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rbw: An R package for Constructing
Residual Balancing Weights
by Derick Baum, Xiang Zhou

Abstract We describe the R package rbw, which implements the method of residual balancing weights
(RBW) for estimating marginal structural models. In contrast to other methods such as inverse prob-
ability weighting (IPW) and covariate balancing propensity scores (CBPS), RBW involves modeling
the conditional means of post-treatment confounders instead of the conditional distributions of the
treatment to construct the weights. RBW is thus easier to use with continuous treatments, and the
method is less susceptible to model misspecification issues that often arise when modeling the con-
ditional distributions of treatments. RBW is also advantageous from a computational perspective.
Because its weighting procedure involves a convex optimization problem, RBW typically locates a
solution considerably faster than other methods whose optimization relies on nonconvex loss func-
tions — such as the recently proposed nonparametric version of CBPS. We explain the rationale be-
hind RBW, describe the functions in rbw, and then use real-world data to illustrate their applications
in three scenarios: effect estimation for point treatments, causal mediation analysis, and effect esti-
mation for time-varying treatments with time-varying confounders.

Introduction

This paper describes the R package rbw, which implements the method of residual balancing weights
for estimating marginal structural models (MSMs) (Zhou and Wodtke, 2020). MSMs seek to estimate
causal effects in the presence of post-treatment confounding — a common issue in the social sci-
ences. In studies of time-varying treatments, prior treatments may affect the confounders of future
treatments. For example, research has shown that political candidates’ decision to run negative ad-
vertisements is shaped by their positions in recent polling data, which are in turn affected by their
previous decisions to run negative advertisements (Lau et al., 2007; Blackwell, 2013). Post-treatment
confounding can also occur in causal mediation analysis when confounders of the mediator-outcome
relationship are affected by the treatment. For example, such a problem arises in a study of the medi-
ating role of morality in the effect of shared democracy on public support for war (Tomz and Weeks,
2013). Post-treatment variables, such as respondents’ beliefs about the likelihood of victory, may
affect both perceptions of morality and support for military intervention.

MSMs aim to address two types of bias associated with conventional regression methods that
adjust naively for post-treatment confounders: overcontrol and collider-stratification bias (Robins,
1986; 2000). Conditioning naively on post-treatment confounders can create overcontrol bias as it
blocks the effect of the treatment on the outcome that passes through these variables. Additionally,
conditioning naively on post-treatment confounders can lead to collider-stratification bias when these
variables are affected by unobserved determinants of the outcome. This is because the adjustment
will create a spurious association between the treatment and the unobserved variables.

Researchers often use inverse probability weighting (IPW) to fit MSMs (for an in-depth exposition
of the method, see Robins et al., 2000; Robins, 2000; Cole and Hernán, 2008). In longitudinal settings,
MSMs with IPW involve fitting a model for the conditional mean of the outcome given the treatment
history using weights that break the dependence between past confounders and the treatment at
each time point. In essence, the weights create a pseudo-population where the marginal mean of the
potential outcomes under a treatment history equals the conditional mean of the observed outcome
given the treatment history. The R package ipw provides functions for estimating inverse probability
weights (van der Wal and Geskus, 2011; Geskus and van der Wal, 2015).

However, IPW’s success depends on correct specification of the models for the conditional dis-
tributions of exposure to treatment and/or mediator (hereafter jointly referred to as “exposures”),
which is difficult to achieve in practice. Moreover, even when these models are correctly specified,
IPW is inefficient and susceptible to finite-sample bias (Zhou and Wodtke, 2020; Wang et al., 2006).
Finally, when the exposures are continuous, IPW may perform poorly due to unreliable estimation of
conditional densities (Naimi et al., 2014; Vansteelandt, 2009).

Alternative methods have attempted to mitigate these shortcomings. In particular, Imai and
Ratkovic’s (2014; 2015) covariate balancing propensity score (CBPS) method proposes a set of bal-
ancing conditions when estimating the propensity scores. Because it seeks to maximize the covariate
balance between the treatment and control groups, this method is less sensitive to model misspec-
ification than IPW. Fong et al. (2018) expand CBPS to accommodate continuous exposures, but the
challenges involved in modeling conditional densities persist. With this in mind, they have also de-
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veloped a nonparametric extension that constructs weights that maximize the empirical likelihood
while meeting a set of balancing conditions. Though the nonparametric CBPS (npCBPS) circumvents
the need for specifying a functional form for the propensity score, it does so at a cost: since the em-
pirical likelihood is not generally convex, the optimization procedure is often slow and may fail to
find a solution. The latter can happen, for example, when we have a large number of covariates. The
authors advance a workaround that adds flexibility to the covariate balancing conditions and penal-
izes the remaining imbalance. In doing so, they ensure that a weighting solution exists. Users can
implement CBPS in R with the CBPS package (Fong et al., 2021).

Recently, Zhou and Wodtke (2020) propose the method of residual balancing weights (RBW) for
estimating MSMs. RBW involves fitting models for the conditional means of post-treatment con-
founders given past treatments and confounders and extracting their residual terms. It then uses
Hainmueller’s (2012) entropy balancing method to find weights such that, in the weighted sample,
1) the residuals are orthogonal to future exposures, past treatments, and past confounders, and 2)
the relative entropy between the weights and a set of base weights (e.g., survey sampling weights)
is minimized. RBW is similar to npCBPS in that it relies on a set of balancing conditions to find the
weights and does not require modeling the conditional distributions of the exposures. Both methods
can, therefore, be easily adapted to cases where exposures are continuous.1 Despite their similarities,
RBW has a significant computational advantage: the relative entropy metric it uses to construct the
weights leads to a convex optimization problem, so finding the weighting solution is computationally
expeditious. As shown below, RBW manages to locate the solution considerably faster than npCBPS
when we compare the methods’ performance for the same problem.

In the sections that follow, we present an overview of the residual balancing method and how,
in addition to contexts involving time-varying treatments, we can use it in cases of point treatments
and causal mediation analysis. We then discuss the package that implements the method in R (rbw).
Next, we describe the functions included in rbw and illustrate their use with various real-world data
sets. The final section concludes.

Overview of residual balancing

This section gives an overview of RBW. We first describe the notation used throughout the paper and
briefly review MSMs. Next, we explain the underlying logic of RBW and provide an intuition for
how the method works using a directed acyclic graph (DAG).

Notation

Assume we have a study with T ≥ 2 time points, and we are interested in the effect of a time-
varying treatment, At (1 ≤ t ≤ T), on some end-of-study outcome Y. We also have a vector of
observed time-varying confounders, Lt, at each time point, which may be affected by prior treat-
ments. Āt = (A1, ..., At) and L̄t = (L1, ..., Lt) denote treatment and covariate histories up to time
t. Furthermore, Ā = ĀT and L̄ = L̄T represent a respondent’s complete treatment and covariate
histories, respectively. Finally, let Y(ā) be the potential outcome under some treatment history ā.

MSMs

An MSM is a model for the marginal mean of the potential outcomes under some treatment history:

E[Y(ā)] = µ(ā; β), (1)

where µ(.) is some function and β are a set of parameters capturing the causal effects of interest.
We can identify an MSM from observed data under three assumptions:

1. consistency: if Ā = ā, then Y = Y(ā);
2. sequential ignorability: at each time point t, treatment is unconfounded conditional on past

treatments and the covariate history up to that point. Formally, Y(ā) ⊥⊥ At|Āt−1, L̄t; and

1Other methods for estimating causal effects of continuous exposures include doubly robust estimators, which
model both the treatment and outcome processes and give consistent estimates as long as one of these models is
correctly specified. For example, Kennedy et al. (2017) introduce an approach that does not require any parametric
assumptions about the effect curve. Instead, it uses flexible data-adaptive methods both to estimate the treatment
and outcome models and to subsequently fit the dose-response curve. Readers can install the R package that
implements this method from GitHub (Kennedy, 2021).
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3. positivity: at each time point t, treatment assignment must not be deterministic. That is, if
f (Āt−1 = āt−1, L̄t = l̄t) > 0, then f (At = at|Āt−1 = āt−1, L̄t = l̄t) > 0, where f (·) represents a
probability mass or density function.

Under these assumptions, Robins (1986) shows that the expected value of the potential outcome
E[Y(ā)] can be identified via the g-computation formula:

E[Y(ā)] =
∫

...
∫

E[Y|Ā = ā, L̄ = l̄]
T

∏
t=1

f (lt|l̄t−1, āt−1)dµ(lt), (2)

where µ() is an appropriate dominating measure. While Equation 2 provides a general formula
for identifying causal effects in the presence of time-varying treatments, directly evaluating it is often
impractical, particularly when we have many covariates and time periods.

The rationale behind residual balancing

Now consider the formula for the conditional mean of the observed outcome Y given some treatment
history:

E[Y|Ā = ā] =
∫

...
∫

E[Y|Ā = ā, L̄ = l̄]
T

∏
t=1

f (lt|l̄t−1, ā)dµ(lt). (3)

By comparing Equations 2 and 3, we see that weighting the observed population by

Wl =
T

∏
t=1

f (Lt|L̄t−1, Āt−1)

f (Lt|L̄t−1, Ā)
(4)

creates a pseudo-population in which f ∗(lt|l̄t−1, ā) = f ∗(lt|l̄t−1, āt−1) = f (lt|l̄t−1, āt−1) and
E∗[Y|Ā = ā] = E∗[Y(ā)] = E[Y(ā)], where * represents quantities in the pseudo-population. Es-
timating the conditional densities of Equation 4 is challenging because Lt is often high-dimensional.

Zhou and Wodtke (2020) demonstrate that the condition f ∗(lt|l̄t−1, ā) = f ∗(lt|l̄t−1, āt−1) =
f (lt|l̄t−1, āt−1) implies a series of moment conditions in the pseudo-population. Most importantly,

E∗[δ(g(Lt))h(L̄t−1, Ā)] = E∗[δ(g(Lt))]E
∗[h(L̄t−1, Ā)] = 0, (5)

where:

• g(.) and h(.) are scalar functions.
• δ(g(Lt)) is the residual of g(Lt) with respect to its conditional mean given the observed past:

δ(g(Lt)) = g(Lt)− E[g(Lt)|L̄t−1, Āt−1].

Residual balancing aims to emulate the moment conditions (5) that would hold in the pseudo-
population if it were possible to weight the observed population by Wl . To do so, the method
1) specifies a set of g(·) functions, G(Lt) = {g1(Lt), ..., gJt (Lt)} and a set of h(.) functions,
H(L̄t−1, Ā) = {h1(L̄t−1, Ā), ..., hKt (L̄t−1, Ā)}; 2) computes a set of residual terms δ(g(Lt)) = g(Lt)−
E[g(Lt)|L̄t−1, Āt−1]; and 3) finds a set of weights such that, for any j, k, and t, the cross-moment of
δ(gj(lit)) and hk(l̄i,t−1, āi) is zero in the weighted data. That is, RBW locates the rbwi weights subject
to the following balancing conditions:

n

∑
i=1

rbwicir = 0, 1 ≤ r ≤ nc, (6)

where cir is the rth element of ci = {δ(gj(lit))hk(l̄i,t−1, āi); 1 ≤ j ≤ Jt, 1 ≤ k ≤ Kt, 1 ≤ t ≤ T}
and nc = ∑T

t=1 JtKt denotes the total number of balancing conditions. The residualized confounders
at each time point are balanced across future treatments as well as past treatments and confounders
(the observed past). RBW thus adjusts for post-treatment confounding without inducing overcontrol
and collider-stratification bias.

Moreover, Zhou and Wodtke (2020) follow Hainmueller (2012) and minimize the relative entropy
between rbwi and a set of base weights qi (e.g., survey sampling weights):

min
rbwi

∑
i

rbwi log(rbwi/qi) (7)
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We can then use the method of Lagrange multipliers to find a weighting solution that minimizes
the relative entropy between rbwi and qi subject to the nc balancing constraints. We discuss this
procedure in greater depth below when describing the function rbw::eb2(). The convexity of the
relative entropy metric renders it considerably more computationally efficient than nonconvex loss
functions that can also be used to construct weights, such as the empirical likelihood (Fong et al.,
2018).

A typical implementation of residual balancing can be summarized in three steps:

1. For each covariate j and at each time point t, fit a linear, logistic, or Poisson regression of lijt
(depending on its level of measurement) on l̄i,t−1 and āi,t−1. Then compute the residuals δ̂(lijt).
For the covariates in L1 (the first time period), the residuals are computed as deviations from
the sample mean: δ̂(lij1) = lij1 − avg(lj1). This step relies on the idea that gj(Lt) = Ljt, where
Ljt is the jth element of the covariate vector Lt, is a natural choice for the set of g(.) functions
constituting G(Lt).

2. Find a set of weights, rbwi, such that:

a) in the weighted sample, the residuals δ̂(lijt) are orthogonal to all future treatments and
the regressors of lijt (i.e., the past treatments and past confounders);

b) the relative entroy between rbwi and the base weights qi is minimized.

3. Use the weights to fit an MSM.

Figure 1 depicts the logic of RBW in a DAG. Following the notation described above, At denotes
our time-varying treatment, Lt is a vector of time-varying confounders, and Y is our end-of-study
outcome. Further, assume two time points, t = 1, 2. The rbwi weights break the dependence between
At and L̄t at each time point. That is, the weights create a pseudo-population where the confounding
arrows L1 → A1, L1 → A2, and L2 → A2 are broken while all others are preserved. It is important
to note that L1 is marginally independent of both A1 and A2 in the pseudo-population, but L2 is
conditionally independent of A2, given L1 and A1. Hence, RBW invokes a model for the conditional
mean of L2 given L1 and A1 and balances the residuals from this model across levels of A2 and levels
of (L1, A1) (the observed past). This procedure avoids overcontrol and collider-stratification bias
when adjusting for post-treatment confounding because it breaks the confounding arrow L2 → A2
while leaving the causal arrow A1 → L2 intact.

Finally, since E∗[Y|Ā = ā] = E∗[Y(ā)] = E[Y(ā)] in the pseudo-population, we can estimate the
marginal effects of interest by fitting a model for the conditional mean of the observed outcome given
the treatment history (and possibly a set of baseline confounders) with weights equal to rbwi.

L1 L2

A1 A2 Y

X
XX

Figure 1: The underlying logic of residual balancing.
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Uses of residual balancing

The rationale described in the previous section is targeted at estimating the causal effects of time-
varying treatments. With minor adaptations, we can expand the use of RBW to two other contexts
commonly encountered in the social and biomedical sciences: point treatment situations and causal
mediation analysis.

RBW for estimating the average effect of a point treatment

RBW can be easily adapted to a point treatment situation where the user aims only to adjust for a set
of baseline (i.e., time-invariant) confounders to estimate the average treatment effect. To this end, we
modify the procedure above as follows:

1. Compute the response residuals δ̂(xij) for each baseline confounder Xj by centering it around
its sample mean: δ̂(xij) = xij − avg(xj).

2. Find a set of weights, rbwi, such that:

a) in the weighted sample, the residuals δ̂(xij) are orthogonal to the treatment;
b) the relative entropy between rbwi and the base weights qi is minimized.

3. Use the weights to fit an MSM.

The DAG of Figure 2 illustrates the point treatment situation. A represents the one-shot treat-
ment, X is a vector of baseline confounders, and Y denotes our outcome. Weighting the observed
population by rbwi mimics a pseudo-population where the link between A and X is broken. We can
then fit a model for the conditional mean of Y given A to estimate the causal effects of interest.2

A Y

X

X

Figure 2: RBW in a Point Treatment.

RBW in causal mediation analysis

In causal mediation analysis, researchers are often concerned with the joint effects of a one-shot treat-
ment, A, and a mediator, M, on some end-of-study outcome Y when both baseline confounders (X)
and some post-treatment confounders for the mediator-outcome relationship (Z) are present. With
minor adjustments, the RBW implementation for causal mediation analysis is similar to the case with
time-varying treatments:

1. As in the point treatment scenario, compute the response residuals δ̂(xij) for each baseline
confounder Xj by centering it around its sample mean.

• Note: users may skip this step by including the baseline confounders in the MSM in the
final step.

2. Estimate the response residuals δ̂(zij) for each post-treatment confounder Zj by fitting a linear,
logistic, or Poisson regression of zij (depending on its level of measurement) on the treatment
ai and the baseline confounders xi: δ̂(zij) = zij − E[zij|ai, xi].

2The vector X captures all confounding under the ignorability assumption.
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3. Find a set of weights, rbwi, such that:

a) in the weighted sample, i) the baseline residuals δ̂(xij) are orthogonal to the treatment ai

and the mediator mi; and ii) the post-treatment residuals δ̂(zij) are balanced across the
treatment ai, the mediator mi, and the baseline confounders xi;

b) the relative entropy between rbwi and the base weights qi is minimized.

4. Use the weights to fit an MSM for the joint effects of the treatment and the mediator on the
outcome:

a) In causal mediation analysis, the potential outcomes of interest are denoted by Y(a, m)
(this is the potential outcome under treatment a and mediator value m). We can then
express a saturated MSM as E[Y(a, m)] = α0 + α1a + α2m + α3am.

b) Alternatively, the baseline confounders can be included in the MSM if users decide to
skip the first step: E[Y(a, m)|X] = α0 + α1a + α2m + α3am + αT

4 X.
c) Finally, the controlled direct effects (CDE) of the treatment can be estimated as ĈDE(m) =

E[Y(1, m)− Y(0, m)] = α̂1 + α̂3m. The CDE measures the causal effect of the treatment
on the outcome when the mediator is fixed at some value m for all units.

The R package

The R package rbw contains four functions:

• eb2(), for generating minimum entropy weights subject to a set of balancing constraints.
• rbwPoint(), for constructing residual balancing weights to estimate the causal effects of one-

shot treatments.
• rbwMed(), for constructing residual balancing weights to estimate controlled direct effects in

causal mediation analysis.
• rbwPanel(), for constructing residual balancing weights to estimate the marginal effects of

time-varying treatments.

Next, we explain each of these functions. The package also includes several real-world data sets
(advertisement, peace, campaign_long, and campaign_wide), which we describe and analyze in the
examples below.

Function eb2()

This function is an adaptation of ebal::eb() (Hainmueller, 2014). It is called internally by other
functions in rbw to implement the method of Lagrange multipliers for locating a weighting solution
that minimizes the relative entropy between rbwi and qi subject to the set of nc balancing constraints
described in Equation 6. Zhou and Wodtke (2020) impose an additional normalization constraint
that ensures that the residual balancing weights sum to the sample size: ∑i rbwi = n. Following
Hainmueller (2012), the authors obtain the primal optimization problem:

min
rbwi

Lp =
n

∑
i=1

rbwi log(rbwi/qi) +
nc

∑
r=1

λr

n

∑
i=1

rbwicir + λ0

(
n

∑
i=1

rbwi − n

)
, (8)

where {λ1, ..., λnc} are the Lagrange multipliers for the balancing constraints and λ0 is the La-
grange multiplier for the normalization constraint. Since the loss function Lp is strictly convex, the
first order condition of ∂Lp

∂rbwi
= 0 implies that the solution for each weight is

rbw∗
i =

nqiexp(−∑nc
r=1 λrcir)

∑n
i=1 qiexp(−∑nc

r=1 λrcir)
. (9)

We can then insert Equation 9 into Lp, leading to an unrestricted dual problem:

max
λr

Ld = − log

(
n

∑
i=1

qiexp

(
−

nc

∑
r=1

λrcir

))
, (10)

or equivalently,

min
Z

Ld = log
(
Q′exp(CZ)

)
, (11)
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where Q = [q1, ..., qn]′, C = [c1, ..., c1]
′, and Z = −[λ1, ..., λnc ]

′. Since Ld is strictly convex, the
solution is guaranteed to be unique — assuming one exists. Given that both the gradient and the
Hessian have closed-form expressions, we can solve the problem using Newton’s method. eb2()
implements the algorithm. If convergence is successful, the function tells the user that “Entropy
minimization converged within tolerance level.” Otherwise, it warns that entropy minimization did
not converge and suggests increasing the number of iterations or reducing the number of balancing
constraints.

The convexity of our optimization problem leads to appreciable computational gains over other
methods that use alternative loss functions. This will be demonstrated later when we compare the
performance of RBW with that of npCBPS — which uses the empirical likelihood — for the same
problem.

eb2() is used as:

eb2(C, M, Q, Z = rep(0, ncol(C)), max_iter = 200, tol = 1e-04, print_level = 1)

and takes the following arguments:

• C is a constraint matrix, with each column corresponding to a balancing constraint.
• M is a vector of moment conditions to be met in the reweighted sample (per Equation 6, this is

a vector of zeros with length equal to the number of columns of C when the other functions in
rbw call eb2() internally).

• Q is a vector of base weights.
• Z is a vector of Lagrange multipliers to be initialized.
• max_iter determines the maximum number of iterations for Newton’s method.
• tol is a tolerance parameter used to determine convergence. Specifically, convergence is

achieved if tol is greater than the maximum absolute value of the deviations between the
moments of the reweighted data and the target moments (i.e., M).

• print_level determines the level of printing:

– 1 normal: print whether the algorithm converges or not.
– 2 detailed: print also the maximum absolute value of the deviations between the mo-

ments of the reweighted data and the target moments in each iteration.
– 3 very detailed: print also the step length of the line searcher in iterations where a full

Newton step is excessive

The output returned by eb2() is a list containing the following elements:

• W is a vector of normalized minimum entropy weights.
• Z is a vector of Lagrange multipliers.
• converged is a logical indicator for convergence.
• maxdiff is a scalar indicating the maximum absolute value of the deviation between the mo-

ments of the reweighted data and the target moments in each iteration.

Function rbwPoint()

This function produces residual balancing weights to be used in a point treatment situation. It first
takes a set of baseline confounders and computes the residuals for each confounder by centering it
around its sample mean. Then it calls eb2() to find a set of weights, rbwi, such that 1) the baseline
residuals are orthogonal to the treatment in the weighted sample, and 2) the relative entropy between
rbwi and the base weights is minimized. Additionally, rbwPoint() calls a function that ensures that
the matrix of balancing constraints comprises only linearly independent columns.

rbwPoint() is used as:

rbwPoint(treatment, data, baseline_x, base_weights, max_iter = 200,
tol = 1e-04, print_level = 1)

and takes the following arguments:

• max_iter, print_level, and tol have the same definitions as in eb2().
• treatment is a symbol or character string for the treatment variable.
• data is a data frame containing all variables in the model.
• baseline_x is an expression for a set of baseline confounders stored in data or a character

vector of the names of these variables.
• base_weights is an optional vector of base weights (or its name). If no value is supplied, the

function sets a vectors of ones with length equal to the sample size as the base weights.

The output returned by rbwPoint() is a list containing the following elements:
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• weights is a vector of residual balancing weights.
• constraints is a matrix of linearly independent residual balancing constraints.
• eb_out contains the results from calling the eb2() function.
• call is the matched call (the function call with all arguments specified by their full names).

Function rbwMed()

This function produces residual balancing weights for causal mediation analysis. It takes an optional
set of baseline confounders (as explained above, users can opt instead to include these covariates in
the MSM later) and a list of model objects for the conditional mean of each post-treatment confounder
given the treatment and baseline confounders. It then calls eb2() to find a set of weights, rbwi,
such that, in the weighted sample, 1) the baseline residuals are orthogonal to the treatment and the
mediator; 2) the post-treatment confounders are balanced across the treatment, the mediator, and the
baseline confounders; and 3) the relative entropy between rbwi and the base weights is minimized.

rbwMed() takes an additional argument, interact, a logical variable indicating whether the base-
line and post-treatment confounders should be balanced against the treatment-mediator interaction.
This argument is set to FALSE by default, but users suspecting an interaction effect may find it pru-
dent to balance against it. Like rbwPoint(), rbwMed() calls a function internally to ensure that only
linearly independent columns constitute the matrix of balancing constraints.

It is used as:

rbwMed(treatment, mediator, zmodels, data, baseline_x, interact = FALSE,
base_weights, max_iter = 200, tol = 1e-04, print_level = 1)

and takes the following arguments:

• treatment, data, base_weights, max_iter, print_level, and tol are defined as in rbwPoint().
• baseline_x is an optional expression for a set of baseline confounders stored in data or a char-

acter vector of the names of these variables.
• mediator is a symbol or character string representing the mediator variable.
• zmodels is a list of fitted lm or glm objects for post-treatment confounders of the mediator-

outcome relationship. Users should set this argument to NULL if there are no post-treatment
confounders.

• interact is a logical variable indicating whether baseline and post-treatment confounders
should be balanced against the treatment-mediator interaction term(s).

The output returned by rbwMed() is a list containing the same elements as the output from
rbwPoint().

Function rbwPanel()

This function produces residual balancing weights for estimating the marginal effects of time-varying
treatments. It takes a list of model objects for the conditional mean of each post-treatment confounder
given past treatments and past confounders. Then it calls eb2() to find a set of weights, rbwi, such
that 1) residuals of the post-treatment confounders are orthogonal to future treatments and the ob-
served past in the weighted sample, and 2) the relative entropy between rbwi and the base weights
is minimized. Like the other functions, rbwPanel() ensures that the matrix of balancing constraints
consists only of linearly independent columns.

It is used as:

rbwPanel(treatment, xmodels, id, time, data, base_weights, future = 1L,
max_iter = 200, tol = 1e-04, print_level = 1)

and takes the following arguments:

• data, base_weights, max_iter, print_level, and tol are defined as in rbwPoint() and
rbwMed().

• treatment is a symbol or character string for the time-varying treatment.
• xmodels is a list of fitted lm or glm objects for time-varying confounders.
• id is a symbol or character string for the unit id variable.
• time is a symbol or character string for the time variable.
• future is an integer indicating the number of future treatments in the balancing conditions.

When future >0, the residualized time-varying covariates are balanced not only with respect to
current treatment At, but also with respect to future treatments At+1, ..., At+future. The default,
future = 1, assumes away higher-ordered lagged effects of the covariates on the treatment.
Users can leave out lagged effects entirely by setting future to zero.
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The output returned by rbwPanel() is essentially the same as those from rbwPoint() and
rbwMed(). The only difference is that the weights object, instead of a vector, is now a data frame with
two columns: the id variable and the residual balancing weights (the column storing the weights is
called rbw).

Examples

We now illustrate the functions rbwPanel(), rbwPoint(), and rbwMed() with data sets advertisement,
peace, campaign_long, and campaign_wide, which are included in rbw. We expect users to rarely need
to call eb2() manually since its primary use is to be called internally by the other functions. Hence,
we see little gain in providing a separate example for it.

Point treatment: effects of political advertisements on campaign contributions

Urban and Niebler (2014) studied the effects of televised political advertisements on campaign con-
tributions. Presidential candidates do not tend to deliberately advertise in states where competition
for electoral votes is tame. Yet, some areas of noncompetitive states have overlapping media markets
with battleground states. Because these media market spillovers do not encompass other forms of
campaigning (e.g., rallies, speeches, etc.), the authors can isolate the effect of television advertising
by restricting their analyses to noncompetitive states. Their original method involved estimating
the propensity score with a logistic model and then conducting propensity score matching. To do
so, they dichotomized the political advertising variable to indicate whether zip codes received more
than 1000 advertisements.

Deeming this approach inadequate — in part because balancing against a dichotomous treatment
does not ensure covariate balance on the underlying continuous variable — Fong et al. (2018) revisit
the study using the CBPS method applied to a continuous treatment. Next, we examine how RBW
fares compared with CBPS and IPW in this point treatment situation.

Importantly, CBPS assumes that the treatment variable is normally distributed. To satisfy this
assumption, Fong et al. (2018) search across Box-Cox transformations to find the most appropriate
transformation of the treatment. Instead, we rely on a simple log transformation in our current ex-
ample. Q-Q plots show no sizable differences between the two approaches in achieving normality,
so we favor the simpler alternative because it avoids extraneous details that divert the example from
its primary objective — that is, illustrating RBW’s applicability to a point treatment scenario. Hence,
we have a∗i = log(ai + 1), where ai is the original treatment variable, the total number of political
advertisements in a zip code, and a∗i is the transformed treatment. We also have a vector of baseline
confounders consisting of the zip code’s log population, population density, log median income, per-
cent Hispanic, percent black, percent over age 65, percent college graduates, and a binary indicator
of whether it is possible to commute to the zip code from a competitive state. Finally, Y represents
the outcome, campaign contributions in thousands of dollars.

Our MSM includes the transformed treatment variable and state dummies U to account for state
fixed effects:

E[Y(a∗)|U] = θ0 + θ1a∗ + θT
2 U. (12)

The data set advertisement contains the variables necessary for the analyses. We start by loading
the necessary packages and our data set:

library("rbw")
data("advertisement")

rbw::rbwPoint() will construct the residual balancing weights by following the steps described
above. It first computes the baseline residuals δ̂(xij) = xij − avg(xj) and then finds a set of weights
such that, in the weighted sample, δ̂(xij) are orthogonal to the treatment, and the relative entropy
between the residual balancing weights and a set of base weights is minimized. Since advertisement
does not include sampling weights, rbw::rbwPoint() will set a vector of ones with length equal to
the sample size as the base weights.

rbwPoint_fit <-
rbwPoint(
treat,
baseline_x = c(

log_TotalPop,
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PercentOver65,
log_Inc,
PercentHispanic,
PercentBlack,
density,
per_collegegrads,
CanCommute

),
data =

advertisement
)

Next, we attach the rbwi weights to the data:

advertisement$rbwPoint_weights <- rbwPoint_fit$weights

Following most applications of MSMs, we compute standard errors using the robust (“sand-
wich”) variance estimator. This can be implemented with the function survey::svydesign(), which
allows us to specify a complex survey design and estimate standard errors consistent with this spec-
ification.3

library("survey")
rbwPoint_design <- svydesign(ids = ~ 1,

weights = ~ rbwPoint_weights,
data = advertisement)

We then use the residual balancing weights to fit the MSM defined in Equation 12:

rbwPoint_msm <- svyglm(Cont ~ treat + factor(StFIPS),
design = rbwPoint_design)

Since we have transformed our treatment variable, we need to make the necessary adjustments
to compute the treatment effect. As Urban and Niebler (2014) suggest, it is informative to study the
effect of going from zero to 1,000 political advertisements on campaign contributions. Hence, we
create a dose variable to account for this. If a∗i = log(ai + 1), we can define our dose as log(1000+ 1):

dose <- log(1000 + 1)

To find the estimate τ̂rbw of the average treatment effect, we multiply the coefficient for the trans-
formed treatment variable by our dose. We also multiply it by 1,000 since the outcome variable is
measured in thousands of dollars:

rbwPoint_tau <- 1000 * coef(rbwPoint_msm)[2] * dose

Next, we use the basic properties of the variance operator to derive the standard error. Again, we
multiply the result by 1,000 given the scale of the outcome variable:

rbwPoint_vcov <- stats::vcov(rbwPoint_msm)
rbwPoint_se <- 1000 * dose * sqrt(rbwPoint_vcov[2, 2])

We also report the results using the functions from the CBPS and ipw packages. Recall from
the introduction that the parametric CBPS is similar to IPW in that it requires explicit models for
the conditional distributions of the treatment. However, it improves IPW by considering a set of
balancing conditions during the propensity score estimation, thereby reducing sensitivity to model
misspecification. By contrast, the nonparametric CBPS (npCBPS) does not require direct estimation of
the propensity score; instead, it finds weights that maximize the empirical likelihood while meeting
a set of balancing constraints. As such, like RBW, it avoids the need to specify a propensity score
model. Readers can find the code detailing the construction of the CBPS and IPW weights in the
supplementary material.

Table 1 summarizes the findings. All methods yield relatively similar point estimates and stan-
dard errors. In particular, they indicate that going from zero to 1,000 political advertisements in-
creases campaign contributions by around four thousand dollars, on average, although the point

3Zhou and Wodtke (2020) conduct various simulation studies to assess the performance of the robust variance
estimator across different methods. They find that the estimator tends to overestimate the true sampling variance
for residual balancing across nearly all scenarios, making it consistently conservative for RBW. By contrast, the es-
timator sometimes overestimates and other times underestimates the true sampling variance for other weighting
methods, including CBPS.
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estimates from CBPS and IPW are slightly larger than those produced by RBW and npCBPS. The last
column shows that different loss functions for the optimization problem can lead to stark differences
in computation time. While RBW’s relative entropy metric leads to a convex optimization problem
that Newton’s method can solve in less than one second, npCBPS’s algorithm takes much longer to
run.

Table 1: Comparison of RBW, npCBPS, CBPS, and IPW for a Point Treatment Situation

Method Estimate Standard Error Computation Time
(in Seconds)

RBW 4043 2131 0.39
npCBPS 3916 2091 51.53
CBPS 4181 2118 5.40
IPW 4118 2078 0.03
Computation time may differ depending on system setup.
System setup used to generate the results:
MacBook Pro (15-inch, 2018), 2.2 GHz 6-Core Intel Core i7, 16GB RAM.

We next illustrate the use of rbwMed() and rbwPanel().

Causal mediation analysis: the controlled direct effect of shared democracy on public
support for war

A stylized fact in political science is that democracies do not engage in war with one another. To assess
the role of public opinion in keeping the peace, Tomz and Weeks (2013) designed survey experiments
that presented participants with a situation where a country was developing nuclear weapons. When
describing the situation, the authors randomly and independently changed three characteristics of
the country: its political regime (whether it was a democracy), alliance status (whether it had signed
a military alliance with the United States), and economic ties (whether it had high levels of trade
with the US). The outcome of interest was the respondent’s support for military action on a five-
point scale ranging from “oppose strongly” to “favor strongly.” The authors found that respondents
were considerably less supportive of military action against democracies than otherwise identical
autocratic regimes.

They then went on to investigate the causal mechanisms through which shared democracy re-
duces public enthusiasm for war. In particular, Tomz and Weeks (2013) measured individuals’ beliefs
about the level of threat posed by the potential adversary, the cost of the intervention, and the like-
lihood of success. They also collected data on people’s moral concerns about using military force.
Their methodological framework focuses on estimating the natural direct and natural indirect effects
(Imai et al., 2011, 2010), whose identification assumptions require that no post-treatment confounding
of the mediator-outcome relationship exists. As such, the authors examined the role of each medi-
ator separately by assuming they operate independently of one another. Yet, as discussed in Zhou
and Wodtke (2020), beliefs about the threat, cost, and likelihood of success may affect an individual’s
perceptions of morality while also influencing support for war directly. By treating these variables as
post-treatment confounders, Zhou and Wodtke (2020) analyzed the mediating role of morality using
controlled direct effects.

Let A denote the treatment, whether the country developing nuclear weapons was presented
as a democracy, M the mediator, a dummy variable indicating whether the participant deemed the
military action morally wrong, and Y the outcome, the respondent’s support for war on a five-point
scale. We also have a set of baseline confounders (X) including dummies for the other two random-
ized treatments (alliance status and economic ties) in addition to several demographic and attitudinal
controls.4 Finally, Z is a vector of post-treatment confounders comprising measures of beliefs about
the threat, cost, and likelihood of success.

Our MSM is thus defined as:

E[Y(a, m)] = α0 + α1a + α2m + α3am. (13)

We can alternatively include the baseline confounders in the MSM instead of balancing them
across the treatment and the mediator with baseline residuals:

4For example, attitudinal controls include respondents’ attitudes toward ethnocentrism measured with a series
of questions about their opinions on immigration, affirmative action, and gay marriage.

The R Journal Vol. XX/YY, AAAA 20ZZ ISSN 2073-4859



SUBMITTED 12

E[Y(a, m)|X] = α0 + α1a + α2m + α3am + αT
4 X. (14)

The peace data set includes the variables we will use in the analyses. Let us first consider the
approach where the baseline confounders are balanced across the treatment and the mediator using
the baseline residuals computed from centering each covariate around its sample mean.

As explained above, RBW in causal mediation analysis requires models for the conditional
means of each post-treatment confounder Zj given the treatment ai and the baseline confounders
xi: Ê[zij|ai, xi]. Hence, we assume that threatc, cost, and successc are measured on a continuous
scale and fit linear models for each:

data("peace")
z1 <- lm(threatc ~ ally + trade + h1 + i1 + p1 + e1 + r1 +

male + white + age + ed4 + democ,
data = peace)

z2 <- lm(cost ~ ally + trade + h1 + i1 + p1 + e1 + r1 +
male + white + age + ed4 + democ,

data = peace)
z3 <- lm(successc ~ ally + trade + h1 + i1 + p1 + e1 + r1 +

male + white + age + ed4 + democ,
data = peace)

We then store the three model objects together in a list to be passed later to the zmodels argument
in rbwMed():

zmodels <- list(z1, z2, z3)

To construct the residual balancing weights, rbwMed() will 1) compute the baseline residuals
δ̂(xij) = xij − avg(xj) and the post-treatment residuals δ̂(zij) = zij − E[zij|ai, xi] and 2) find a set
of weights such that a) in the weighted sample, the baseline and post-treatment residuals meet the
orthogonality requirements described earlier, and b) the relative entropy between the residual bal-
ancing weights and a set of base weights is minimized. The function will use a vector of ones as the
base weights since peace does not include sampling weights. We also pass the name of our mediator
to the mediator argument:

rbwMed_fit <- rbwMed(
treatment = democ,
mediator = immoral,
zmodels = zmodels,
baseline_x = c(ally, trade, h1, i1,

p1, e1, r1, male, white, age, ed4),
data = peace

)

Next, we attach the weights to peace:

peace$rbwMed_weights <- rbwMed_fit$weights

We use survey::svydesign() to estimate robust standard errors:

rbwMed_design <- svydesign(ids = ~ 1,
weights = ~ rbwMed_weights,
data = peace)

Finally, we use the residual balancing weights to fit the MSM from Equation 13:

rbwMed_msm <- svyglm(strike ~ democ * immoral,
design = rbwMed_design)

Steps are similar for the case where the baseline confounders are not balanced against the treat-
ment and the mediator but instead adjusted in the MSM, as defined in Equation 14. The models for
the conditional means of the post-treatment confounders are the same as before, but we now leave
the baseline_x argument empty:

rbwMed2_fit <- rbwMed(
treatment = democ,
mediator = immoral,
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zmodels = zmodels,
data = peace

)
peace$rbwMed2_weights <- rbwMed2_fit$weights
rbwMed2_design <- svydesign(ids = ~ 1,

weights = ~ rbwMed2_weights,
data = peace)

rbwMed2_msm <- svyglm(strike ~ ally + trade + h1 + i1 + p1 +
e1 + r1 + male + white + age + ed4 + democ * immoral,

design = rbwMed2_design)

We summarize the results in Table 2. The estimated CDE if respondents lacked any moral qualms
about military intervention, i.e., ĈDE(m = 0) = Ê[Y(1, 0)− Y(0, 0)] = α̂1, is −0.32 under the first
approach and −0.36 under the second. Both estimates are statistically significant at the level of 0.01.
The estimated CDE if respondents had moral qualms about military intervention, i.e., ĈDE(m = 1) =
Ê[Y(1, 1)− Y(0, 1)] = α̂1 + α̂3, is −0.36 under the first approach and −0.22 under the second.

Table 2: MSM Results for the Controlled Direct Effects of Shared Democracy on Public Support for
War

Baseline Confounders
Balanced

Baseline Confounders
Adjusted in the MSM

Shared democracy −0.317∗∗∗ −0.360∗∗∗

(0.098) (0.080)

Moral concerns −1.272∗∗∗ −1.201∗∗∗

(0.175) (0.135)

Shared democracy * Moral concerns −0.048 0.138
(0.210) (0.157)

∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
Robust standard errors in parentheses.

Time-varying treatment: the cumulative effect of negative advertising on vote shares

We conclude this section with an example of RBW applied to a context involving time-varying treat-
ments and confounders. Political scientists have shown interest in examining the cumulative effect
of negative campaign advertising on election outcomes (Lau et al., 2007; Blackwell, 2013; Imai and
Ratkovic, 2015). This is an intricate process because while polling results affect current campaign
strategies, they are also constantly shifting, as they respond both to previous results and candidates’
use of negative advertising in the past. For their ability to accommodate dynamic causal relationships
— particularly since they allow past treatments to affect current outcomes (i.e., “carryover effects”)
and past outcomes to influence current treatment (i.e., “feedback effects”) (Imai and Kim, 2019) —
MSMs are suitable for this research question.

Let At represent our continuous treatment, the proportion of campaign advertisements mention-
ing the adversary in each campaign week, Lt our time-varying confounders, the Democratic share
and the share of undecided voters in the polls, and Y the outcome, the Democratic share of the two-
party vote. Additionally, we have a set of baseline confounders X including total campaign length,
election year, and whether the election is senatorial or gubernatorial.

Zhou and Wodtke (2020) define an MSM as follows:

E[Y(ā)|X] = β0 + β1avg(ā) + β2V + β3avg(ā)V + βT
4 X, (15)

where V is an indicator of incumbency status used to construct interactions that allow the effect
to differ between incumbents and nonincumbents, and avg(ā) is the average proportion of advertise-
ments that were negative over the final five weeks of the campaign multiplied by ten (we multiply by
ten following Zhou and Wodtke (2020) so that regression coefficients can be interpreted as the effect
of a ten-percentage point increase in negative advertising).

rbw contains two data sets associated with this problem: campaign_long and campaign_wide.
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They represent, respectively, the long-format and wide-format data on negative campaign advertis-
ing.

Recall that RBW requires us to fit a model for the conditional mean of each covariate at each time
point given the observed past. We thus estimate regression models of our time-varying confounders
Lt (t ≥ 2) on lagged treatment and lagged confounders. We also interact each regressor with the
week dummies, thus allowing the coefficients to change over time in a flexible manner:

data("campaign_long")
data("campaign_wide")
x1 <-
lm(dem.polls ~ (neg.dem.l1 + dem.polls.l1 + undother.l1) * factor(week),

data = campaign_long)
x2 <-
lm(undother ~ (neg.dem.l1 + dem.polls.l1 + undother.l1) * factor(week),

data = campaign_long)

We then create a list with the model objects to be passed later to the xmodels argument in
rbwPanel():

xmodels <- list(x1, x2)

To construct the residual balancing weights, rbwPanel() first extracts the residual terms δ̂(Lt)
from the models above. Note that for each covariate in L1 (the first time period), the residuals are
computed as deviations from the sample mean. Then the function finds a set of weights, such that,
in the weighted sample, the residuals are orthogonal to current and future treatments as well as
the regressors of Ljt, and the relative entropy between the residual balancing weights and the base
weights is minimized. Note that we set the future argument to zero to replicate the results from
Zhou and Wodtke (2020) since the authors balance the residualized time-varying confounders only
with respect to the current treatment, thus assuming away lagged effects of the covariates on the
treatment.5 Since our data do not include sampling weights, a vector of ones is used as the base
weights. Additionally, we need to pass arguments indicating the unit id and the time variables due
to the longitudinal structure of our data set.

rbwPanel_fit <- rbwPanel(
treatment = neg.dem,
xmodels = xmodels,
id = id,
time = week,
data = campaign_long,
future = 0

)

We now attach the weights to campaign_wide using the pipe operator and the left_join() func-
tion from the package dplyr (this merging is permitted because the weights object returned by
rbwPanel() is a data frame containing the id variable and the residual balancing weights):

library("dplyr")
campaign_wide <- campaign_wide %>%

left_join(rbwPanel_fit$weights, by = "id")

#> Warning: Column `id` joining character vector and factor, coercing into
#> character vector

We use the functions from dplyr to rename the weights so that our variable’s name is consistent
with the previous examples:

campaign_wide <- campaign_wide %>%
rename(rbwPanel_weights = rbw)

Again, we use survey::svydesign() to compute robust standard errors:

rbwPanel_design <- svydesign(ids = ~ 1,
weights = ~ rbwPanel_weights,
data = campaign_wide)

5The negative advertising data set spans five weeks, so users interested in considering lagged effects of the
time-varying covariates on the treatment may set future > 0, up to future = 4.
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Finally, we use the residual balancing weights to fit the MSM from Equation 15:

rbwPanel_msm <- svyglm(demprcnt ~ ave_neg * deminc + camp.length +
factor(year) + office,

design = rbwPanel_design)

We report the model results in Table 3. The estimate for nonincumbents is 0.49 and for incumbents
is 0.49 − 1.48 = −0.99. The effect of negative advertisement for nonincumbents is positive though
not statistically significant — a ten percentage point increase in the proportion of negative advertising
throughout the last five weeks of the campaign increases the Democratic vote share by about half a
percentage point, on average. However, the interaction term is significant at the level of 0.01, and
incumbents see a sizeable negative effect from negative advertising: a ten percentage point increase
in negative advertising reduces a candidate’s vote share by about one percentage point, on average.

Table 3: MSM Results for the Cumulative Effect of Negative Advertising on Vote Shares

Average proportion 0.490
(0.315)

Incumbency 14.971∗∗∗

(2.823)

Average proportion * Incumbency −1.484∗∗∗

(0.531)
∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
Robust standard errors in parentheses.

We conclude by comparing RBW’s computational performance to CBPS for a dichotomized ver-
sion of the treatment representing whether more than 10% of the candidate’s advertising was negative
for each week. We use this dichotomized variable because CBPS has not been extended to work with
continuous treatments in longitudinal settings. Additionally, we do not compare RBW to npCBPS
because the latter’s use is restricted to point treatment situations. Lastly, though we can construct
IPW weights almost immediately, Zhou and Wodtke (2020) show that IPW yields considerably larger
effect estimates than RBW and CBPS for this particular case (likely due to the method’s susceptibility
to model misspecification), so we do not report the IPW results.

Let us first construct the RBW weights. The steps are identical to the ones detailed above for the
continuous treatment, the only change being the name of our treatment variable. Next, we use the
CBMSM() function from the CBPS package to generate our CBPS weights. To facilitate comparisons of
computation time, we also call Sys.time() before and after running the functions that produce the
weights in each package. The scalar objects rbwPanel_time and CBPSPanel_time store how long each
method takes to construct the corresponding weights.

m1 <-
lm(dem.polls ~ (d.gone.neg.l1 + dem.polls.l1 + undother.l1) * factor(week),

data = campaign_long)
m2 <-
lm(undother ~ (d.gone.neg.l1 + dem.polls.l1 + undother.l1) * factor(week),

data = campaign_long)

xmodels <- list(m1, m2)

rbwPanel_start <- Sys.time()
rbwPanel_fit <- rbwPanel(
treatment = neg.dem,
xmodels = xmodels,
id = id,
time = week,
data = campaign_long,
future = 0

)
rbwPanel_end <- Sys.time()
rbwPanel_time <- rbwPanel_end - rbwPanel_start
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CBPSPanel_form <-
"d.gone.neg ~ d.gone.neg.l1 + dem.polls + undother + camp.length + deminc + office + factor(year)"

CBPSPanel_start <- Sys.time()
CBPSPanel_fit <-
CBMSM(

formula = CBPSPanel_form,
time = campaign_long$week,
id = campaign_long$demName,
data = campaign_long,
type = "MSM",
iterations = NULL,
twostep = TRUE,
msm.variance = "approx",
time.vary = TRUE

)
CBPSPanel_end <- Sys.time()
CBPSPanel_time <- CBPSPanel_end - CBPSPanel_start

The output below shows the computation times:

rbwPanel_time

#> Time difference of 0.05099988 secs

CBPSPanel_time

#> Time difference of 35.099 secs

Whereas RBW takes less than one second to construct the weights, CBPS takes much longer.
Hence, the longitudinal setting presents the same pattern we saw above for the point treatment sit-
uation: RBW has considerable gains in computational performance over alternative methods of con-
structing weights for MSMs. Since our focus has been on comparing computational performances,
we omit the effect estimates for the dichotomized treatment. As shown in Zhou and Wodtke (2020),
the results are broadly consistent with those based on the continuous treatment, with RBW and CBPS
yielding similar point estimates.

Conclusion

Compared to other methods of constructing weights for MSMs, RBW has several advantages. In
particular, it does not require modeling the conditional distributions of exposures and is thus easy
to use with continuous treatments. Previous simulation studies suggest that it is often more efficient
and more robust to model misspecification than alternative weighting strategies (Zhou and Wodtke,
2020). RBW is also favorable from a computational perspective. Its procedure for finding weights
involves a convex optimization problem, allowing RBW to locate a solution substantially faster than
alternative methods whose optimization relies on nonconvex loss functions — such as the recently
proposed nonparametric version of CBPS, which uses the empirical likelihood (Fong et al., 2018).
Table 4 sums up these comparisons.

Table 4: Comparison of Methods and Software Implementation

Method
Models for

Conditional Distributions of
Exposures

Balancing
Constraints

Implemented for
Time-varying
Treatments?

R Package

IPW Required Absent Yes ipw
CBPS Required Present Yes CBPS

npCBPS Not Required Present No CBPS
RBW Not Required Present Yes rbw

After explaining the underlying logic of RBW, we have described its implementation in the R
package rbw. With examples from several data sets, we have demonstrated the use of rbw in three
distinct contexts: effect estimation for point treatments, causal mediation analysis, and effect estima-
tion for time-varying treatments with time-varying confounders.
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Nonetheless, RBW is not without limitations. In particular, it depends on models for the con-
ditional means of post-treatment confounders. When these models are incorrectly specified, the
pseudo-population generated by residual balancing weights will fail to mimic the original un-
weighted population, and our estimates will be biased. Even when these models are correctly speci-
fied, RBW may also yield biased estimates when we have insufficient balancing conditions. Adding
more functions such as cross-products and high-order terms to the set G(Lt) = {g1(Lt), ..., gJt (Lt)},
thereby increasing the number of balancing constraints, may help — though at the risk of making
exact balance infeasible. A possible extension to RBW would be to allow for approximate balance
with a penalty for the remaining imbalance in the optimization problem (Fong et al., 2018). Finally,
we have relied on the “sandwich” variance estimator to compute standard errors. Though Zhou and
Wodtke (2020) demonstrate by simulation studies that this estimator is likely conservative for RBW,
the method does not provide a variance estimator tailored to addressing the estimation uncertainty
of the RBW weights.

Despite these limitations, RBW will be useful to many social scientists interested in using
marginal structural models to study causality in dynamic settings. We will continue to upgrade
the package by expanding RBW’s ranges of applicability — specifically, to censored data, to contexts
involving repeated outcome measures such as survival data (Hernán et al., 2002, 2000), and to cases
where, as discussed above, exact balance is infeasible and approximate balance must be pursued.
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