
Package ‘rassta’
August 19, 2024

Title Raster-Based Spatial Stratification Algorithms

Version 1.0.6

Description Algorithms for the spatial stratification of landscapes, sampling and modeling of
spatially-varying phenomena. These algorithms offer a simple framework for the stratification
of geographic space based on raster layers representing landscape factors and/or factor scales.
The stratification process follows a hierarchical approach, which is based on first level units
(i.e., classification units) and second-level units (i.e., stratification units). Nonparametric
techniques allow to measure the correspondence between the geographic space and the landscape
configuration represented by the units. These correspondence metrics are useful to define
sampling schemes and to model the spatial variability of environmental phenomena. The
theoretical background of the algorithms and code examples are presented in Fuentes et al. (2022).
<doi:10.32614/RJ-2022-036>.

Maintainer Bryan A. Fuentes <bryandrep@gmail.com>

License AGPL (>= 3)

Encoding UTF-8

URL https://bafuentes.github.io/rassta/

BugReports https://github.com/bafuentes/rassta/issues/

RoxygenNote 7.3.2

Imports cluster (>= 2.1.2), data.table (>= 1.14.0), dplyr (>= 1.0.7),
DT (>= 0.18), foreach (>= 1.5.1), GGally (>= 2.1.2), ggplot2
(>= 3.3.5), grDevices, histogram (>= 0.0.25), KernSmooth (>=
2.23.18), kohonen (>= 3.0.10), plotly (>= 4.9.4.1), rlang (>=
0.4.11), scales (>= 1.1.1), shiny (>= 1.6.0), stats, stringdist
(>= 0.9.6.3), stringi (>= 1.7.2), terra (>= 1.3.4), utils

Suggests testthat (>= 3.0.0), tinytest (>= 1.3.1), doParallel (>=
1.0.16), mgcv (>= 1.8.40), knitr, rmarkdown

Config/testthat/edition 3

VignetteBuilder knitr

NeedsCompilation no

1

https://doi.org/10.32614/RJ-2022-036
https://bafuentes.github.io/rassta/
https://github.com/bafuentes/rassta/issues/

2 dummies

Author Bryan A. Fuentes [aut, cre] (<https://orcid.org/0000-0003-3506-7101>),
Minerva J. Dorantes [aut] (<https://orcid.org/0000-0002-2877-832X>),
John R. Tipton [aut],
Robert J. Hijmans [ctb] (<https://orcid.org/0000-0001-5872-2872>),
Andrew G. Brown [ctb]

Repository CRAN

Date/Publication 2024-08-19 06:20:13 UTC

Contents
dummies . 2
engine . 4
figure . 7
locations . 8
observation . 11
plot3D . 13
predict_functions . 14
select_functions . 18
signature . 21
similarity . 23
som_gap . 26
som_pam . 29
strata . 31

Index 33

dummies Create Dummy Layers from Categorical Raster Layers

Description

Given a SpatRaster whose cell values represent categories (e.g., soil types, land use/cover classes),
a dummy layer indicating the presence/absence of each category is created, and optionally written
on disk. Each category in the raster layer must be represented by a unique integer cell value. Output
values indicating the presence or absence of categories in the dummy layers may be set using preval
and absval arguments, respectively.

Usage

dummies(
ca.rast,
vals = NULL,
preval = 100,
absval = 0,
to.disk = FALSE,
outdir = ".",

https://orcid.org/0000-0003-3506-7101
https://orcid.org/0000-0002-2877-832X
https://orcid.org/0000-0001-5872-2872

dummies 3

extension = ".tif",
...

)

Arguments

ca.rast SpatRaster, as in rast. Single-layer SpatRaster whose (integer) cell values rep-
resent numeric IDs for categories.

vals Integer. Vector or sequence of values representing the categories for which
dummy layers will be created. If NULL, all categories will be processed. De-
fault: NULL

preval Integer. Value indicating presence of category. Default: 100

absval Integer. Value indicating absence of category. Default: 0

to.disk Boolean. Write output dummy layers to disk? Default: FALSE

outdir Character. If to.disk = TRUE, string specifying the path for the output dummy
raster layers. Default: "."

extension Character. If to.disk = TRUE, String specifying the extension for the output
raster layers (see Details). Default: ".tif"

... If to.disk = TRUE, additional arguments as for writeRaster.

Details

This function mainly differs from segregate in that presence and absence values can be set arbi-
trarily, thus allowing for values other than those traditionally used in one-hot/dummy encoding (i.e.,
1 and 0).

Please note that the argument extension does not correspond to the argument filetype in writeRaster.
However, writeRaster should recognize the appropriate extension for the output raster layers from
the extension argument. For instance, by setting extension = ".tif", writeRaster will recognize the
extension as GeoTiff, which is the GDAL driver name.

Value

Single-layer or multi-layer SpatRaster with dummy layer(s).

See Also

segregate

Other Miscellaneous Functions: figure(), plot3D()

Examples

require(terra)
p <- system.file("exdat", package = "rassta")
Single-layer SpatRaster of geologic units
f <- list.files(path = p, pattern = "geology2.tif", full.names = TRUE)
geol <- terra::rast(f)
Dummy layer from geologic unit 1

4 engine

dums <- dummies(ca.rast = geol, vals = 1, preval = 100, absval = 0)

engine Predictive Modeling Engine

Description

Modeling of spatially varying phenomena based on landscape similarity to stratification units. If
each stratification unit across geographic space represents a distinct landscape configuration (in
terms of multiple landscape factors and/or factor scales), and if each landscape configuration in-
fluences a phenomenon in a distinct way, then the spatial variability of that phenomenon can be
assessed across a landscape by relating each geographic location to each distinct landscape con-
figuration. Therefore, the more similar a geographic location is to the landscape configuration
represented by a given stratification unit, then also the more similar the response of a phenomenon
will be at that location to the typical response for conditions within the given stratification unit.
Both continuous and categorical response variables are supported. For categorical responses, each
category must be identified by an integer value.

Usage

engine(
res.type = "cont",
ls.rast,
n.win = 3,
su.repobs,
tiles,
parallel = FALSE,
outdir = ".",
tile.rm = TRUE,
extension = ".tif",
verbose = FALSE,
...

)

Arguments

res.type Character. Type of response to model. Options are "cont" for continuous, and
"cat" for categorical response. Default: "cont"

ls.rast SpatRaster, as in rast. Multi-layer SpatRaster representing landscape similari-
ties to stratification units. Only similarities for units with a representative obser-
vation are allowed. Character prefix in the file name of similarities is allowed.

n.win Integer. Positive number indicating how many winning stratification units should
be considered. See Details. Default: 3

engine 5

su.repobs Data frame. The first column of this data frame must contain only the numeric
code for the stratification units (without prefix). Each additional column must
contain the value of the representative response observation for each stratifica-
tion unit. Multiple response variables are allowed (one per column). Note that
all response variables in the data frame must share the same type (res.type). See
example on issues related to non-explicit column names.

tiles SpatVector, as in vect. Spatial vector of polygon geometry with the boundaries
of the area of interest. This vector can be subdivided in regions (i.e., tiles) to
balance memory allocation and processing speed (see Details). If this vector
is tiled, then its attribute table must only contain an ID column with a unique
identifier for each tile (1,2,...,n). Additionally, This vector must have the same
coordinate reference system as ls.rast.

parallel Boolean. Perform parallel processing? A parallel backend needs to be registered
beforehand with registerDoParallel. Moreover, a tiled spatial vector should
be supplied for tiles. Default: FALSE

outdir Character. String specifying the path for the output raster tiles/layer(s) of mod-
eled response(s). Default: "."

tile.rm Boolean. Should the tiles of modeled response(s) be removed from disk after
the tile merging process? Default: TRUE

extension Character. String specifying the extension for the output raster layer(s) of mod-
eled response(s). Default: ".tif"

verbose Boolean. Show warning messages in the console? Default: FALSE

... Additional arguments as for writeRaster.

Details

The predictive modeling process is cell-wise, which means that it operates on a cell-by-cell basis.
For a given cell occurring in the geographic space supported by a raster layer, the predictive mod-
eling engine first identifies the n stratification units to which the given cell is most similar (i.e.,
’winning stratification units’). The engine is able to identify the winning stratification units thanks
to the user-provided set of landscape similarity layers ls.rast. Subsequently, the response value
from the representative observation for each winning stratification unit is identified. In the case of a
continuous response, a weighted average of representative response values is performed. For each
representative response value, the weight is proportional to the corresponding stratification unit’s
landscape similarity value in the given cell. The result of the weighted average is assigned as the
response value in the given cell. In the case of a categorical response, the modal value from the
representative response values of the n winning stratification units is assigned to the given cell.

Note that the name for each raster layer in ls.rast should match the numeric code of the correspond-
ing stratification unit, which is obtained from the column of numeric codes in su.repobs. Neverthe-
less, raster layer names in ls.rast with a character prefix in the numeric code and/or file extension
should work fine (e.g., "su_1101.tif" instead of "1101"). If the landscape similarity layers in ls.rast
were created with similarity, then raster layer names will not have any prefix nor extension as
part of the numeric code.

When dealing with large geographic spaces, high raster resolutions (i.e., small cell sizes), or both,
a considerable amount of memory is required to perform the modeling process. To reduce memory
usage, the predictive modeling engine performs tile-based processing of landscape similarity layers

6 engine

and writes results directly on disk. Tile-based processing increases the computational time, thus
parallelization is allowed by setting up a parallel backend. If parallelization is enabled, then care
must be taken with the size of the tiles since larger sizes will have a greater impact on memory
usage. Consequently, the parallel, tile-based processing will be less useful.

Value

Multi-layer or single-layer SpatRaster with modeled response(s).

See Also

similarity, observation

Examples

require(terra)
p <- system.file("exdat", package = "rassta")
Multi-layer SpatRaster of landscape similarities
fls <- list.files(path = p, pattern = "su_", full.names = TRUE)
ls <- terra::rast(fls)
Numeric code and representative response value for stratification units
fro <-list.files(path = p, pattern = "repobs.csv", full.names = TRUE)
ro <- read.csv(fro)
Extract only those stratification units with representative value
ls <- ls[[as.character(ro$SU)]]
SpatVector with processing tiles
fti <- list.files(path = p, pattern = "tiles.shp", full.names = TRUE)
ti <- terra::vect(fti)
Directory for temporary files
o <- tempdir()
Perform predictive modeling of continuous response
r <- engine(res.type = "cont", ls.rast = ls, n.win = 2, su.repobs = ro,

tiles = ti, outdir = o, overwrite = TRUE
)

Plot modeled response
if(interactive()){plot(r)}
Clean temporary files
file.remove(list.files(path = o, pattern = "soc.tif", full.names = TRUE))
#
#-------
A note on non-explicit response's names (obtained from su.repobs):

This will result in incorrectly modeled response values
x <- c("SOM", "SOM_30cm", "SOM_45cm") # SOM = soil organic matter
grep(x[1], x) # Non explicit
grep(x[2], x) # Explicit
grep(x[3], x) # Explicit

This will result in correct values
x <- c("SOM_15cm", "SOM_30cm", "SOM_45cm")
grep(x[1], x) # Explicit
grep(x[2], x) # Explicit

figure 7

grep(x[3], x) # Explicit

figure Reproduce Figures from Fuentes et al. (n.d.)

Description

This function is intended to reproduce the figures presented in rassta: Raster-based Spatial Strat-
ification Algorithms (Fuentes et al., 2021). Note that this function assumes that all the necessary
inputs for each figure are loaded in the working environment. For the creation of each input, please
refer to the data and examples presented in the aforementioned work. Also, please note that the use
of this function is not intended for RStudio.

Usage

figure(x, d, scaling = 100, to.disk = FALSE, verbose = FALSE)

Arguments

x Integer. Number identifying the figure to reproduce.

d List. List with the data required for the figure to reproduce.

scaling Integer. This number scales (i.e., resizes) the R’s plotting device, such that width
= x/scaling & height = x/scaling, with x = pixels. The default pixel size (not
adjustable) and scaling value should work fine. Default = 100

to.disk Boolean. Save figure to disk? Default = FALSE

verbose Boolean. Show warning messages in the console? Default: FALSE

Value

None

References

B.A. Fuentes, M.J. Dorantes, and J.R. Tipton. rassta: Raster-based Spatial Stratification Algo-
rithms. EarthArXiv, 2021. doi:10.31223/X50S57

See Also

Other Miscellaneous Functions: dummies(), plot3D()

https://doi.org/10.31223/X50S57

8 locations

Examples

if(interactive()){
require(terra)
p <- system.file("exdat", package = "rassta")
Single-layer SpatRaster of geologic units
f <- list.files(path = p, pattern = "geology.tif", full.names = TRUE)
geol <- terra::rast(f)
Dummy layers from geologic units
mat.sig <- dummies(ca.rast = geol, preval = 100, absval = 0)
figure(17, d = mat.sig)
}

locations Select Representative Sampling Locations for Stratification Units

Description

Selection of the representative sampling locations based on landscape similarity values. For a
give stratification unit, the representative sampling location is the XY position where the highest
landscape similarity value occurs. This location is assumed to best reflect the influence that the
landscape configuration of a given stratification unit exerts on response phenomena. Currently, two
selection methods are supported: (1) maximum similarity within buffer zones ("buffer"), and (2)
absolute maximum similarity ("absolute"). For the buffer method, the n largest zones enclosing
landscape similarity values above a certain threshold are first identified. Then, for each zone, one
sample is placed at the XY location where the landscape similarity value is maximized. For the
absolute method, a sample is placed at the XY locations with the n maximum landscape similarity
values. In both methods, it is possible to constrain the sampling process to the boundaries of the
stratification unit. Constraining the process ensures that the sampling locations determined for a
given unit are placed within the boundaries of that unit. See Details for some guidance in the use
of this function for classification units.

Usage

locations(
ls.rast,
su.rast,
method = "buffer",
constrained = TRUE,
buf.quant = 0.9,
buf.n = 1,
abs.n = 1,
tol = 1,
parallel = FALSE,
to.disk = FALSE,
outdir = ".",
verbose = FALSE,
...

)

locations 9

Arguments

ls.rast SpatRaster, as in rast. Multi-layer SpatRaster representing landscape similari-
ties to stratification units.

su.rast SpatRaster. Single-layer SpatRaster representing the stratification units occur-
ring across geographic space. Integer values are expected as cell values (i.e.,
numeric codes) of stratification units.

method Character. String denoting the sampling method. Current options are "buffer"
for the maximum similarity within buffer zones method, and "absolute" for the
absolute maximum similarity method. Default: "buffer"

constrained Boolean. Should the sampling process be constrained to the boundaries of each
stratification unit? See Details. Default: TRUE

buf.quant Numeric. Number expressed in quantile notation (0-1) indicating the similarity
threshold for the creation of buffer zones. Only zones enclosing raster cells
with landscape similarity >= buf.quant will be created and thus, considered for
sampling. See Details. Default: 0.9

buf.n Integer. Positive integer indicating the n largest buffer zones for which sampling
locations will be selected (n buffer zones per stratification unit, one sampling
location per buffer zone). Default: 1

abs.n Integer. When method = "absolute", Positive integer indicating the number of
sampling locations to select for each stratification unit. See Details. Default: 1

tol Numeric. When method = "absolute", this number will be subtracted from the
sampled maximum value of a landscape similarity layer to ensure that the re-
quested number of sampling locations will be found (see Details). The default
assumes that landscape similarity values are on a scale of 1 to 100. If these
values are on a different scale (e.g., decimal), then, tol needs to be adjusted
accordingly. Default: 1

parallel Boolean. Perform parallel processing? A parallel backend must be registered
beforehand with registerDoParallel. Keep in mind that the amount of RAM
to allocate when performing parallel processing can result prohibitive for large
data sets. Default: FALSE

to.disk Boolean. Should output SpatVector(s) (as in vect) be written to disk? Default:
FALSE

outdir Character. If to.disk = TRUE, string specifying the path for the output SpatVec-
tor(s). Default: "."

verbose Boolean. Show warning messages in the console? Default: FALSE

... Additional arguments, as for writeVector.

Details

Except when buf.n = 1 or abs.n = 1, the number of returned sampling locations per stratification
unit may be smaller than requested, especially when constrained = TRUE. For the constrained
buffer method, reducing the landscape similarity threshold value buf.quant will not always result in
more buffer zones; i.e., more sampling locations. The reason for this is that reducing the threshold
value for the creation of buffer zones may actually promote the spatial contiguity of zones. For
instance, two buffer zones created at buf.quant = 0.9, may be merged into a single buffer zone when

10 locations

buf.quant = 0.80. This will occur if the raster cells between the two buffer zones satisfy: landscape
similarity >= quantile(landscape similarity, 0.8). For the absolute method, increasing the value of
the tol argument will ensure a safer search for n sampling locations and thus, greater chances of
getting the total number of requested sampling locations per stratification unit.

Note that this sampling scheme can be applied for classification units. In order to do this, one should
replace the multi-layer SpatRaster of landscape similarities with a multi-layer SpatRaster of spatial
signatures. One should also replace the raster layer of stratification units with that of classification
units.

Value

If method = "buffer" and constrained = TRUE, a list with the following components:

locations: SpatVector of point geometry. Each point in this vector represents the sampling location
placed at the maximum landscape similarity value within a stratification unit’s buffer zone. Tabular
attributes in this SpatVector are (1) SU = stratification unit’s numeric code, (2) land_sim = landscape
similarity value, (3) x = X coordinate, and (4) y = Y coordinate.

buffer: SpatVector of polygon geometry. Each polygon in this vector represents the buffer zone of
an stratification unit.

If method = "buffer" and constrained = FALSE:

locations: Same as locations from method = "buffer" and constrained = TRUE.

If method = "absolute":

locations: SpatVector of point geometry. Each point in this vector represents the sampling location
placed at the maximum landscape similarity value for an stratification unit. Tabular attributes in
this SpatVector are (1) SU = stratification unit’s numeric code, (2) land_sim = landscape similarity
value, (3) x = X coordinate, and (4) y = Y coordinate.

See Also

similarity, strata

Other Functions for Stratified Sampling: observation()

Examples

require(terra)
p <- system.file("exdat", package = "rassta")
Multi-layer SpatRaster of landscape similarities
fls <- list.files(path = p, pattern = "su_", full.names = TRUE)
ls <- terra::rast(fls)
Single-layer SpatRaster of stratification units
fsu <- list.files(path = p, pattern = "strata.tif", full.names = TRUE)
su <- terra::rast(fsu)
Get 1 representative sampling location per stratification unit
rl <- locations(ls.rast = ls, su.rast = su)
Plot representative locations (including buffer areas)
if(interactive()){

plot(su, type = "classes", fun = function() c(points(rl$locations),
polys(rl$buffers))

)}

observation 11

observation Select the Representative Response Observation for Stratification
Units

Description

Selection of the representative response observation for each stratification unit occurring across
geographic space. One observation from a set of n observations of a response variable sam-
pled/measured within the spatial boundaries of a given stratification unit is selected according to
the following criteria: (1) maximum landscape similarity, (2) median response value, and (3) ran-
dom selection. The maximum landscape similarity (mls) selects the observation at the XY spatial
location where the landscape similarity value is maximized for a given stratification unit. The me-
dian response value (mrv) selects the observation whose response value is (closest to) the median of
all response values, as measured from the observations spatially enclosed by a given stratification
unit. The random selection, as implied by the name, randomly selects one observation from the set
of observations spatially enclosed by a given stratification unit. See Details for some guidance in
the use of this function for classification units.

Usage

observation(
su.rast,
obs,
col.id,
col.resp,
method = "mls",
ls.rast,
verbose = FALSE

)

Arguments

su.rast SpatRaster, as in rast. Single-layer SpatRaster representing the stratification
units occurring across geographic space. Integer values are expected as cell
values (i.e., numeric codes) of stratification units.

obs SpatVector, as in vect. Vector of point geometry whose tabular attributes should
contain an ID column (1,2,...,n) and a column of the response’ values.

col.id Integer. Index of the ID column in the tabular attributes of obs.
col.resp Integer. Index of the response’ values column in the tabular attributes of obs.
method Character. String specifying the selection method for the response representa-

tive observation. Options are "mls" for the maximum landscape similarity value,
"mrv" for the median response value, and "random" for random selection. De-
fault: "mls"

ls.rast SpatRaster, as in rast. Multi-layer SpatRaster representing landscape similari-
ties to stratification units. Only required if method = "mls".

verbose Boolean. Show warning messages in the console? Default: FALSE

12 observation

Details

This selection scheme can be applied to classification units. For classification units, one should
replace the multi-layer SpatRaster of landscape similarities with a multi-layer SpatRaster of spatial
signatures. One should also replace the raster layer of stratification units with that of classification
units.

Value

A list with the following components:

su.repobs: Data table with the following attributes: (1) Original IDs of the selected observation,
(2) representative response value, (3) stratification unit’s numeric code, and (4) landscape similarity
value at the XY location of the selected observation (only if method = "mls").

su.norepobs: List of the numeric codes of stratification units without observations.

su.repobs.sp: SpatVector of point geometry with the representative response observation for each
stratification unit represented in su.rast.

See Also

strata, similarity

Other Functions for Stratified Sampling: locations()

Examples

require(terra)
p <- system.file("exdat", package = "rassta")
Single-layer SpatRaster of stratification units
fsu <- list.files(path = p, pattern = "strata.tif", full.names = TRUE)
su <- terra::rast(fsu)
Observations with response values.
For this example, soil organic carbon (SOC) collected at 15 cm soil depth
fob <- list.files(path = p, pattern = "soc.shp", full.names = TRUE)
ob <- terra::vect(fob)
Column indices for ID and measured response value
id <- 1
re <- 2
Multi-layer SpatRaster of landscape similarities
fls <- list.files(path = p, pattern = "su_", full.names = TRUE)
ls <- terra::rast(fls)
Selection of representative response observations for stratification units
ro <- observation(su.rast = su, obs = ob, col.id = id, col.resp = re,

ls.rast = ls
)

Plot representative observations
if(interactive()){plot(su, type = "classes",

fun = function() points(ro$su_repobs.sp)
)}

plot3D 13

plot3D Interactive Maps of 3D surfaces

Description

Interactive maps showing the 3-dimensional (XYZ) variability in raster layers representing continu-
ous variables. The XYZ reference positions will be obtained from an elevation layer and the values
of the continuous variables will be used as a surface color gradient. For this function to work,
there must be a raster layer of elevation (e.g., digital terrain model) and at least one continuous
variable among the raster layers to map. The maps produced are interactive, meaning that manual
axis rotation and zoom are possible. Special consideration must be taken with large raster layers
(large spatial coverage and/or high spatial resolution). This function can aggregates the spatial res-
olution (i.e., cell size) in order to handle large raster layers. This is achieved by internally calling
aggregate. An aggregation factor will determine the final cell size, where final cell size = cell
size*aggregation factor. In addition, a spatial extent can be provided to reduce the total mapping
area and thus, to further reduce processing time. This function uses the plotly library. See Details
for current limitations.

Usage

plot3D(
var.rast,
z,
ex = 0.1,
agg = FALSE,
fact = NULL,
spext = NULL,
pals = NA,
rev = NA

)

Arguments

var.rast SpatRaster, as in rast. Multi-layer SpatRaster of n continuous variables and
one layer representing the surface/terrain elevation.

z Integer. Position (index) of the raster layer of elevation in var.rast.

ex Numeric. Value indicating the exaggeration factor for the Z axis. This can be
useful to enhance the visualization of subtle topographic variability. Default:
0.1

agg Boolean. Should the spatial resolution be aggregated to reduce processing time?
Default: FALSE

fact Numeric. If agg = TRUE, value indicating the aggregation factor. Default:
NULL

spext Numeric. List with the coordinates of the bounding box for spatial subset (xmin,
xmax, ymin, ymax). SpatRaster or SpatVector from which a spatial extent can
be calculated are also an acceptable input. Default: NULL

14 predict_functions

pals Character. List of strings with the names of the n color ramps (one per continu-
ous variable). See hcl.colors. Default: NA

rev Character. List of n Booleans indicating whether or not to reverse the color ramp
for each continuous variable. Default: NA

Details

Currently, this function does not allow to adjust the labels for XY axes so that actual coordinates are
shown. Instead, the relative position values are shown on these axes.

Value

List with plotly-htmlwidget objects. Each object calls the 3D map for a continuous variable in
var.rast.

See Also

Other Miscellaneous Functions: dummies(), figure()

Examples

require(terra)
p <- system.file("exdat", package = "rassta")
Multi-layer SpatRaster of topographic variables
ft <- list.files(path = p, pattern = "^height|^slope|^wetness",

full.names = TRUE
)

tvars <- terra::rast(ft)
Single-layer SpatRaster of terrain elevation
fe <- list.files(path = p, pattern = "^elevation", full.names = TRUE)
e <- terra::rast(fe)
Add elevation to the SpatRaster of topographic variables
etvars <- c(e, tvars)
Interactive 3D maps
maps <- plot3D(var.rast = etvars, z = 1, ex = 0.2,

pals = c("Zissou", "Plasma", "Spectral")
)

if(interactive()){maps}

predict_functions Predict Distribution Functions Across Geographic Space

Description

Predicts constrained, univariate distribution functions across the geographic space supported by
raster layers. For a given continuous variable used to create a classification unit, this function
first calculates a user-defined distribution function for that variable using only observations se-
lected from within the classification unit. In this way, the distribution function is univariate and

predict_functions 15

constrained. Subsequently, a locally-estimated scatterplot smoothing (LOESS) or a generalized ad-
ditive model (GAM) is fitted. This model is fitted using the variable’s observations as explanatory
values and the values from the distribution function as the response values. Finally, the fitted model
is predicted on the complete geographic space supported by the raster layer of the given variable.
This process is iterated for all of the continuous variables and classification units. Each resulting
layer can be thought of as a landscape correspondence measurement between an XY location in
geographic space and the landscape configuration represented by a given classification unit in terms
of a specific variable. The following distribution functions are currently supported: the probability
density function (PDF), the empirical cumulative density function (ECDF), and the inverse of the
empirical cumulative density function (iECDF). Please refer to Details for more information about
how each distribution function is calculated. Also, see details on parallel processing.

Usage

predict_functions(
cuvar.rast,
cu.ind,
cu,
vars,
dif,
hist.type = "regular",
hist.pen = "default",
grid.mult = 1,
kern = "normal",
quant.sep = 0.01,
method = "loess",
span = 0.6,
k = 20,
discrete = TRUE,
to.disk = FALSE,
outdir = ".",
prefix = "",
extension = ".tif",
overwrite = FALSE,
verbose = FALSE,
...

)

Arguments

cuvar.rast SpatRaster, as in rast. Multi-layer SpatRaster containing n continuous raster
layers (i.e., variables) and one raster layer of classification units with integer
cell values (i.e., Numeric identifiers).

cu.ind Integer. Position (index) of the raster layer of classification units in cuvar.rast.

cu Integer. Vector of integer values that correspond to the numeric identifiers of the
units in the raster layer of classification units.

vars Character. Vector of strings containing the names of the n continuous variables
in cuvar.rast. These names have to be sequentially repeated according to the

16 predict_functions

number of classification units (See Examples).

dif Character. Vector of strings containing the distribution function to calculate for
each continuous variable within each classification unit. The function will match
the position of the name of the distribution function with that of the name of the
continuous variable in vars.

hist.type Character. Type of histogram to calculate. Options are "regular", "irregular"
(unequally-sized bins, very slow), and "combined" (the one with greater penal-
ized likelihood is returned). See histogram. Default: "regular"

hist.pen Character. Penalty to apply when calculating the histogram (see histogram).
Default: "default"

grid.mult Numeric. Multiplying factor to increase/decrease the size of the "optimal" grid
size for the Kernel Density Estimate (KDE). Default: 1

kern Character. Type of kernel to use for the KDE. Default: "normal"

quant.sep Numeric. Spacing between quantiles for the calculation of the ECDF and iECDF.
Quantiles are in the range of 0-1 thus spacing must be a decimal. Default: 0.01

method Character. Model to fit. Current options are "loess" for locally-estimated scat-
terplot smoothing (see loess), and "gam" for generalized additive model with
support for large datasets (see bam). Default: "loess"

span Numeric. If method = "loess", degree of smoothing for LOESS fitting. Default:
0.6

k Numeric. If method = "gam", Number of knots for the cubic regression splines.
Default: 20

discrete Boolean. If method = "gam", discretize variables for storage and efficiency
reasons? Can reduce processing time significantly. Default: TRUE

to.disk Boolean. Write the output raster layers of predicted distribution function to
disk? See details an example about parallel processing. Default: FALSE

outdir Character. If to.disk = TRUE, string specifying the path for the output raster
layers of predicted distribution function. Default: "."

prefix Character. If to.disk = TRUE, string specifying a prefix for the file names of the
output raster layers of predicted distribution function. Default: ""

extension Character. If to.disk = TRUE, string specifying the extension for the output
raster layers of predicted distribution function. Default: ".tif"

overwrite Boolean. If to.disk = TRUE, should raster layers in disk and with same name
as the output raster layer(s) of predicted distribution function be overwritten?
Default: FALSE

verbose Boolean. Show warning messages in the console? Default: FALSE

... If to.disk = TRUE, additional arguments as for writeRaster.

Details

To calculate the PDF, this function uses the binned KDE for observations drawn from the breaks
of a regular/irregular histogram. The "optimal" number of bins for the histogram is defined by
calling the function histogram (Mildenberger et al., 2019) with the user-defined penalty hist.pen.

predict_functions 17

Subsequently, the optimal number of bins is treated as equivalent to the "optimal" grid size for the
binned KDE. The grid size can be adjusted by specifying the multiplying factor grid.mult. Lastly,
the "optimal" bandwidth for the binned KDE is calculated by applying the direct plugin method of
Sheather and Jones (1991). For the calculation of optimal bandwidth and for the binned KDE, the
package KernSmooth is called. To calculate both the ECDF and the iECDF, this function calls the
ecdf function on equally-spaced quantiles. The spacing between quantiles can be manually adjusted
via quant.sep. In the case of iECDF, the ECDF is inverted by applying the formula: iECDF = ((x -
max(ECDF)) * -1) + min(ECDF); where x corresponds to each value of the ECDF.

The "cu", "vars", and "dif" parameters of this function are configured such that the output table from
select_functions can be used directly as input. (see Examples).

When writing output raster layer to disk, multiple distribution functions can be predicted in parallel
if a parallel backend is registered beforehand with registerDoParallel. Keep in mind that the
function may require a large amount of memory when using a parallel backend with large raster
layers (i.e., high resolution and/or large spatial coverage).

Some issues have been reported when manually creating cluster objects using the parallel package.
To overcome this issue, a cluster object can be registered directly through registerDoParallel
without passing it first through makeCluster. See examples.

Value

Single-layer or multi-layer SpatRaster with the predicted distribution function for each variable and
for each classification unit.

References

T. Mildenberger, Y. Rozenholc, and D. Zasada. histogram: Construction of Regular and Irreg-
ular Histograms with Different Options for Automatic Choice of Bins, 2019. https://CRAN.
R-project.org/package=histogram

S. Sheather and M. Jones. A reliable data-based bandwidth selection method for kernel density
estimation. Journal of the Royal Statistical Society. Series B. Methodological, 53:683–690, 1991.

See Also

Other Landscape Correspondence Metrics: select_functions(), signature, similarity()

Examples

require(terra)
p <- system.file("exdat", package = "rassta")
Multi-layer SpatRaster of topographic variables
3 continuous variables
ftva <- list.files(path = p, pattern = "^height|^slope|^wetness",

full.names = TRUE
)

tva <- terra::rast(ftva)
Single-layer SpatRaster of topographic classification units
Five classification units
ftcu <- list.files(path = p, pattern = "topography.tif", full.names = TRUE)
tcu <- terra::rast(ftcu)

https://CRAN.R-project.org/package=histogram
https://CRAN.R-project.org/package=histogram

18 select_functions

Add the classification units to the SpatRaster of topographic variables
tcuvars <- c(tcu, tva)
Data frame with source for "cu", "vars", and "dif"
ftdif <- list.files(path = p, pattern = "topodif.csv", full.names = TRUE)
tdif <- read.csv(ftdif)
Check structure of source data frame
head(tdif)
Predict distribution functions
1 distribution function per variable and classification unit = 1
tpdif <- predict_functions(cuvar.rast = tcuvars,

cu.ind = 1,
cu = tdif$Class.Unit[1:3],
vars = tdif$Variable[1:3],
dif = tdif$Dist.Func[1:3],
grid.mult = 3,
span = 0.9

)
Plot predicted distribution functions
if(interactive()){plot(tpdif, col = hcl.colors(100, "Oslo", rev = TRUE))}

#--------
Writing results to disk and parallel processing

if(interactive()){
Directory for temporary files
o <- tempdir()
Register parallel backend
require(doParallel)
registerDoParallel(4)
Predict distribution functions
tpdif <- predict_functions(cuvar.rast = tcuvars,

cu.ind = 1,
cu = tdif$Class.Unit[1:3],
vars = tdif$Variable[1:3],
dif = tdif$Dist.Func[1:3],
grid.mult = 3, span = 0.9,
to.disk = TRUE,
outdir = o

)
Stop cluster
stopImplicitCluster()
Clean temporary files
file.remove(sources(tpdif))

}

select_functions Select Constrained Univariate Distribution Functions

select_functions 19

Description

Selection of distribution functions for continuous raster layers that were used to create a raster layer
of classification units. The distribution functions currently supported are the probability density
function (PDF), the empirical cumulative density function (ECDF), and the inverse of the empirical
cumulative density function (iECDF). Please note that select_functions DOES NOT calculate
the aforementioned distribution functions. The sole purpose of select_functions is to assist in
the knowledge-driven selection of the most appropriate distribution function for each continuous
variable used to create a given classification unit (see Details).

Usage

select_functions(
cu.rast,
var.rast,
fun = mean,
varscale = "uniminmax",
mode = "auto",
verbose = TRUE,
...

)

Arguments

cu.rast SpatRaster, as in rast. Single-layer SpatRaster representing the classification
units occurring across geographic space. The cell values (i.e., numeric IDs) for
classification units must be integer values.

var.rast SpatRaster. Multi-layer SpatRaster containing the n continuous raster layers of
the variables used to create the classification units.

fun Character. Descriptive statistical measurement (e.g., mean, max). See zonal.
Default: mean

varscale Character. Variable scaling method. See scale argument in ggparcoord. De-
fault: "uniminmax"

mode Character. String specifying the selection mode for univariate distribution func-
tions. Possible values are "inter" for interactive selection, and "auto" for auto-
matic selection (see Details). Default: "auto"

verbose Boolean. Show warning messages in the console? Default: FALSE

... Additional arguments as for ggparcoord.

Details

The selection of distribution functions is univariate, that is, for each variable, and it is constrained,
meaning that the selection has to be made for each classification unit. Overall, the distribution
functions are used to characterize typical values of a given continuous variable within a given clas-
sification unit. When the PDF is selected, values closer to, or at the peak of the PDF will be
considered as the most typical. Contrarily, values at the tails of the PDF will be considered as the
less typical. When the ECDF or the iECDF are selected, values toward (+)infinity and (-)infinity
will be considered as the most typical values, respectively.

20 select_functions

In order to assist the selection process, when mode = "inter", this function displays an interactive
parallel coordinates plot (see ggplotly) and a writable table (built in Shiny). For each variable,
the parallel coordinates plot shows a trend of a descriptive statistical measurement (argument fun)
across all of the classification units. Using this trend, one can then select the most appropriate
distribution function for each variable based on the occurrence/absence of "peaks" and "pits" in
the observed trend. For instance, a peak (highest point in the trend) would indicate that the given
classification unit contains on average, the highest values of that variable. Conversely, a pit (lowest
point in the trend) would indicate that the given classification unit contains on average, the lowest
values of that variable. Thus, an ECDF and an iECDF can be selected for the peak and the pit,
respectively. The PDF can be selected for classification units whose trend does not show either a
peak or a pit. Please consider that peaks and pits are only reference points and thus, one should
validate the selection of distribution functions based on domain knowledge.

When mode = "auto", the criteria for the selection of distribution functions will be based on peaks
and pits in the parallel coordinates plot.

The output table (distfun) is intended to be used as input in the predict_functions function.

The selection of distribution functions is similar to the selection of membership functions in fuzzy
logic. For example, if one wants to describe a phenomenon through distribution functions of con-
tinuous variables, then the functions can be considered to be membership curves. Accordingly,
the PDF, ECDF, and iECDF will be equivalent to the Gaussian, S, and Z membership functions,
respectively.

Value

If mode = "inter":

distfun: A DT table (DataTables library) with the following attributes: (1) Class.Unit = numeric
ID for classification units, (2) Variable = each of the n continuous raster layers of a classification
unit, and (3) Dist.Func = Empty column whose cells can be filled with the following strings: "PDF,
"ECDF", and "iECDF" (unquoted). This table can be saved on disk through the Shiny interface.

parcoord: A plotly-based parallel coordinate plot which can be saved on disk using the R package
htmlwidgets.

If mode = "auto":

distfun: Same as distfun when mode = "inter", except for column "Dist.Func" whose cells were
automatically filled.

parcoord: Same as parcoord when mode = "inter".

See Also

Other Landscape Correspondence Metrics: predict_functions(), signature, similarity()

Examples

require(terra)
p <- system.file("exdat", package = "rassta")
Multi-layer SpatRaster of topographic variables
3 topographic variables
tf <- list.files(path = p, pattern = "^height|^slope|^wetness",

full.names = TRUE

signature 21

)
tvars <- terra::rast(tf)
Single-layer SpatRaster of topographic classification units
5 classification units
tcf <- list.files(path = p, pattern = "topography.tif", full.names = TRUE)
tcu <- terra::rast(tcf)
Automatic selection of distribution functions
tdif <- select_functions(cu.rast = tcu, var.rast = tvars, fun = mean)
Parallel coordinates plot
if(interactive()){tdif$parcoord}

signature Calculate the Spatial Signature of Classification Units

Description

Using a mathematical function, a raster layer is created from the cell-wise aggregation of a set
of predicted distribution functions for a classification unit (see predict_functions). Each ele-
ment in this set can be thought of as a correspondence measurement between an XY location in
the geographic space and the landscape configuration represented by a given classification unit in
terms of a specific variable. Therefore, aggregating the set of predicted distribution functions into
a single layer produces an overall (multivariate) measurement of correspondence. This multivariate
landscape correspondence metric is considered to be the spatial signature of the classification unit.

Usage

signature(
pdif.rast,
inprex,
outname,
fun = mean,
to.disk = FALSE,
outdir = ".",
extension = ".tif",
overwrite = FALSE,
...

)

Arguments

pdif.rast SpatRaster, as in rast. Multi-layer SpatRaster whose raster layers represent
predicted distribution functions for continuous variables and for one or more
classification units. All predicted distribution functions for a particular classi-
fication unit are considered as part of the same set. There must be a matching
pattern in the names of predicted distribution functions from the same set (see
inprex).

22 signature

inprex Character. Prefix in the name of raster layers representing predicted distribu-
tion functions belonging to the same set (i.e.,same classification unit). If spatial
signatures for multiple sets are to be calculated, a vector of strings must be pro-
vided. See Details and Examples.

outname Character. Output layer/file name for the raster layer(s) of spatial signature. If
the spatial signatures for multiple classification units are to be calculated, then a
vector of strings must be provided.

fun Function. The mathematical function must take a vector of values and return a
single value (e.g., mean, max, sum, etc.). See app. Default: mean

to.disk Boolean. Write the output raster layer(s) of spatial signature to disk? See details
about parallel processing. Default: FALSE

outdir Character. If to.disk = TRUE, string specifying the path for the output raster
layer(s) of spatial signature. Default: "."

extension Character. If to.disk = TRUE, String specifying the extension for the output
raster layer(s) of spatial signature. Default: ".tif"

overwrite Boolean. If to.disk = TRUE, should raster layers in disk and with same name as
the output raster layer(s) of spatial signature be overwritten? Default: FALSE

... If to.disk = TRUE, additional arguments as for writeRaster.

Details

Raster layers of predicted distribution functions belonging to the same classification unit must be
identified by a unique prefix in their layer names (argument inprex). This prefix is used as a string
pattern to find all the predicted distribution functions belonging to one classification unit. Conse-
quently, a unique prefix must be defined for each additional classification unit to distinguish between
predicted distribution functions for different classification units. Similarly, an additional string (or
vector of strings) of file/layer name(s) must be provided to distinguish between the resulting spatial
signatures for different classification units (argument outname). The length of outname must match
that from inprex.

When writing the output raster layers of spatial signature to disk, a parallel backend can be regis-
tered before running this function with registerDoParallel to speed-up computation. Note that
this is only helpful when calculating spatial signatures for many classification units.

From a spatial analysis standpoint, the aggregation of predicted distribution functions into spatial
signature is similar to the application of fuzzy aggregation operators commonly used in GIS-based
multi-criteria decision analysis. Moreover, The use of descriptive statistics to calculate signatures
for landscape-related classification units can be traced back to the works of Pike and Rozema (1975),
and Pike (1988).

Value

Single-layer or multi-layer SpatRaster with the spatial signature(s) calculated from the set(s) of
predicted distribution functions.

References

R. Pike. The geometric signature: quantifying landslide-terrain types from digital elevation models.
Mathematical geology, 20(5):491–511, 1988. doi:10.1007/BF00890333

https://doi.org/10.1007/BF00890333

similarity 23

R. Pike and W. Rozema. Spectral analysis of landforms. Annals of the Association of American
Geographers,65(4):499–516, 1975. doi:10.1111/j.14678306.1975.tb01058.x

See Also

Other Landscape Correspondence Metrics: predict_functions(), select_functions(), similarity()

Examples

require(terra)
p <- system.file("exdat", package = "rassta")
Multi-layer SpatRast with predicted distribution functions
3 continuous variables and 5 classification units, = 15 functions
ft <- list.files(path = p, pattern = "topo_", full.names = TRUE)
t <- terra::rast(ft)
Vector with the prefix for each set of predicted distribution functions
5 classification units = 5 sets
it <- paste("topo_", seq(1, 5), "_", sep = "")
Vector of names for output raster layers of spatial signature
5 spatial signatures, one per classification unit
ot <- paste("topography_", seq(1, 5), sep = "")
Calculate spatial signatures
tsig <- signature(pdif.rast = t, inprex = it, outname = ot)
Plot spatial signatures
if(interactive()){plot(tsig, col = hcl.colors(100, "Oslo", rev = TRUE))}

similarity Calculate the Landscape Similarity to Stratification Units

Description

For each stratification unit present in a single-layer SpatRaster, a raster layer of landscape simi-
larity is created by aggregating the stratification unit’s corresponding set of spatial signatures (see
signature). For a stratification unit x, the corresponding set of spatial signatures consists of one
spatial signature for each of the n classification units that are present in the numeric code of x (one
classification unit per landscape factor/factor scale). The aggregation process is performed cell-
wise, and by using a mathematical function which takes multiple values but return a single value
(e.g., mean, sum, min, max). The resulting raster layer represents the correspondence between an
XY location in geographic space and the landscape configuration represented by a given stratifica-
tion unit.

Usage

similarity(
su.rast,
su.code,
sig.rast,
fun = mean,

https://doi.org/10.1111/j.1467-8306.1975.tb01058.x

24 similarity

to.disk = FALSE,
outdir = ".",
prefix = "su_",
extension = ".tif",
overwrite = FALSE,
...

)

Arguments

su.rast SpatRaster, as in rast. Single-layer SpatRaster representing the stratification
units occurring across geographic space. Integer values are expected as cell
values (i.e., numeric codes) of stratification units.

su.code List. The structure of the stratification units’ numeric code. This (nested) list
should indicate the names of the landscape factors/factor scales used to create
the stratification units, and the position (start, end) of their corresponding clas-
sification units’ ID in the numeric code. See Examples.

sig.rast SpatRaster. Multi-layer SpatRaster with the spatial signatures of all the classi-
fication units that were used to create the stratification units. The spatial sig-
natures should follow this name convention: x_n; where x is the landscape fac-
tor/factor scale, and n is the numeric ID of the classification unit to which the
spatial signature belongs.

fun Function. The mathematical function must accept a vector of values and return
a single value (e.g., mean, max, sum, etc.). See app. Default: mean

to.disk Boolean. Write the output raster layers of landscape similarity to disk? See note
about parallel processing. Default: FALSE

outdir Character. If to.disk = TRUE, string specifying the path for the output raster
layers of landscape similarity. Default: "."

prefix Character. If to.disk = TRUE, prefix for the file name of the output raster layers
of landscape similarity. Default: "su_"

extension Character. If to.disk = TRUE, string specifying the extension for the output
raster layers of landscape signature. Default: ".tif"

overwrite Boolean. When to.disk = TRUE, should raster layers in disk and with same
name as the output landscape similarities be overwritten? Default: FALSE

... Additional arguments as for writeRaster (if to.disk = TRUE).

Details

The landscape similarity is a landscape correspondence metric. The aggregation of multiple spatial
signatures into a single landscape similarity layer is somewhat similar to the application of fuzzy
logic and aggregation operators in GIS-based multi-criteria decision analysis. Furthermore, the
aggregation of raster layers indicating relative optimality for spatially-varying phenomena, like
spatial signatures, can be guided by physical/ecological principles like Sprengel-Liebig’s law of the
minimum. In such case, one could select the min function when aggregating the spatial signatures
into landscape similarities.

When writing the output raster layers of landscape similarity to disk, a parallel backend can be
registered before running this function with registerDoParallel to speed-up computation.

similarity 25

Value

A list with the following components:

landsim: Multi-layer SpatRaster with the landscape similarity to each stratification unit present in
su.rast.

codes: A data frame with the numeric code for each stratification unit and the corresponding clas-
sification units’ numeric ID for each landscape factor/factor scale.

See Also

strata

Other Landscape Correspondence Metrics: predict_functions(), select_functions(), signature

Examples

require(terra)
p <- system.file("exdat", package = "rassta")
Single-layer SpatRaster of stratification units
fsu <- list.files(path = p, pattern = "strata2.tif", full.names = TRUE)
su <- terra::rast(fsu)
Define the structure of the stratification units' numeric code
code <- list(geology = c(1,1), climate = c(2,2), topography = c(3,3))
Multi-layer SpatRaster of spatial signatures of classification units
fsig <- list.files(path = p, pattern = "geology_|climate_|topography_",

full.names = TRUE
)

sig <- terra::rast(fsig)
Calculate landscape similarity to stratification units
landsim <- similarity(su.rast = su, su.code = code, sig.rast = sig)

Plot some landscape similarities
if(interactive()){plot(landsim$landsim[[c(1,10,12,14)]],
col = hcl.colors(100, "Oslo", rev = TRUE)
)}

#-------
A note on the numeric code of stratification units

For a given stratification unit, the structure of its corresponding numeric
code indicates: (1) the landscape factors and/or factor scales that were
accounted for when creating the stratification unit, and (2) the numeric id
of the classification unit from each landscape factor/factor scale.
Consider the following numeric code structure:

su.code <- list(geology = c(1,1), climate = c(2,2), topography = c(3,4))

The stratification units are composed of classification units from...
...three landscape factors: geology, climate, and topography
names(su.code)

For geology, the classification units are represented by the first...

26 som_gap

...digit in the numeric code
su.code$geology

For climate, the classification units are represented by the second...
...digit in the numeric code
su.code$climate
For topography, the classification units are represented by the third...
...and fourth digit in the numeric code
su.code$topography

Thus, the numeric code of the stratification units 1101 and 2410 means:
su <- c(1101, 2410)
su[1] # 'geology' = 1, 'climate' = 1, and 'topography' = 1
su[2] # 'geology' = 2, 'climate' = 4, and 'topography' = 10

som_gap Self-Organizing Map and Selection of k

Description

Produces a low-dimensional representation of the input feature space for subsequent estimation of
the "optimal" number of clusters (k) in a multivariate dataset. The dimension reduction is based on
the self-organizing map technique (SOM) of Kohonen (1982; 1990), and implemented in R by the
function supersom of Wehrens and Kruisselbrink (2018). To estimate the optimal k, the partitioning
around medoids (PAM) of Kaufman and Rousseeuw (1990), coupled with the gap statistic of Tib-
shirani et al. (2001), is performed on the SOM’s codebook vectors. This is achieved by internally
calling pam and clusGap (Maechler et al., 2021). See Details for a brief theoretical background.

Usage

som_gap(
var.rast,
xdim = 12,
ydim = 12,
topo = "hexagonal",
neighbourhood.fct = "gaussian",
rlen = 600,
dist.fcts = c("sumofsquares", "manhattan"),
mode = "pbatch",
K.max,
stand = FALSE,
B = 500,
d.power = 2,
spaceH0 = "original",
method = "globalSEmax",
SE.factor = 1,
...

)

som_gap 27

Arguments

var.rast SpatRaster, as in rast. This Multi-layer SpatRaster must contain n continuous
variables from which the SOM will be created.

xdim Integer. Horizontal dimension of the SOM’s grid. Default: 12

ydim Integer. Vertical dimension of the SOM’s grid. Default: 12

topo Character. Topology of the SOM’s grid. Options = "rectangular", "hexagonal".
Default: "hexagonal"

neighbourhood.fct

Character. Neighborhood of the SOM’s grid. Options = "bubble", "gaussian".
Default: "gaussian"

rlen Integer. Number of times the complete dataset will be presented to the SOM’s
network. Default: 600

dist.fcts Character. Vector of length 2 containing the distance functions to use for SOM
(First element, options = "sumofsquares", "euclidean", "manhattan") and for
PAM (second element, options = "euclidean", "manhattan"). Default: c("sumofsquares",
"manhattan")

mode Character. Type of learning algorithm. Options are “online", "batch", and
"pbatch". Default: "pbatch"

K.max Integer. Maximum number of clusters to consider, must be at least two (2).

stand Boolean. For PAM function, does SOM’s codebook vectors need to be standard-
ized? Default: FALSE

B Integer. Number of bootstrap samples for the gap statistic. Default: 500

d.power Integer. Positive Power applied to euclidean distances for the gap statistic. De-
fault: 2

spaceH0 Character. Space of the reference distribution for the gap statistic. Options =
"scaledPCA", "original" (See Details). Default: "original"

method Character. Optimal k selection criterion for the gap statistic. Options = "global-
max", "firstmax", "Tibs2001SEmax", "firstSEmax", "globalSEmax". See clusGap
for more details. Default: "globalSEmax"

SE.factor Numeric. Factor to feed into the standard error rule for the gap statistic. Only
applicable for methods based on standard error (SE). See clusGap for more
details. Default: 1

... Additional arguments as for supersom.

Details

The clustering of SOM’s codebook vectors has been proposed in several works, notably in that
from Vesanto and Alhoniemi (2000). These authors proposed a two-stage clustering routine as an
efficient method to reduce computational load, while obtaining satisfactory correspondence between
the clustered codebook vectors and the clustered original feature space.

The main purpose of this function is to allow the use of clustering and k-selection algorithms that
may result prohibitive for large datasets, such as matrices derived from raster layers commonly used
during geocomputational routines. Thus, the SOM’s codebook vectors can be subsequently used

28 som_gap

for the calculation of distance matrices, which given the large size of their input feature space, may
otherwise be impossible to create due to insufficient memory allocation capacity. Similarly, robust
clustering algorithms that require full pairwise distance matrices (e.g., hierarchical clustering, PAM)
and/or eigenvalues (e.g., spectral clustering) may also be performed on SOM’s codebook vectors.

Note that supersom will internally equalize the importance (i.e., weights) of variables such that
differences in scale will not affect distance calculations. This behavior can be prevented by setting
normalizeDataLayers = FALSE in additional arguments passed to supersom. Moreover, custom
weights can also be passed through the additional argument user.weights. In such case, user weights
are applied on top of the internal weights.

When working with large matrices, the additional SOM argument keep.data may be set to FALSE.
However, note that by doing so, the suggested follow-up function for raster products som_pam will
not work since it requires both original data and winning units.

For the gap statistic, method = "scaledPCA" has resulted in errors for R sessions with BLAS/LAPACK
supported by the Intel Math Kernel Library (MKL).

Value

SOM: An object of class kohonen (see supersom). The components of class kohonen returned
by this function are: (1) data = original input matrix, (2) unit.classif = winning units for all ob-
servations, (3) distances = distance between each observation and its corresponding winning unit,
(4) grid = object of class somgrid (see somgrid), (5) codes = matrix of codebook vectors, (6)
changes = matrix of mean average deviations from codebook vectors, (7) dist.fcts = selected dis-
tance function, and other arguments passed to supersom (e.g., radius, distance.weights, etc.). Note
that components 1, 2, and 3 will only be returned if keep.data = TRUE, which is the default.

SOMdist: Object of class dist. Matrix of pairwise distances calculated from the SOM’s codebook
vectors.

SOMgap: Object of class clusGap. The main component of class clusGap returned by this function
is Tab, which is a matrix of the gap statistic results (see clusGap). Additional components are the
arguments passed to the function (i.e., spaceH0, B), the PAM function, n (number of observations)
and call (the clusGap call-type object).

Kopt: Optimal k, as selected by arguments method and (possibly) SE.factor.

References

L. Kaufman and P. Rousseeuw. Finding groups in data: an introduction to cluster analysis. John
Wiley & Sons, 1990. doi:10.1002/9780470316801

T. Kohonen. Self-organized formation of topologically correct feature maps. Biological cybernet-
ics, 43 (1):59–69, 1982. doi:10.1007/bf00337288

T. Kohonen. The self-organizing map. Proceedings of the IEEE, 78(9):1464–1480, 1990. doi:10.1016/
s09252312(98)000307

M. Maechler, P. Rousseeuw, A. Struyf, M. Hubert, and K. Hornik. cluster: Cluster Analysis Basics
and Extensions, 2021. https://CRAN.R-project.org/package=cluster

R. Tibshirani, G. Walther, and T. Hastie. Estimating the number of clusters in a data set via
the gap statistic. Journal of the Royal Statistical Society: Series B (Statistical Methodology),
63(2):411–423, 2001. doi:10.1111/14679868.00293

https://doi.org/10.1002/9780470316801
https://doi.org/10.1007/bf00337288
https://doi.org/10.1016/s0925-2312%2898%2900030-7
https://doi.org/10.1016/s0925-2312%2898%2900030-7
https://CRAN.R-project.org/package=cluster
https://doi.org/10.1111/1467-9868.00293

som_pam 29

J. Vesanto and E. Alhoniemi. Clustering of the self-organizing map. IEEE Transactions on Neural
Networks, 11(3):586–600, 2000. doi:10.1109/72.846731

R. Wehrens and J. Kruisselbrink. Flexible self-organizing maps in kohonen 3.0. Journal of Statisti-
cal Software, 87(1):1–18, 2018. doi:10.18637/jss.v087.i07

See Also

Other Functions for Landscape Stratification: som_pam(), strata()

Examples

require(terra)
Multi-layer SpatRaster with topographic variables
p <- system.file("exdat", package = "rassta")
tf <- list.files(path = p, pattern = "^height|^slope|^wetness",

full.names = TRUE
)

t <- rast(tf)
Scale topographic variables (mean = 0, StDev = 1)
ts <- scale(t)
Self-organizing map and gap statistic for optimum k
set.seed(963)
tsom <- som_gap(var.rast = ts, xdim = 8, ydim = 8, rlen = 150,

mode = "online", K.max = 6, B = 300, spaceH0 = "original",
method = "globalSEmax"
)

Optimum k
tsom$Kopt

som_pam Rasterization of Self-Organizing Map and Partitioning Around
Medoids

Description

Creation of a rasterized representation of the outputs from the self-organizing map (SOM) and
partitioning around medoids (PAM). Given a reference raster layer, each winning unit of the SOM
and clustering value from the PAM will be mapped on the corresponding cell in the reference layer
and across the geographic space supported by such layer. Note that this function is a follow-up of
the som_gap function.

Usage

som_pam(ref.rast, kohsom, k, metric = "manhattan", stand = FALSE, ...)

https://doi.org/10.1109/72.846731
https://doi.org/10.18637/jss.v087.i07

30 som_pam

Arguments

ref.rast SpatRaster, as in rast. This raster layer will serve as a reference of the index
of valid cells and the geographic support for the rasterized representation of
SOM’s winning units and PAM’s clustering. See Details for some notes about
efficiency.

kohsom SOM Object of class kohonen, see supersom. The following components must
be present in the SOM object (1) unit.classif = winning units for all observa-
tions, and (2) codes = matrix of codebook vectors.

k Integer (positive value). Number of clusters to form from the codebook vectors
of the SOM, where k < SOM’s codebook vectors.

metric Character. Distance function for PAM. Options are "euclidean", and "manhat-
tan". Default: "manhattan"

stand Boolean. For the PAM function, do SOM’s codebook vectors need to be stan-
dardized? Default: FALSE

... Additional arguments as for pam. See Details.

Details

As in som_gap, this function calls pam to perform the clustering of SOM’s codebook vectors. The
SOM object must belong to the class kohonen, as in supersom.

Note that in order for som_pam to perform efficiently, the reference SpatRaster ref.rast must be a
single-layer SpatRaster with the same cell size, number of rows, number of columns, and index of
valid cells as those in the multi-layer SpatRaster object used in som_gap. If a multi-layer SpatRaster
(with each layer possibly having a different index of valid cells) is used as the ref.rast, the efficiency
of som_pam (i.e., running time and/or memory allocation) may be degraded when handling large
SpatRaster objects.

For this function to work as intended, the additional argument cluster.only in pam must remain as
FALSE, which is the default.

Value

sompam: Object of class pam. See ?pam.object for details.

sompam.rast: Multi-layer SpatRaster, as in rast. The first raster layer corresponds to the SOM’s
winning units. The second raster layer corresponds to the clustered SOM’s codebook vectors by
PAM.

See Also

Other Functions for Landscape Stratification: som_gap(), strata()

Examples

require(terra)
Multi-layer SpatRaster with topographic variables
p <- system.file("exdat", package = "rassta")
ft <- list.files(path = p, pattern = "^height|^slope|^wetness",

full.names = TRUE

strata 31

)
t <- rast(ft)
Scale topographic variables (mean = 0, StDev = 1)
ts <- scale(t)
Self-organizing map and gap statistic for optimum k
set.seed(963)
tsom <- som_gap(var.rast = ts, xdim = 8, ydim = 8, rlen = 150,

mode = "online", K.max = 6, B = 300, spaceH0 = "original",
method = "globalSEmax"
)

Optimum k
tsom$Kopt
PAM clustering of topographic SOM's codebook vectors
tpam <- som_pam(ref.rast = t[[1]], kohsom = tsom$SOM, k = tsom$Kopt)
Plot topographic variables, SOM grid and PAM clustering
if(interactive()){plot(c(t, tpam$sompam.rast))}

strata Create Stratification Units

Description

Stratification units are created from the spatial intersection of raster layers representing different sets
of classification units. Each set of classification units is related to a particular landscape factor (e.g.,
topography, climate) or to a particular spatial scale for a single landscape factor (e.g., micro-climate,
macro-topography). Each resulting stratification unit is considered to represent a distinct landscape
configuration in terms of multiple landscape factors/factor scales (represented by the classification
units). This function automatically assigns a unique numeric code to each stratification unit. For x
stratification unit, the numeric code represents the unique combination of classification units whose
spatial intersection resulted in x. See Examples to get a better idea of the logic behind the code
assignment process.

Usage

strata(cu.rast, to.disk = FALSE, outdir = ".", su.name, ...)

Arguments

cu.rast SpatRaster, as in rast. Multi-layer SpatRaster for which each layer represents a
set of classification units for a particular landscape factor or factor scale. Integer
cell values (i.e., numeric identifiers) are expected.

to.disk Boolean. Write the resulting raster layer of stratification units to disk? Default:
FALSE

outdir Character. If to.disk = TRUE, string specifying the path for the output raster
layer of stratification units. Default: "."

su.name Character. If to.disk = TRUE, file name (including extension) for the output
raster layer of stratification units.

... Additional arguments as for writeRaster.

32 strata

Details

When printing su.rast$code.mult, the output shows the multiplier used for each landscape fac-
tor/factor scale. From this output, one can manually replicate the creation of stratification units
through simple raster algebra. To do so, a weighted sum of the SpatRasters containing the clas-
sification units for each landscape factor/factor scale should be performed using the multipliers as
weights. Note that the weights do not imply relative importance. The weights are required only to
preserve a logical structure of the landscape factors/factor scales in the resulting numeric code.

Value

su.rast: Single-layer SpatRaster representing the stratification units occurring across geographic
space. The cell values in this raster layer represents the numeric codes of stratification units.

code.mult: Multipliers used for the creation of the numeric codes. See Details.

See Also

Other Functions for Landscape Stratification: som_gap(), som_pam()

Examples

require(terra)
p <- system.file("exdat", package = "rassta")
Multi-layer SpatRast with classification units (Cus)
Three sets (i.e., landscape factors): geology, climate and topography
fcu <- list.files(path = p,

pattern = "geology.tif|climate.tif|topography.tif",
full.names = TRUE
)

cu <- terra::rast(fcu)
Stratification units (SUs)
su <- strata(cu.rast = cu)
Plot the stratification units
if(interactive()){plot(su$su.rast, type = "classes")}
#
Note code structure from SUs and corresponding values from CUs
z <- c(su$su.rast, cu)[46,61] # Example of one cell (row = 45, column = 45)
su$code.mult # Multipliers
z[c("SU", names(su$code.mult))] # Code structure

Note what happens when some landscape factors have cell values greater...
#... than 1 digit (i.e., more than 9 distinct classification units)
cu <- c(cu[[1]], cu[[2]]^4, cu[[3]]^2)
su <- strata(cu.rast = cu)
su$code.mult
c(su$su.rast, cu[[names(su$code.mult)]])[46,61]

Index

∗ Functions for Landscape Stratification
som_gap, 26
som_pam, 29
strata, 31

∗ Functions for Predictive Modeling
engine, 4

∗ Functions for Stratified Sampling
locations, 8
observation, 11

∗ Landscape Correspondence Metrics
predict_functions, 14
select_functions, 18
signature, 21
similarity, 23

∗ Miscellaneous Functions
dummies, 2
figure, 7
plot3D, 13

aggregate, 13
app, 22, 24

bam, 16

clusGap, 26–28

dummies, 2, 7, 14

ecdf, 17
engine, 4

figure, 3, 7, 14

ggparcoord, 19
ggplotly, 20

hcl.colors, 14
histogram, 16

locations, 8, 12
loess, 16

makeCluster, 17

observation, 6, 10, 11

pam, 26, 30
plot3D, 3, 7, 13
predict_functions, 14, 20, 21, 23, 25

rast, 3, 4, 9, 11, 13, 15, 19, 21, 24, 27, 30, 31
registerDoParallel, 5, 9, 17, 22, 24

segregate, 3
select_functions, 17, 18, 19, 23, 25
signature, 17, 20, 21, 23, 25
similarity, 5, 6, 10, 12, 17, 20, 23, 23
som_gap, 26, 29, 30, 32
som_pam, 28, 29, 29, 30, 32
somgrid, 28
strata, 10, 12, 25, 29, 30, 31
supersom, 26–28, 30

vect, 5, 9, 11

writeRaster, 3, 5, 16, 22, 24, 31
writeVector, 9

zonal, 19

33

	dummies
	engine
	figure
	locations
	observation
	plot3D
	predict_functions
	select_functions
	signature
	similarity
	som_gap
	som_pam
	strata
	Index

