-race, not Hispanic voting-age population
- pre_16_rep_tru: Votes for Republican president 2016
- pre_16_dem_cli: Votes for Democratic president 2016

nh

- uss_16_rep_ayo: Votes for Republican senate 2016
- uss_16_dem_has: Votes for Democratic senate 2016
- gov_16_rep_sun: Votes for Republican governor 2016
- gov_16_dem_van: Votes for Democratic governor 2016
- gov_18_rep_sun: Votes for Republican governor 2018
- gov_18_dem_kel: Votes for Democratic governor 2018
- pre_20_dem_bid: Votes for Democratic president 2020
- pre_20_rep_tru: Votes for Republican president 2020
- uss_20_dem_sha: Votes for Democratic senate 2020
- uss_20_rep_mes: Votes for Republican senate 2020
- gov_20_dem_fel: Votes for Democratic governor 2020
- gov_20_rep_sun: Votes for Republican governor 2020
- arv_16: Average Republican vote 2016
- adv_16: Average Democratic vote 2016
- arv_18: Average Republican vote 2018
- adv_18: Average Democratic vote 2018
- arv_20: Average Republican vote 2020
- adv_20: Average Democratic vote 2020
- nrv: Normal Republican vote
- ndv: Normal Democratic vote
- · geometry: sf geometry, simplified for size using rmapshaper
- r_2020: Republican proposed plan for 2020 Congressional districts
- d_2020: Democratic proposed plan for 2020 Congressional districts
- adj: zero-indexed adjacency graph

References

Voting and Election Science Team, 2020, "2020 Precinct-Level Election Results", https://doi.org/10.7910/DVN/K7760H, Harvard Dataverse, V23

Voting and Election Science Team, 2018, "2016 Precinct-Level Election Results", https://doi.org/10.7910/DVN/NH5S2I, Harvard Dataverse, V71

Voting and Election Science Team, 2019, "2018 Precinct-Level Election Results", https://doi.org/10.7910/DVN/UBKYRU, Harvard Dataverse, V48

Kenny & McCartan (2021, Aug. 10). ALARM Project: 2020 Redistricting Data Files. Retrieved from https://github.com/alarm-redist/census-2020/

Examples

data(nh)

nh_m

Description

This data set contains two reference plans (d_2020 and r_2020) and 50 simulated plans for New Hampshire, based on 2020 demographics, simulated at a population tolerance of 0.05%.

Usage

data("nh_m")

Format

A matrix with 52 columns and 326 rows where each column is a plan

Examples

data(nh_m)

nh_map

New Hampshire Election and Demographic Data as a redist_map

Description

This data set contains demographic, election, and geographic information for the 326 voting tabulation districts in New Hampshire in 2020.

Usage

data("nh_map")

Format

A redist_map with 326 rows and 45 columns

- GEOID20: 2020 VTD GEOID
- state: state name
- county: county name
- vtd: VTD portion of GEOID
- pop: total population
- pop_hisp: Hispanic population
- pop_white: White, not Hispanic population
- pop_black: Black, not Hispanic population

- pop_aian: American Indian and Alaska Native, not Hispanic population
- pop_asian: Asian, not Hispanic population
- pop_nhpi: Native Hawaiian and Pacific Islander, not Hispanic population
- pop_other: other race, not Hispanic population
- pop_two: multi-race, not Hispanic population
- vap: total voting-age population
- vap_hisp: Hispanic voting-age population
- vap_white: White, not Hispanic voting-age population
- vap_black: Black, not Hispanic voting-age population
- vap_aian: American Indian and Alaska Native, not Hispanic voting-age population
- vap_asian: Asian, not Hispanic voting-age population
- vap_nhpi: Native Hawaiian and Pacific Islander, not Hispanic voting-age population
- vap_other: other race, not Hispanic voting-age population
- vap_two: multi-race, not Hispanic voting-age population
- pre_16_rep_tru: Votes for Republican president 2016
- pre_16_dem_cli: Votes for Democratic president 2016
- uss_16_rep_ayo: Votes for Republican senate 2016
- uss_16_dem_has: Votes for Democratic senate 2016
- gov_16_rep_sun: Votes for Republican governor 2016
- gov_16_dem_van: Votes for Democratic governor 2016
- gov_18_rep_sun: Votes for Republican governor 2018
- gov_18_dem_kel: Votes for Democratic governor 2018
- pre_20_dem_bid: Votes for Democratic president 2020
- pre_20_rep_tru: Votes for Republican president 2020
- uss_20_dem_sha: Votes for Democratic senate 2020
- uss_20_rep_mes: Votes for Republican senate 2020
- gov_20_dem_fel: Votes for Democratic governor 2020
- gov_20_rep_sun: Votes for Republican governor 2020
- arv_16: Average Republican vote 2016
- adv_16: Average Democratic vote 2016
- arv_18: Average Republican vote 2018
- adv_18: Average Democratic vote 2018
- arv_20: Average Republican vote 2020
- adv_20: Average Democratic vote 2020
- nrv: Normal Republican vote
- ndv: Normal Democratic vote
- r_2020: Republican proposed plan for 2020 Congressional districts
- d_2020: Democratic proposed plan for 2020 Congressional districts
- adj: zero-indexed adjacency graph
- geometry: sf geometry, simplified for size using rmapshaper

References

Voting and Election Science Team, 2020, "2020 Precinct-Level Election Results", https://doi.org/10.7910/DVN/K7760H, Harvard Dataverse, V23

Voting and Election Science Team, 2018, "2016 Precinct-Level Election Results", https://doi.org/10.7910/DVN/NH5S2I, Harvard Dataverse, V71

Voting and Election Science Team, 2019, "2018 Precinct-Level Election Results", https://doi.org/10.7910/DVN/UBKYRU, Harvard Dataverse, V48

Kenny & McCartan (2021, Aug. 10). ALARM Project: 2020 Redistricting Data Files. Retrieved from https://github.com/alarm-redist/census-2020/

Examples

data(nh_map)

nh_plans

Redistricting Plans for New Hampshire as redist_plans

Description

This data set contains two reference plans (d_2020 and r_2020) and 50 simulated plans for New Hampshire, based on 2020 demographics, simulated at a population tolerance of 0.05%.

Usage

data("nh_plans")

Format

A redist_plans with 104 rows and 3 columns

- draw: factor identifying the reference plans (d_2020 and r_2020) and 50 simulted plans
- district: district number (1 or 2)
- total_pop: total population in the district

Examples

data(nh_plans)

26

part_bias

Description

Calculate Partisan Bias

Usage

part_bias(plans, shp, dvote, rvote, v = 0.5)

Arguments

plans	A redist_plans object or plans_matrix where each row indicates a district assignment and each column is a plan.
shp	A redist_map object, tibble, or data frame containing other columns.
dvote	Unqouted name of column in shp with total population.
rvote	Unqouted name of column in shp with group population.
v	vote share to calculate bias at. Numeric. Default is 0.5.

Value

A numeric vector. Can be shaped into a district-by-plan matrix.

References

Jonathan N. Katz, Gary King, and Elizabeth Rosenblatt. 2020. Theoretical Foundations and Empirical Evaluations of Partisan Fairness in District-Based Democracies. American Political Science Review, 114, 1, Pp. 164-178.

```
data(nh)
data(nh_m)
# For a single plan:
part_bias(plans = nh$r_2020, shp = nh, rvote = nrv, dvote = ndv)
# Or many plans:
part_bias(plans = nh_m[, 3:5], shp = nh, rvote = nrv, dvote = ndv)
```

part_decl

Description

Calculate Declination

Usage

```
part_decl(plans, shp, dvote, rvote, normalize = TRUE, adjust = TRUE)
```

Arguments

plans	A redist_plans object or plans_matrix where each row indicates a district assignment and each column is a plan.
shp	A redist_map object, tibble, or data frame containing other columns.
dvote	Unqouted name of column in shp with total population.
rvote	Unqouted name of column in shp with group population.
normalize	Default is TRUE Translate score to an angle?
adjust	Default is TRUE. Applies a correction to increase cross-size comparison.

Value

A numeric vector. Can be shaped into a district-by-plan matrix.

References

Gregory S. Warrington. 2018. "Quantifying Gerrymandering Using the Vote Distribution." Election Law Journal: Rules, Politics, and Policy. Pp. 39-57.http://doi.org/10.1089/elj.2017.0447

```
data(nh)
data(nh_m)
# For a single plan:
part_decl(plans = nh$r_2020, shp = nh, rvote = nrv, dvote = ndv)
# Or many plans:
part_decl(plans = nh_m[, 3:5], shp = nh, rvote = nrv, dvote = ndv)
```

Description

Calculate Simplified Declination

Usage

part_decl_simple(plans, shp, dvote, rvote)

Arguments

plans	A redist_plans object or plans_matrix where each row indicates a district assignment and each column is a plan.
shp	A redist_map object, tibble, or data frame containing other columns.
dvote	Unqouted name of column in shp with total population.
rvote	Unqouted name of column in shp with group population.

Value

A numeric vector. Can be shaped into a district-by-plan matrix.

References

Jonathan N. Katz, Gary King, and Elizabeth Rosenblatt. 2020. Theoretical Foundations and Empirical Evaluations of Partisan Fairness in District-Based Democracies. American Political Science Review, 114, 1, Pp. 164-178.

```
data(nh)
data(nh_m)
# For a single plan:
part_decl_simple(plans = nh$r_2020, shp = nh, rvote = nrv, dvote = ndv)
# Or many plans:
part_decl_simple(plans = nh_m[, 3:5], shp = nh, rvote = nrv, dvote = ndv)
```

part_dil_asym

Description

Calculate Dilution Asymmetry

Usage

part_dil_asym(plans, shp, dvote, rvote)

Arguments

plans	A redist_plans object or plans_matrix where each row indicates a district assignment and each column is a plan.
shp	A redist_map object, tibble, or data frame containing other columns.
dvote	Unqouted name of column in shp with total population.
rvote	Unqouted name of column in shp with group population.

Value

A numeric vector. Can be shaped into a district-by-plan matrix.

References

Sanford C. Gordon and Sidak Yntiso. 2024. Base Rate Neglect and the Diagnosis of Partisan Gerrymanders. Election Law Journal: Rules, Politics, and Policy. doi:10.1089/elj.2023.0005.

```
data(nh)
data(nh_m)
# For a single plan:
part_dil_asym(plans = nh$r_2020, shp = nh, rvote = nrv, dvote = ndv)
# Or many plans:
part_dil_asym(plans = nh_m[, 3:5], shp = nh, rvote = nrv, dvote = ndv)
```

part_dseats

Description

Calculate Democratic Seats

Usage

part_dseats(plans, shp, dvote, rvote)

Arguments

plans	A redist_plans object or plans_matrix where each row indicates a district assignment and each column is a plan.
shp	A redist_map object, tibble, or data frame containing other columns.
dvote	Unquited name of column in shp with total population.
rvote	Unqouted name of column in shp with group population.

Value

A numeric vector. Can be shaped into a district-by-plan matrix.

Examples

```
data(nh)
data(nh_m)
# For a single plan:
part_dseats(plans = nh$r_2020, shp = nh, rvote = nrv, dvote = ndv)
# Or many plans:
part_dseats(plans = nh_m[, 3:5], shp = nh, rvote = nrv, dvote = ndv)
```

part_dvs

Calculate Democratic Vote Share

Description

Calculate Democratic Vote Share

Usage

part_dvs(plans, shp, dvote, rvote)

Arguments

plans	A redist_plans object or plans_matrix where each row indicates a district assignment and each column is a plan.
shp	A redist_map object, tibble, or data frame containing other columns.
dvote	Unqouted name of column in shp with total population.
rvote	Unqouted name of column in shp with group population.

Value

A numeric vector. Can be shaped into a district-by-plan matrix.

Examples

```
data(nh)
data(nh_m)
# For a single plan:
part_dvs(plans = nh$r_2020, shp = nh, rvote = nrv, dvote = ndv)
# Or many plans:
part_dvs(plans = nh_m[, 3:5], shp = nh, rvote = nrv, dvote = ndv)
```

part_egap Calculate Efficiency Gap

Description

Calculate Efficiency Gap

Usage

```
part_egap(plans, shp, dvote, rvote)
```

Arguments

plans	A redist_plans object or plans_matrix where each row indicates a district assignment and each column is a plan.
shp	A redist_map object, tibble, or data frame containing other columns.
dvote	Unqouted name of column in shp with total population.
rvote	Unqouted name of column in shp with group population.

Value

A numeric vector. Can be shaped into a district-by-plan matrix.

part_egap_ep

References

Nicholas O. Stephanopoulos. 2015. Partisan Gerrymandering and the Efficiency Gap. The University of Chicago Law Review, 82, Pp. 831-900.

Examples

```
data(nh)
data(nh_m)
# For a single plan:
part_egap(plans = nh$r_2020, shp = nh, rvote = nrv, dvote = ndv)
# Or many plans:
part_egap(plans = nh_m[, 3:5], shp = nh, rvote = nrv, dvote = ndv)
```

part_egap_ep

Calculate Efficiency Gap (Equal Population Assumption)

Description

Calculate Efficiency Gap (Equal Population Assumption)

Usage

part_egap_ep(plans, shp, dvote, rvote)

Arguments

plans	A redist_plans object or plans_matrix where each row indicates a district assignment and each column is a plan.
shp	A redist_map object, tibble, or data frame containing other columns.
dvote	Unqouted name of column in shp with total population.
rvote	Unqouted name of column in shp with group population.

Value

A numeric vector. Can be shaped into a district-by-plan matrix.

References

Nicholas O. Stephanopoulos. 2015. Partisan Gerrymandering and the Efficiency Gap. The University of Chicago Law Review, 82, Pp. 831-900.

Examples

```
data(nh)
data(nh_m)
# For a single plan:
part_egap_ep(plans = nh$r_2020, shp = nh, rvote = nrv, dvote = ndv)
# Or many plans:
part_egap_ep(plans = nh_m[, 3:5], shp = nh, rvote = nrv, dvote = ndv)
```

part_lop_wins Calculate Lopsided Wins

Description

Calculate Lopsided Wins

Usage

part_lop_wins(plans, shp, dvote, rvote)

Arguments

plans	A redist_plans object or plans_matrix where each row indicates a district assignment and each column is a plan.
shp	A redist_map object, tibble, or data frame containing other columns.
dvote	Unqouted name of column in shp with total population.
rvote	Unqouted name of column in shp with group population.

Value

A numeric vector. Can be shaped into a district-by-plan matrix.

References

Samuel S.-H. Wang. 2016. "Three Tests for Practical Evaluation of Partisan Gerrymandering." Stanford Law Review, 68, Pp. 1263 - 1321.

Examples

```
data(nh)
data(nh_m)
# For a single plan:
part_lop_wins(plans = nh$r_2020, shp = nh, rvote = nrv, dvote = ndv)
# Or many plans:
part_lop_wins(plans = nh_m[, 3:5], shp = nh, rvote = nrv, dvote = ndv)
```

34

Description

Calculate Mean Median Score

Usage

part_mean_median(plans, shp, dvote, rvote)

Arguments

plans	A redist_plans object or plans_matrix where each row indicates a district assignment and each column is a plan.
shp	A redist_map object, tibble, or data frame containing other columns.
dvote	Unqouted name of column in shp with total population.
rvote	Unqouted name of column in shp with group population.

Value

A numeric vector. Can be shaped into a district-by-plan matrix.

References

Michael D. McDonald and Robin E. Best. 2015. Unfair Partisan Gerrymanders in Politics and Law: A Diagnostic Applied to Six Cases. Election Law Journal: Rules, Politics, and Policy. 14. 4. Pp. 312-330.

```
data(nh)
data(nh_m)
# zero for the two district case:
# For a single plan:
part_mean_median(plans = nh$r_2020, shp = nh, rvote = nrv, dvote = ndv)
# Or many plans:
part_mean_median(plans = nh_m[, 3:5], shp = nh, rvote = nrv, dvote = ndv)
```

part_resp

Description

Calculate Responsiveness

Usage

```
part_resp(plans, shp, dvote, rvote, v = 0.5, bandwidth = 0.01)
```

Arguments

plans	A redist_plans object or plans_matrix where each row indicates a district assignment and each column is a plan.
shp	A redist_map object, tibble, or data frame containing other columns.
dvote	Unqouted name of column in shp with total population.
rvote	Unqouted name of column in shp with group population.
v	vote share to calculate bias at. Numeric. Default is 0.5.
bandwidth	Defaults to 0.01. A value between 0 and 1 for the step size to estimate the slope.

Value

A numeric vector. Can be shaped into a district-by-plan matrix.

References

Jonathan N. Katz, Gary King, and Elizabeth Rosenblatt. 2020. Theoretical Foundations and Empirical Evaluations of Partisan Fairness in District-Based Democracies. American Political Science Review, 114, 1, Pp. 164-178.

```
data(nh)
data(nh_m)
# For a single plan:
part_resp(plans = nh$r_2020, shp = nh, rvote = nrv, dvote = ndv)
# Or many plans:
part_resp(plans = nh_m[, 3:5], shp = nh, rvote = nrv, dvote = ndv)
```
part_rmd

Description

Calculate Ranked Marginal Deviation

Usage

part_rmd(plans, shp, dvote, rvote)

Arguments

plans	A redist_plans object or plans_matrix where each row indicates a district assignment and each column is a plan.
shp	A redist_map object, tibble, or data frame containing other columns.
dvote	Unqouted name of column in shp with total population.
rvote	Unqouted name of column in shp with group population.

Value

A numeric vector. Can be shaped into a district-by-plan matrix.

References

Gregory Herschlag, Han Sung Kang, Justin Luo, Christy Vaughn Graves, Sachet Bangia, Robert Ravier & Jonathan C. Mattingly (2020) Quantifying Gerrymandering in North Carolina, Statistics and Public Policy, 7:1, 30-38, DOI: 10.1080/2330443X.2020.1796400

```
data(nh)
data(nh_m)
# For a single plan:
part_rmd(plans = nh$r_2020, shp = nh, rvote = nrv, dvote = ndv)
# Or many plans:
part_rmd(plans = nh_m[, 3:5], shp = nh, rvote = nrv, dvote = ndv)
```

part_sscd

Description

Calculate Smoothed Seat Count Deviation

Usage

part_sscd(plans, shp, dvote, rvote)

Arguments

plans	A redist_plans object or plans_matrix where each row indicates a district assignment and each column is a plan.
shp	A redist_map object, tibble, or data frame containing other columns.
dvote	Unqouted name of column in shp with total population.
rvote	Unqouted name of column in shp with group population.

Value

A numeric vector. Can be shaped into a district-by-plan matrix.

References

Gregory Herschlag, Han Sung Kang, Justin Luo, Christy Vaughn Graves, Sachet Bangia, Robert Ravier & Jonathan C. Mattingly (2020) Quantifying Gerrymandering in North Carolina, Statistics and Public Policy, 7:1, 30-38, DOI: 10.1080/2330443X.2020.1796400

```
data(nh)
data(nh_m)
# For a single plan:
part_sscd(plans = nh$r_2020, shp = nh, rvote = nrv, dvote = ndv)
# Or many plans:
part_sscd(plans = nh_m[, 3:5], shp = nh, rvote = nrv, dvote = ndv)
```

part_tau_gap Calculate Tau Gap

Description

Calculate Tau Gap

Usage

part_tau_gap(plans, shp, dvote, rvote, tau = 1)

Arguments

plans	A redist_plans object or plans_matrix where each row indicates a district assignment and each column is a plan.
shp	A redist_map object, tibble, or data frame containing other columns.
dvote	Unqouted name of column in shp with total population.
rvote	Unqouted name of column in shp with group population.
tau	A non-negative numeric for calculating Tau Gap. Defaults to 1.

Value

A numeric vector. Can be shaped into a district-by-plan matrix.

References

Gregory S. Warrington. 2018. "Quantifying Gerrymandering Using the Vote Distribution." Election Law Journal: Rules, Politics, and Policy. Pp. 39-57.http://doi.org/10.1089/elj.2017.0447

```
data(nh)
data(nh_m)
# For a single plan:
part_tau_gap(plans = nh$r_2020, shp = nh, rvote = nrv, dvote = ndv)
# Or many plans:
part_tau_gap(plans = nh_m[, 3:5], shp = nh, rvote = nrv, dvote = ndv)
```

prep_perims

Description

Replaces redist.prep.polsbypopper

Usage

prep_perims(shp, epsg = 3857, perim_path, ncores = 1)

Arguments

shp	A redist_map object, tibble, or data frame with an sf geometry column.	
epsg	Numeric EPSG code to use to project the shapefile, if needed. Default is 3857.	
perim_path	A path to save an rds	
ncores	Integer number of cores to use. Default is 1.	

Value

tibble of perimeters and lengths

Examples

data(nh)
prep_perims(nh)

seg_dissim

Compute Dissimilarity Index

Description

Compute Dissimilarity Index

Usage

```
seg_dissim(plans, shp, group_pop, total_pop)
```

Arguments

plans	A redist_plans object or plans_matrix where each row indicates a district assignment and each column is a plan.	
shp	A redist_map object, tibble, or data frame containing other columns.	
group_pop	Unqouted name of column in shp with group population.	
total_pop	Unqouted name of column in shp with total population.	

splits_admin

Value

A numeric vector. Can be shaped into a district-by-plan matrix.

References

Douglas Massey and Nancy Denton. 1987. The Dimensions of Social Segregation. Social Forces.

Examples

```
data(nh)
data(nh_m)
# For a single plan:
seg_dissim(plans = nh$r_2020, shp = nh, group_pop = vap_hisp, total_pop = vap)
# Or many plans:
seg_dissim(plans = nh_m[, 3:5], shp = nh, group_pop = vap_hisp, total_pop = vap)
```

splits_admin

Compute Number of Administrative Units Split

Description

Compute Number of Administrative Units Split

Usage

```
splits_admin(plans, shp, admin)
```

Arguments

plans	A redist_plans object or plans_matrix where each row indicates a district assignment and each column is a plan.
shp	A redist_map object, tibble, or data frame containing other columns.
admin	Unqouted name of column in shp with numeric identifiers for administrative units.

Value

A numeric vector. Can be shaped into a district-by-plan matrix.

Examples

```
data(nh)
data(nh_m)
# For a single plan:
splits_admin(plans = nh$r_2020, shp = nh, admin = county)
# Or many plans:
splits_admin(plans = nh_m[, 3:5], shp = nh, admin = county)
```

splits_count Count the Number of Splits in Each Administrative Unit

Description

Tallies the number of unique administrative unit-districts. An unsplit administrative unit will return an entry of 1, while each additional administrative unit-district adds 1.

Usage

splits_count(plans, shp, admin)

Arguments

plans	A redist_plans object or plans_matrix where each row indicates a district assignment and each column is a plan.
shp	A redist_map object, tibble, or data frame containing other columns.
admin	Unquited name of column in shp with numeric identifiers for administrative units.

Value

numeric matrix

Examples

```
data(nh)
data(nh_m)
# For a single plan:
splits_count(plans = nh$r_2020, shp = nh, admin = county)
# Or many plans:
splits_count(plans = nh_m[, 3:5], shp = nh, admin = county)
```

42

splits_district_fuzzy Fuzzy Splits by District (Experimental)

Description

Not all relevant geographies nest neatly into Census blocks, including communities of interest or neighborhood. For these cases, this provides a tabulation by district of the number of splits. As some geographies can be split multiple times, the sum of these splits may not reflect the total number of splits.

Usage

```
splits_district_fuzzy(plans, shp, nbr, thresh = 0.01, epsg)
```

Arguments

plans	A redist_plans object or plans_matrix where each row indicates a district assignment and each column is a plan.	
shp	A redist_map object, tibble, or data frame with an sf geometry column.	
nbr	Geographic neighborhood, community, or other unit to check splits for.	
thresh	Percent as decimal of an area to trim away. Default is .01, which is 1%.	
epsg	Numeric EPSG code to use to project the shapefile, if needed. Default is 3857.	

Details

Beware, this requires a nbr shape input and will be slower than checking splits in cases where administrative unit nests cleanly into the geographies represented by shp.

Value

numeric matrix

```
data(nh)
data(nh_m)
# toy example,
# suppose we care about the splits of the counties and they don't nest
nh_cty <- nh %>% dplyr::group_by(county) %>% dplyr::summarize()
# For a single plan:
splits_district_fuzzy(plans = nh$r_2020, shp = nh, nbr = nh_cty)
# Or many plans:
splits_district_fuzzy(plans = nh_m[, 3:5], shp = nh, nbr = nh_cty)
```

splits_multi

Description

Compute Number of Administrative Units Split More than Once

Usage

```
splits_multi(plans, shp, admin)
```

Arguments

plans	A redist_plans object or plans_matrix where each row indicates a district assignment and each column is a plan.
shp	A redist_map object, tibble, or data frame containing other columns.
admin	Unquited name of column in shp with numeric identifiers for administrative units.

Value

A numeric vector. Can be shaped into a district-by-plan matrix.

Examples

```
data(nh)
data(nh_m)
# For a single plan:
splits_multi(plans = nh$r_2020, shp = nh, admin = county)
# Or many plans:
splits_multi(plans = nh_m[, 3:5], shp = nh, admin = county)
```

splits_sub_admin	<i>Compute Number of Sub-Administrative Units Split</i>
------------------	---

Description

Compute Number of Sub-Administrative Units Split

Usage

splits_sub_admin(plans, shp, sub_admin)

splits_sub_count

Arguments

plans	A redist_plans object or plans_matrix where each row indicates a district assignment and each column is a plan.
shp	A redist_map object, tibble, or data frame containing other columns.
sub_admin	Unquited name of column in shp with numeric identifiers for subsidiary admin- istrative units.

Value

A numeric vector. Can be shaped into a district-by-plan matrix.

Examples

```
data(nh)
data(nh_m)
# For a single plan:
splits_sub_admin(plans = nh$r_2020, shp = nh, sub_admin = county)
# Or many plans:
splits_sub_admin(plans = nh_m[, 3:5], shp = nh, sub_admin = county)
```

splits_sub_count	Count the Number of Splits in Each Sub-Administrative Unit
------------------	--

Description

Tallies the number of unique sub-administrative unit-districts. An unsplit administrative unit will return an entry of 1, while each additional sub-administrative unit-district adds 1.

Usage

splits_sub_count(plans, shp, sub_admin)

Arguments

plans	A redist_plans object or plans_matrix where each row indicates a district assignment and each column is a plan.
shp	A redist_map object, tibble, or data frame containing other columns.
sub_admin	Unqouted name of column in shp with numeric identifiers for subsidiary admin- istrative units.

Value

numeric matrix

Examples

```
data(nh)
data(nh_m)
# For a single plan:
splits_sub_count(plans = nh$r_2020, shp = nh, sub_admin = county)
# Or many plans:
splits_sub_count(plans = nh_m[, 3:5], shp = nh, sub_admin = county)
```

splits_total Count the Total Splits in Each Plan

Description

Counts the total number of administrative splits.

Usage

splits_total(plans, shp, admin)

Arguments

plans	A redist_plans object or plans_matrix where each row indicates a district assignment and each column is a plan.
shp	A redist_map object, tibble, or data frame containing other columns.
admin	Unquited name of column in shp with numeric identifiers for administrative units.

Value

numeric matrix

Examples

```
data(nh)
data(nh_m)
# For a single plan:
splits_total(plans = nh$r_2020, shp = nh, admin = county)
# Or many plans:
splits_total(plans = nh_m[, 3:5], shp = nh, admin = county)
```

46

tally

Description

Helper function to aggregate a vector by district. Can be used to calculate total population, group percentages, and more.

Usage

tally(plans, shp, x)

Arguments

plans	A redist_plans object or plans_matrix where each row indicates a district assignment and each column is a plan.
shp	A redist_map object, tibble, or data frame containing other columns.
х	The numeric vector to tally.

Value

A numeric vector with the tallies. Can be shaped into a district-by-plan matrix.

Examples

data(nh) data(nh_m)

tally(nh_m, nh, pop) # total population tally(nh_m, nh, vap_hisp) / tally(nh_m, nh, vap) # HVAP

Index

* compactness comp_bc, 4 comp_box_reock, 5 comp_ch, 6 comp_edges_rem, 7 comp_fh, 8 comp_frac_kept, 9 comp_log_st, 10 comp_lw, 11 comp_polsby, 12 comp_reock, 13 comp_schwartz, 14 comp_skew, 15 comp_x_sym, 16 comp_y_sym, 17 prep_perims, 40 * competitiveness compet_talisman, 3 * data nh, 22 nh_m, 24 nh_map, 24 nh_plans, 26 * distances dist_euc, 18 dist_ham, 18 dist_info, 19 dist_man, 20 * incumbent inc_pairs, 20 * partisan part_bias, 27 part_decl, 28 part_decl_simple, 29 part_dil_asym, 30 part_dseats, 31 part_dvs, 31 part_egap, 32 part_egap_ep, 33

part_lop_wins, 34 part_mean_median, 35 part_resp, 36 part_rmd, 37 part_sscd, 38 part_tau_gap, 39 * segregation seg_dissim, 40 * splits splits_admin, 41 splits_count, 42 splits_district_fuzzy, 43 splits_multi, 44 splits_sub_admin, 44 splits_sub_count, 45 splits_total, 46 by_plan, 3 comp_bc, 4 comp_box_reock, 5 comp_ch, 6 comp_edges_rem, 7 comp_fh, 8 comp_frac_kept, 9 comp_log_st, 10 comp_lw, 11 comp_polsby, 12 comp_reock, 13 comp_schwartz, 14 comp_skew, 15 comp_x_sym, 16 comp_y_sym, 17 compet_talisman, 3 dist_euc, 18 dist_ham, 18 dist_info, 19 dist_man, 20 inc_pairs, 20

INDEX

list_fn,21 nh, 22 nh_m, 24 nh_map, 24 nh_plans, 26 part_bias, 27 part_decl, 28 part_decl_simple, 29 part_dil_asym, 30 part_dseats, 31 part_dvs, 31 $part_egap, 32$ part_egap_ep, 33 part_lop_wins, 34 part_mean_median, 35 part_resp, 36 part_rmd, 37 part_sscd, 38 part_tau_gap, 39 prep_perims, 40 seg_dissim, 40 splits_admin, 41 splits_count, 42 splits_district_fuzzy, 43 splits_multi, 44 splits_sub_admin, 44 splits_sub_count, 45 splits_total, 46

tally, <mark>47</mark>