## ---- include = FALSE--------------------------------------------------------- options(rmarkdown.html_vignette.check_title = FALSE) knitr::opts_chunk$set( collapse = TRUE, comment = "#>", fig.height = 5, fig.width = 6 ) ## ---- echo=FALSE, out.width=800----------------------------------------------- knitr::include_graphics("fig0framework.png") ## ---- eval=FALSE-------------------------------------------------------------- # # install required packages # pkgs = c( # "raceland", # "comat", # "terra", # "sf", # "dplyr" # ) # to_install = !pkgs %in% installed.packages() # if(any(to_install)) { # install.packages(pkgs[to_install]) # } ## ---- warning=FALSE, message=FALSE, include=FALSE----------------------------- # attach required packages library(raceland) library(terra) library(sf) library(dplyr) ## ----------------------------------------------------------------------------- list_raster = list.files(system.file("rast_data", package = "raceland"), full.names = TRUE) ## ----------------------------------------------------------------------------- race_raster = rast(list_raster) race_raster ## ----fig1, fig.align = "center", out.width = '80%'---------------------------- plot(race_raster) ## ----------------------------------------------------------------------------- pf_to_data = system.file("vect_data/block_data.gpkg", package = "raceland") ## ---- warning=FALSE, message=FALSE-------------------------------------------- vect_data = st_read(pf_to_data) ## ----------------------------------------------------------------------------- names(vect_data) ## ---- warning=FALSE, message=FALSE-------------------------------------------- race_raster_from_vect = zones_to_raster(v = vect_data, resolution = 30, variables = c("ASIAN", "BLACK", "HISPANIC", "OTHER", "WHITE")) ## ----------------------------------------------------------------------------- # generate 100 realizations based on race_raster object real_raster = create_realizations(x = race_raster, n = 100) ## ---- fig2, fig.align = "center", out.width = '100%'-------------------------- # plot five first realizations plot(real_raster[[1:5]], col = c("#F16667", "#6EBE44", "#7E69AF", "#C77213", "#F8DF1D")) ## ---- fig3, fig.align = "center", out.width = '40%'--------------------------- # In race_colors first color corresponds to asian, second to black, # third to hispanics, fourth to other and fifth to white) race_colors = c("#F16667", "#6EBE44", "#7E69AF", "#C77213", "#F8DF1D") plot_realization(x = real_raster[[1]], y = race_raster, hex = race_colors) ## ---- echo=FALSE, out.width = '100%'------------------------------------------ knitr::include_graphics("fig1adjacencies.png") ## ---- echo=FALSE, out.width = '100%'------------------------------------------ knitr::include_graphics("fig2matrix.png") ## ----------------------------------------------------------------------------- dens_raster = create_densities(real_raster, race_raster, window_size = 10) ## ----------------------------------------------------------------------------- exposure_mat = comat::get_wecoma(x = as.matrix(real_raster[[1]], wide = TRUE), w = as.matrix(dens_raster[[1]], wide = TRUE)) colnames(exposure_mat) = c("ASIAN", "BLACK", "HISPANIC", "OTHER", "WHITE") rownames(exposure_mat) = c("ASIAN", "BLACK", "HISPANIC", "OTHER", "WHITE") round(exposure_mat, 2) ## ----------------------------------------------------------------------------- metr_df = calculate_metrics(x = real_raster, w = dens_raster, neighbourhood = 4, fun = "mean", size = NULL, threshold = 1) ## ----------------------------------------------------------------------------- head(metr_df) ## ----------------------------------------------------------------------------- summary(metr_df[, c("ent", "mutinf")]) ## ----------------------------------------------------------------------------- metr_df %>% summarise(mean_ent = mean(ent, na.rm = TRUE), sd_ent = sd(ent, na.rm = TRUE), mean_mutinf = mean(mutinf), sd_mutinf = sd(mutinf))