
Package ‘qlcMatrix’
May 8, 2024

Version 0.9.8

Date 2024-05-06

Title Utility Sparse Matrix Functions for Quantitative Language
Comparison

Description Extension of the functionality of the 'Matrix' package for using sparse matri-
ces. Some of the functions are very general, while other are highly specific for special data for-
mat as used for quantitative language comparison.

URL https://github.com/cysouw/qlcMatrix

BugReports https://github.com/cysouw/qlcMatrix/issues

License GPL-3

Encoding UTF-8

Depends Matrix (>= 1.2), R (>= 3.2), slam (>= 0.1-32), sparsesvd

Imports methods, docopt

Suggests MASS, knitr, rmarkdown

VignetteBuilder knitr, rmarkdown

RoxygenNote 6.0.1

NeedsCompilation no

Author Michael Cysouw [aut, cre] (<https://orcid.org/0000-0003-3168-4946>)

Maintainer Michael Cysouw <cysouw@mac.com>

Repository CRAN

Date/Publication 2024-05-08 21:20:03 UTC

R topics documented:
qlcMatrix-package . 2
Array . 3
assocSparse . 5
bibles . 8
corSparse . 9

1

https://github.com/cysouw/qlcMatrix
https://github.com/cysouw/qlcMatrix/issues
https://orcid.org/0000-0003-3168-4946

2 qlcMatrix-package

cosNominal . 12
cosSparse . 14
dimRed . 16
distSparse . 19
huber . 20
jMatrix . 21
pwMatrix . 23
rKhatriRao . 25
rowMax . 26
rSparseMatrix . 28
sim.nominal . 29
sim.strings . 32
sim.wordlist . 35
sim.words . 38
splitStrings . 41
splitTable . 43
splitText . 45
splitWordlist . 48
ttMatrix . 53
unfold . 55
unfoldBlockMatrix . 57
WALS . 58

Index 61

qlcMatrix-package Utility sparse matrix functions for Quantitative Language Comparison
(QLC)

Description

This package contains various functions that extend the functionality of the Matrix package for
using sparse matrices. Some of the functions are very general, while other are highly specific for
special data format as used for quantitative language comparison.

Details

Package: qlcMatrix
Type: Package
Version: 0.9.8
Date: 2024-05-06
License: GPL-3

This package contains various different kinds of function.

First, some general utility functions to deal with sparse matrices: (i) rowMax to compute and identify
row-wise maxima and minima in sparse matrices, (ii) rKhatriRao to remove empty rows in a Kha-

Array 3

triRao product (but still get the right rownames) and (iii) rSparseMatrix to produce random sparse
matrices. There are also some experimental basic methods for handling sparse arrays ("tensors"),
most interestingly unfold.

Second, some general functions to compute associations between the columns of sparse matrices,
with possibilities for extension for ad-hoc measures: cosSparse, corSparse, and assocSparse
There are special versions of these for nominal data cosNominal, assocNominal.

Third, there are three central functions needed to efficiently turn data from quantitative language
comparison into sparse matrices. These basic functions are then used by high-level function in this
package. Although these functions might seem almost trivial, they form the basis for many highly
complex computations. They are ttMatrix, pwMatrix and jMatrix.

Fourth, there are some high-level convenience function that take specific data formats from quan-
titative language comparison and turn them into set of sparse matrices for efficient computations.
They might also be useful for other data types, but various details decisions are specifically tailored
to the envisioned data types. These functions are splitTable splitStrings, splitWordlist, and
splitText.

Finally, there are various shortcuts to directly compute similarity matrices from various kinds of
data: sim.nominal, sim.words, sim.strings, sim.wordlist. These are specifically tailored
towards specific kinds of data, though they might also be useful elsewhere. Also, the code is mostly
easy wrappers around the split and cos/assoc functions, so it should not be difficult to adapt
these functions to other needs.

Author(s)

Michael Cysouw <cysouw@mac.com>

References

Cysouw, Michael. 2014. Matrix Algebra for Language Comparison. Manuscript.

Mayer, Thomas and Michael Cysouw. 2012. Language comparison through sparse multilingual
word alignment. Proceedings of the EACL 2012 Joint Workshop of LINGVIS & UNCLH, 54–62.
Avignon: Association for Computational Linguistics.

Prokić, Jelena and Michael Cysouw. 2013. Combining regular sound correspondences and geo-
graphic spread. Language Dynamics and Change 3(2). 147–168.

Array Sparse Arrays ("Tensors")

Description

Convenient function linking sparse Arrays from the package spam to the sparse Matrices from the
package Matrix.

4 Array

Usage

Array(A)
sparseArray(i, v = NULL, ...)

as.Matrix(M)

Arguments

A An array to be turned into a sparse Array using as.simple_sparse_array. Can
also be a dataframe, but see Details below about the treatment of data frames
here.

i Integer matrix of array indices passed to simple_sparse_array.
v vector of values passed to simple_sparse_array. If NULL (by default), all spec-

ified indices (i.e. all rows in i) are given the value 1.
M Matrix of type simple_triple_matrix from the package spam to be turned into

a TsparseMatrix from the packages Matrix.
... Further arguments passed to simple_sparse_array.

Details

Array turns an array into a sparse Array. There is a special behavior when a dataframe is sup-
plied. Such a dataframe is treated as ‘long format‘, i.e. the columns of the dataframe are treated as
dimensions of the Array, and all rows of the dataframe are interpreted as entries. The coordinates
are given by the ordering of the levels in the dataframe, and the dimnames are given by the levels.

sparseArray constructs sparse Arrays from a matrix of indices and a vector of values. dim and
dimnames can be added as in simple_sparse_array

as.Matrix turns a simple_triplet_matrix into a dgTMatrix.

Value

Sparse Arrays use the class "simple_sparse_array" from spam

Note

These functions are only an example of how spam can be linked to Matrix.

Author(s)

Michael Cysouw

Examples

x <- matrix(c(1, 0, 0, 2), nrow = 2)
s <- as.simple_triplet_matrix(x)
str(s)

as.Matrix(s)
str(as.Matrix(s))

assocSparse 5

assocSparse Association between columns (sparse matrices)

Description

This function offers an interface to various different measures of association between columns in
sparse matrices (based on functions of ‘observed’ and ‘expected’ values). Currently, the following
measures are available: pointwise mutual information (aka log-odds), a poisson-based measure and
Pearson residuals. Further measures can easily be specifically defined by the user. The calculations
are optimized to be able to deal with large sparse matrices. Note that these association values are
really only (sensibly) defined for binary data.

Usage

assocSparse(X, Y = NULL, method = res, N = nrow(X), sparse = TRUE)

Arguments

X a sparse matrix in a format of the Matrix package, typically a dgCMatrix with
only zeros or ones. The association will be calculated between the columns of
this matrix.

Y a second matrix in a format of the Matrix package with the same number of
rows as X. When Y=NULL, then the associations between the columns of X and
itself will be taken. If Y is specified, the association between the columns of X
and the columns of Y will be calculated.

method The method to be used for the calculation. Currently res (residuals), poi (pois-
son), pmi (pointwise mutual information) and wpmi (weighted pointwise mutual
information) are available, but further methods can be specified by the user. See
details for more information.

N Variable that is needed for the calculations of the expected values. Only in
exceptional situations this should be different from the default value (i.e. the
number of rows of the matrix).

sparse By default, nothing is computed when the observed co-occurrence of two columns
is zero. This keeps the computations and the resulting matrix nicely sparse.
However, for some measures (specifically the Pearson residuals ‘res’) this leads
to incorrect results. Mostly the error is negligible, but if the correct behavior is
necessary, chose sparse = F. Note that the result will then be a full matrix, so
this is not feasible for large datasets.

Details

Computations are based on a comparison of the observed interaction crossprod(X,Y) and the ex-
pected interaction. Expectation is in principle computed as tcrossprod(rowSums(abs(X)),rowSums(abs(Y)))/nrow(X),
though in practice the code is more efficient than that.

Note that calculating the observed interaction as crossprod(X,Y) really only makes sense for bi-
nary data (i.e. matrices with only ones and zeros). Currently, all input is coerced to such data by

6 assocSparse

as(X, "nMatrix")*1, meaning that all values that are not one or zero are turned into one (including
negative values!).

Any method can be defined as a function with two arguments, o and e, e.g. simply by specifying
method = function(o,e){o/e}. See below for more examples.

The predefined functions are:

• pmi: pointwise mutual information, aka as log-odds in bioinformatics, defined as
pmi <- function(o,e) { log(o/e) }.

• wpmi: weighted pointwise mutual information, defined as
wpmi <- function(o,e) { o * log(o/e) }.

• res: Pearson residuals, defined as
res <- function(o,e) { (o-e) / sqrt(e) }.

• poi: association assuming a poisson-distribution of the values, defined as
poi <- function(o,e) { sign(o-e) * (o * log(o/e) - (o-e)) }.
Seems to be very useful when the non-zero data is strongly skewed along the rows, i.e. some
rows are much fuller than others. A short explanation of this method can be found in Prokić
and Cysouw (2013).

Value

The result is a sparse matrix with the non-zero association values. Values range between -Inf and
+Inf, with values close to zero indicating low association. The exact interpretation of the values
depends on the method used.

When Y = NULL, then the result is a symmetric matrix, so a matrix of type dsCMatrix with size
ncol(X) by ncol{X} is returned. When X and Y are both specified, a matrix of type dgCMatrix
with size ncol(X) by ncol{Y} is returned.

Note

Care is taken in the implementation not to compute any association between columns that will end
up with a value of zero anyway. However, very small association values will be computed. For
further usage, these small values are often unnecessary, and can be removed for reasons of sparsity.
Consider something like X <- drop0(X, tol = value) on the resulting X matrix (which removes all
values between -value and +value). See examples below.

It is important to realize, that by default noting is computed when the observed co-occurrence is
zero. However, this leads to wrong results with method = res, as (o-e)/sqrt(e) will be a negative
value when o = 0. In most practically situations this error will be small and not important. However,
when needed, the option sparse = F will give the correct results (though the resulting matrix will
not be sparse anymore). Note that with all other methods implemented here, the default behavior
leads to correct results (i.e. for log(O) nothing is calculated).

The current implementation will not lead to correct results with lots of missing data (that option is
simply not yet implemented). See cosMissing for now.

Author(s)

Michael Cysouw

assocSparse 7

References

Prokić, Jelena & Michael Cysouw. 2013. Combining regular sound correspondences and geo-
graphic spread. Language Dynamics and Change 3(2). 147–168.

See Also

See assocCol and assocRow for this measure defined for nominal data. Also, see corSparse and
cosSparse for other sparse association measures.

Examples

----- reasonably fast with large very sparse matrices -----

X <- rSparseMatrix(1e6, 1e6, 1e6, NULL)
system.time(M <- assocSparse(X, method = poi))
length(M@x) / prod(dim(M)) # only one in 1e6 cells non-zero

----- reaching limits of sparsity -----

watch out:
with slightly less sparse matrices the result will not be very sparse,
so this will easily fill up your RAM during computation!

X <- rSparseMatrix(1e4, 1e4, 1e6, NULL)
system.time(M <- assocSparse(X, method = poi))
print(object.size(M), units = "auto") # about 350 Mb
length(M@x) / prod(dim(M)) # 30% filled

most values are low, so it often makes sense
to remove low values to keep results sparse

M <- drop0(M, tol = 2)
print(object.size(M), units = "auto") # reduces to 10 Mb
length(M@x) / prod(dim(M)) # down to less than 1% filled

----- defining new methods -----

Using the following simple 'div' method is the same as
using a cosine similarity with a 1-norm, up to a factor nrow(X)

div <- function(o,e) {o/e}
X <- rSparseMatrix(10, 10, 30, NULL)
all.equal(
assocSparse(X, method = div),
cosSparse(X, norm = norm1) * nrow(X)
)

----- comparing methods -----

8 bibles

Compare various methods on random data
ignore values on diagonal, because different methods differ strongly here
Note the different behaviour of pointwise mutual information (and division)

X <- rSparseMatrix(1e2, 1e2, 1e3, NULL)

p <- assocSparse(X, method = poi); diag(p) <- 0
r <- assocSparse(X, method = res); diag(r) <- 0
m <- assocSparse(X, method = pmi); diag(m) <- 0
w <- assocSparse(X, method = wpmi); diag(w) <- 0
d <- assocSparse(X, method = div); diag(d) <- 0

pairs(~w@x+p@x+r@x+d@x+m@x,
labels=c("weighted pointwise\nmutual information","poisson","residuals","division",

"pointwise\nmutual\ninformation"), cex = 0.7)

bibles A selection of bible-texts

Description

A selection of six bible texts as prepared by the paralleltext project.

Usage

data(bibles)

Format

A list of five elements

verses a character vector with all 43904 verse numbers as occurring throughout all translations as
collected in the paralleltext project. This vector is used to align all texts to each other. The
verse-numbers are treated as characters so ordering and matching works as expected.

eng The English ‘Darby’ Bible translation from 1890 by John Nelson Darby.

deu The Bible in German. Schlachter Version von 1951. Genfer Bibelgesellschaft 1951.

tgl The New Testament in Tagalog. Philippine Bible Society 1996.

aak The New Testament in the Ankave language of Papua New Guinea. Wycliffe Bible Translators,
Inc. 1990.

Details

Basically, all verse-numbering is harmonized, the text is unicode normalized, translations that cap-
ture multiple verses are included in the first of those verses, with the others left empty. Empty
verses are thus a sign of combined translations. Verses that are not translated simply do not occur
in the original files. Most importantly, the text are tokenized as to wordform, i.e. all punctuation
and other non-word-based symbols are separated by spaces. In this way, space can be used for a

corSparse 9

quick wordform-based tokenization. The addition of spaces has been manually corrected to achieve
a high precision of language-specific wordform tokenization.

The Bible texts are provided as named vectors of strings, each containing one verse. The names of
the vector are codes for the verses. See Mayer & Cysouw (2014) for more information about the
verse IDs and other formatting issues.

References

Mayer, Thomas and Michael Cysouw. 2014. Creating a massively parallel Bible corpus. Proceed-
ings of LREC 2014.

Examples

----- load data -----

data(bibles)

----- separate into sparse matrices -----

use splitText to turn a bible into a sparse matrix of wordforms x verses
E <- splitText(bibles$eng, simplify = TRUE, lowercase = FALSE)

all wordforms from the first verse
(internally using pure Unicode collation, i.e. ordering is determined by Unicode numbering)
which(E[,1] > 0)

----- co-occurrence across text -----

how often do 'father' and 'mother' co-occur in one verse?
(ignore warnings of chisq.test, because we are not interested in p-values here)

(cooc <- table(E["father",] > 0, E["mother",] > 0))
suppressWarnings(chisq.test(cooc)$residuals)

the function 'sim.words' does such computations efficiently
for all 15000 x 15000 pairs of words at the same time

system.time(sim <- sim.words(bibles$eng, lowercase = FALSE))
sim["father", "mother"]

corSparse Pearson correlation between columns (sparse matrices)

Description

This function computes the product-moment correlation coefficients between the columns of sparse
matrices. Performance-wise, this improves over the approach taken in the cor function. However,
because the resulting matrix is not-sparse, this function still cannot be used with very large matrices.

10 corSparse

Usage

corSparse(X, Y = NULL, cov = FALSE)

Arguments

X a sparse matrix in a format of the Matrix package, typically dgCMatrix . The
correlations will be calculated between the columns of this matrix.

Y a second matrix in a format of the Matrix package. When Y = NULL, then the
correlations between the columns of X and itself will be taken. If Y is speci-
fied, the association between the columns of X and the columns of Y will be
calculated.

cov when TRUE the covariance matrix is returned, instead of the default correlation
matrix.

Details

To compute the covariance matrix, the code uses the principle that

E[(X − µ(X))′(Y − µ(Y))] = E[X ′Y]− µ(X ′)µ(Y)

With sample correction n/(n-1) this leads to the covariance between X and Y as

(X ′Y − n ∗ µ(X ′)µ(Y))/(n− 1)

The computation of the standard deviation (to turn covariance into correlation) is trivial in the case
Y = NULL, as they are found on the diagonal of the covariance matrix. In the case Y != NULL uses the
principle that

E[X − µ(X)]2 = E[X2]− µ(X)2

With sample correction n/(n-1) this leads to

sd2 = (X2 − n ∗ µ(X)2)/(n− 1)

Value

The result is a regular square (non-sparse!) Matrix with the Pearson product-moment correlation
coefficients between the columns of X.

When Y is specified, the result is a rectangular (non-sparse!) Matrix of size nrow(X) by nrow(Y)
with the correlation coefficients between the columns of X and Y.

When cov = T, the result is a covariance matrix (i.e. a non-normalized correlation).

Note

Because of the ‘centering’ of the Pearson correlation, the resulting Matrix is completely filled. This
implies that this approach is normally not feasible with resulting matrices with more than 1e8 cells
or so (except in dedicated computational environments with lots of RAM). However, in most sparse
data situations, the cosine similarity cosSparse will almost be identical to the Pearson correlation,
so consider using that one instead. For a comparison, see examples below.

For further usage, the many small coefficients are often unnecessary anyway, and can be removed
for reasons of sparsity. Consider something like M <- drop0(M, tol = value) on the resulting M
matrix (which removes all values between -value and +value). See examples below.

corSparse 11

Author(s)

Michael Cysouw

Slightly extended and optimized, based on the code from a discussion at stackoverflow.

See Also

cor in the base packages, cosSparse, assocSparse for other sparse association measures.

Examples

reasonably fast (though not instantly!) with
sparse matrices 1e4x1e4 up to a resulting matrix size of 1e8 cells.
However, the calculations and the resulting matrix take up lots of memory

X <- rSparseMatrix(1e3, 1e3, 1e4)
system.time(M <- corSparse(X))
print(object.size(M), units = "auto") # more than 750 Mb

Most values are low, so it often makes sense
to remove low values to keep results sparse

M <- drop0(M, tol = 0.4)
print(object.size(M), units = "auto") # normally reduces size to about a quarter
length(M@x) / prod(dim(M)) # down to less than 0.01% non-zero entries

comparison with other methods
corSparse is much faster than cor from the stats package
but cosSparse is even quicker than both!
do not try the regular cor-method with larger matrices than 1e3x1e3
X <- rSparseMatrix(1e3, 1e3, 1e4)
X2 <- as.matrix(X)

if there is a warning, try again with different random X
system.time(McorRegular <- cor(X2))
system.time(McorSparse <- corSparse(X))
system.time(McosSparse <- cosSparse(X))

cor and corSparse give identical results
all.equal(McorSparse, McorRegular)

corSparse and cosSparse are not identical, but close
McosSparse <- as.matrix(McosSparse)
dimnames(McosSparse) <- NULL
all.equal(McorSparse, McosSparse)

Actually, cosSparse and corSparse are *almost* identical!
cor(as.dist(McorSparse), as.dist(McosSparse))

So: consider using cosSparse instead of cor or corSparse.
With sparse matrices, this gives mostly the same results,

https://stackoverflow.com/questions/5888287/running-cor-or-any-variant-over-a-sparse-matrix-in-r

12 cosNominal

but much larger matrices are possible
and the computations are quicker and more sparse

cosNominal Associations-measures for sparsely encoded nominal variables

Description

Nominal variables can be encoded as a combination of a sparse incidence and index matrix. Various
functions to compute variations of assocSparse and cosSparse for such data are described here.

Usage

cosCol(X, colGroupX, Y = NULL, colGroupY = NULL, norm = norm2)
assocCol(X, colGroupX, Y = NULL, colGroupY = NULL, method = res, sparse = TRUE)

cosRow(X, rowGroup, Y = NULL, norm = norm2 , weight = NULL)
assocRow(X, rowGroup, Y = NULL, method = res)

Arguments

X,Y sparse matrices in a format of the Matrix package, typically dgCMatrix . When
Y = NULL, then the similarity between the columns of X and itself will be taken.
If Y is specified, the similarity between the columns of X and the columns of Y
will be calculated.

colGroupX, colGroupY

sparse matrices (typically pattern matrices) with the same number of columns
as X and Y, respectively, indicating which columns belong to the same group.
Each row of these matrices represents a group.

rowGroup sparse matrix (typically pattern matrices) with the same number of rows as X
(and Y when not NULL), indicating which rows belong to the same group. Each
column of these matrices represents a group.

norm norm to be used. See cosSparse for details.

weight weighting of rows. See cosSparse for details. Note that row-weighting only
makes sense with cosRow.

method method to be used. See assocSparse for details.

sparse All methods try to be as sparse as possible. Specifically, when there are no
observed co-occurrence, then nothing is computed. This might lead to slight
deviations in the results for some methods. Set sparse=F to force computation
for all cells. This leads to non-sparse results, so use with caution with large
datasets.

cosNominal 13

Details

The approaches assoc and cos are described in detail in assocSparse and cosSparse, respectively.
Those methods are extended here in case either the columns (.col) or the rows (.row) form groups.
Specifically, this occurs with sparse encoding of nominal variables (see splitTable). In such
encoding, the different values of a nominal variable are encoded in separate columns. However,
these columns cannot be treated independently, but have to be treated as groups.

The .col methods should be used when similarities between the different values of nominal vari-
ables are to be computed. The .row methods should be used when similarities between the obser-
vations of nominal variables are to be computed.

Note that the calculations of the assoc functions really only makes sense for binary data (i.e. matri-
ces with only ones and zeros). Currently, all input is coerced to such data by as(X, "nMatrix")*1,
meaning that all values that are not one or zero are turned into one (including negative values!).

Value

When Y = NULL, then all methods return symmetric similarity matrices in the form dsCMatrix, only
specifying the upper triangle. The only exception is when sparse=T is chose, then the result will
be in the form dsyMatrix.

When a second matrix Y is specified, the result will be of the kind dgCMatrix or dgeMatrix,
respectively.

Note

Note that these methods automatically take missing data into account. They also work with large
amount of missing data, but of course the validity of any similarity with much missing data is
problematic.

Author(s)

Michael Cysouw

See Also

sim.att, sim.obs for convenient shortcuts around these methods.

Examples

convenience functions are easiest to use
first a simple example using the farms-dataset from MASS
library(MASS)

to investigate the relation between the individual values
This is similar to Multiple Correspondence Analysis (see mca in MASS)
f <- splitTable(farms)
s <- assocCol(fOV,fAV)
rownames(s) <- f$values
plot(hclust(as.dist(-s)))

14 cosSparse

cosSparse Cosine similarity between columns (sparse matrices)

Description

cosSparse computes the cosine similarity between the columns of sparse matrices. Different nor-
malizations and weightings can be specified. Performance-wise, this strongly improves over the
approach taken in the corSparse function, though the results are almost identical for large sparse
matrices. cosMissing adds the possibility to deal with large amounts of missing data.

Usage

cosSparse(X, Y = NULL, norm = norm2, weight = NULL)
cosMissing(X, availX, Y = NULL, availY = NULL, norm = norm2 , weight = NULL)

Arguments

X a sparse matrix in a format of the Matrix package, typically dgCMatrix . The
similarity will be calculated between the columns of this matrix.

Y a second matrix in a format of the Matrix package. When Y = NULL, then the
similarity between the columns of X and itself will be taken. If Y is specified,
the similarity between the columns of X and the columns of Y will be calculated.

availX, availY sparse Matrices (typically pattern matrices) of the same size of X and Y, respec-
tively, indicating the available information for each matrix.

norm The function to be used for the normalization of the columns. Currently norm2
(euclidean norm) and norm1 (manhattan norm) are available, but further meth-
ods can be easily specified by the user. See details for more information.

weight The function to be used for the weighting of the rows. Currently idf (inverse
document frequency) and isqrt (inverse square root) are available, but further
methods can be easily specified by the user. See details for more information.

Details

This measure is called a ‘cosine’ similarity as it computes the cosine of the angle between high-
dimensional vectors. It can also be considered a Pearson correlation without centering. Because
centering removes sparsity, and because centering has almost no influence for highly sparse matri-
ces, this cosine similarity performs much better that the Pearson correlation, both related for speed
and memory consumption.

The variant cosMissing can be used when the available information itself is also sparse. In such
a situation, a zero in the data matrix X, Y can mean either ‘zero value’ or ‘missing data’. To deal
with the missing data, matrices indicating the available data can be specified. Note that this really
only makes sense when the available data is sparse itself. When, say, 90% of the data is available,
the availX matrix becomes very large, and the results does not differ strongly from the regular
cosSparse, i.e. ignoring the missing data.

Different normalizations of the columns and weightings of the rows can be specified.

cosSparse 15

The predefined normalizations are defined as a function of the matrix x and a ‘summation function’
s (to be specified as a sparse matrix or a vector). This slight complexity is needed to be able to deal
with missing data. With complete data, then s = rep(1,nrow(X)), leads to crossprod(X,s) ==
colSums(X).

• norm2: euclidean norm. The default setting, and the same normalization as used in the Pearson
correlation. It is defined as
norm2 <- function(x,s) { drop(crossprod(x^2,s)) ^ 0.5 } .

• norm1: Manhattan, or taxi-cab norm, defined as
norm1 <- function(x,s) { abs(drop(crossprod(x,s))) } .

• normL: normalized Laplacian norm, used in spectral clustering of a graph, defined as
normL <- function(x,s) { abs(drop(crossprod(x,s))) ^ 0.5 } .

The predefined weightings are defined as a function of the frequency of a row (s) and the number
of columns (N):

• idf: inverse document frequency, used typically in distributional semantics to down-weight
high frequent rows. It is defined as
idf <- function(s,N) { log(N/(1+s)) } .

• isqrt: inverse square root, an alternative to idf, defined as
isqrt <- function(s,N) { s^-0.5 } .

• none: no weighting. This is only included for use inside later high-level functions (e.g.
sim.words). Normally, weight = NULL gives identical results, but is slightly quicker.
none <- function(s,N) { s }

Further norms of weighting functions can be defined at will.

Value

The result is a sparse matrix with the non-zero association values. Values range between -1 and +1,
with values close to zero indicating low association.

When Y = NULL, then the result is a symmetric matrix, so a matrix of type dsCMatrix with size
ncol(X) by ncol{X} is returned. When X and Y are both specified, a matrix of type dgCMatrix
with size ncol(X) by ncol{Y} is returned.

Note

For large sparse matrices, consider this as an alternative to cor. See corSparse for a comparison
of performance and results.

Author(s)

Michael Cysouw

See Also

corSparse, assocSparse for other sparse association measures. See also cosRow, cosCol for
variants of cosSparse dealing with nominal data.

16 dimRed

Examples

reasonable fast on modern hardware

try different sizes to find limits on local machine
system.time(X <- rSparseMatrix(1e8, 1e8, 1e6))
system.time(M <- cosSparse(X))

consider removing small values of result to improve sparsity

X <- rSparseMatrix(1e5, 1e5, 1e6)
print(object.size(X), units = "auto") # 12 Mb
system.time(M <- cosSparse(X))
print(object.size(M), units = "auto") # 59 Mb
M <- drop0(M, tol = 0.1) # remove small values
print(object.size(M), units = "auto") # 14 Mb

Compare various weightings

with random data from a normal distribution there is almost no difference
#
data from a normal distribution
X <- rSparseMatrix(1e2, 1e2, 1e3)

w0 <- cosSparse(X, norm = norm2, weight = NULL)@x
wi <- cosSparse(X, norm = norm2, weight = idf)@x
ws <- cosSparse(X, norm = norm2, weight = isqrt)@x

pairs(~ w0 + wi + ws,
labels=c("no weighting","inverse\ndocument\nfrequency","inverse\nsquare root"))

with heavily skewed data there is a strong difference!
X <- rSparseMatrix(1e2, 1e2, 1e3,
rand.x = function(n){round(rpois(1e3, 10), 2)})

w0 <- cosSparse(X, norm = norm2, weight = NULL)@x
wi <- cosSparse(X, norm = norm2, weight = idf)@x
ws <- cosSparse(X, norm = norm2, weight = isqrt)@x

pairs(~ w0 + wi + ws,
labels=c("no weighting","inverse\ndocument\nfrequency","inverse\nsquare root"))

dimRed Dimensionality Reduction for sparse matrices, based on Cholesky de-
composition

dimRed 17

Description

To inspect the structure of a large sparse matrix, it is often highly useful to reduce the matrix to a
few major dimensions (cf. multidimensional scaling). This functions implements a rough approach
to provide a few major dimensions. The function provides a simple wrapper around Cholesky and
sparsesvd.

Usage

dimRed(sim, k = 2, method = "svd")

Arguments

sim Sparse, symmetric, positive-definite matrix (typically a similarity matrix pro-
duces by sim or assoc functions)

k Number of dimensions to be returned, defaults to two.

method Method used for the decomposition. Currently implemted are svd and cholesky.

Details

Based on the Cholesky decomposition, the Matrix sim is decomposed into:

LDL′

The D Matrix is a diagonal matrix, the values of which are returned here as $D. Only the first few
columns of the L Matrix are returned (possibly after permutation, see the details at Cholesky).

Based on the svd decomposition, the Matrix sim is decomposed into:

UDV

The U Matrix and the values from D are returned.

Value

A list of two elements is returned:

L : a sparse matrix of type dgCMatrix with k columns

D : the diagional values from the Cholesky decomposition, or the eigenvalues from
the svd decomposition

Author(s)

Michael Cysouw <cysouw@mac.com>

See Also

See Also as Cholesky and sparsesvd

18 dimRed

Examples

some random points in two dimensions
coor <- cbind(sample(1:30), sample(1:30))

using cmdscale() to reconstruct the coordinates from a distance matrix
d <- dist(coor)
mds <- cmdscale(d)

using dimRed() on a similarity matrix.
Note that normL works much better than other norms in this 2-dimensional case
s <- cosSparse(t(coor), norm = normL)
red <- as.matrix(dimRed(s)$L)

show the different point clouds

oldpar<-par("mfrow")
par(mfrow = c(1,3))

plot(coor, type = "n", axes = FALSE, xlab = "", ylab = "")
text(coor, labels = 1:30)
title("Original coordinates")

plot(mds, type = "n", axes = FALSE, xlab = "", ylab = "")
text(mds, labels = 1:30)
title("MDS from euclidean distances")

plot(red, type = "n", axes = FALSE, xlab = "", ylab = "")
text(red, labels = 1:30)
title("dimRed from cosSparse similarity")

par(mfrow = oldpar)

======

example, using the iris data
data(iris)
X <- t(as.matrix(iris[,1:4]))
cols <- rainbow(3)[iris$Species]

s <- cosSparse(X, norm = norm1)
d <- dist(t(X), method = "manhattan")

svd <- as.matrix(dimRed(s, method = "svd")$L)
mds <- cmdscale(d)

oldpar<-par("mfrow")
par(mfrow = c(1,2))

plot(mds, col = cols, main = "cmdscale\nfrom euclidean distances")
plot(svd, col = cols, main = "dimRed with svd\nfrom cosSparse with norm1")

par(mfrow = oldpar)

distSparse 19

distSparse Sparse distance matrix calculations

Description

Sparse alternative to base dist function. WARNING: the result is not a distance metric, see details!
Also: distances are calculated between columns (not between rows, as in the base dist function).

Usage

distSparse(M, method = "euclidean", diag = FALSE)

Arguments

M a sparse matrix in a format of the Matrix package, typically dMatrix. Any
other matrices will be converted to such a sparse Matrix. The correlations will
be calculated between the columns of this matrix (different from the base dist
function!)

method method to calculate distances. Currently only "euclidean" is supported.
diag should the diagonal be included in the results?

Details

A sparse distance matrix is a slightly awkward concept, because distances of zero are rare in most
data. Further, it is mostly the small distances that are of interest, and not the large distanes (which
are mostly also less trustwhorthy). Note that for random data, this assumption is not necessarily
true.

To obtain sparse results, the current implementation takes a special approach. First, only those
distances will be calculated for which there is at least some non-zero data for both columns. The
assumption is taken that those distances will be uninteresting (and relatively large anyway).

Second, to differentiate the non-calculated distances from real zero distances, the distances are
converted into similarities by substracting them from the maximum. In this way, all non-calculated
distances are zero, and the real zeros have value max(M).

Euclidean distances are calculated using the following trick:

colSums(M2) + rowSums(M2)− 2 ∗M ′M

Value

A symmetric matrix of type dsCMatrix, consisting of similarity(!) values instead of distances (viz.
max(dist)-dist).

Note

Please note:

• The values in the result are not distances, but similarities computed as max(dist)-dist.
• Non-calculated values are zero.

20 huber

Author(s)

Michael Cysouw <cysouw@mac.com

See Also

See Also as dist.

Examples

to be done

huber Comparative vocabulary for indigenous languages of Colombia (Hu-
ber & Reed 1992)

Description

Data from Huber & Reed (1992), containing a comparative vocabulary (a ‘wordlist’) for 69 indige-
nous languages from Colombia.

Usage

data(huber)

Format

A data frame with 27521 observations on the following 4 variables.

CONCEPT a factor with 366 levels, indicating the comparative concepts
COUNTERPART a character vector listing the actual wordforms as described in Huber & Reed 1992
DOCULECT a factor with 71 levels, indicating the languages from which the wordforms are taken

(‘documented lects’, abbreviated as ‘doculect’). These are 69 indigenous languages from
Colombia, and English and Spanish.

TOKENS a tokenized version of the counterparts: spaces are added between graphemic units (i.e.
groups of unicode characters that are functioning as a single unit in the orthography)

Details

The editors have attempted to use a harmonized orthography throughout all languages, approxi-
mately based on IPA, though there are still many language-specific idiosyncrasies included. How-
ever, the translations into English and Spanish are written in their regular orthography, and not in
the IPA-dialect as used for the other languages. In general, the ‘translations’ into English and Span-
ish are simply lowercase versions of the concept-names, included here to more flexibly identify
the meaning of words in the Colombian languages. In many cases these translations are somewhat
clunky (e.g. ‘spring of water’), and are missing the proper orthography details (e.g. ‘Adams apple’).

The book was digitized in the QuantHistLing project and provided here as an example of deal-
ing efficiently with reasonably large data. Care has been taken to faithfully represent the original
transcription from the printed version.

jMatrix 21

Source

Huber, Randall Q. & Robert B. Reed. 1992. Vocabulario Comparativo: Palabras Selectas de
Lenguas Indigenas de Colombia. Bogota: Instituto Linguistico de Verano. available online at
https://colombia.sil.org/es/resources/archives/18886. Copyright 2014 SIL International.

Examples

data(huber)
head(huber)

jMatrix Harmonize (‘join’) sparse matrices

Description

A utility function to make sparse matrices conformable semantically. Not only are the dimensions
made conformable in size, but also the content of the dimensions. Formulated differently, this
function harmonizes two matrices on a dimensions that have the same entities, but in a different
order (and possibly with different subsets). Given two matrices with such (partly overlapping)
dimensions, two new matrices are generated to reorder the original matrices via a matrix product to
make them conformable. In an abstract sense, this is similar to an SQL ‘inner join’ operation.

Usage

jMatrix(rownamesX, rownamesY, collation.locale = "C")

jcrossprod(X, Y, rownamesX = rownames(X), rownamesY = rownames(Y))
tjcrossprod(X, Y, colnamesX = colnames(X), colnamesY = colnames(Y))

Arguments
rownamesX, rownamesY

rownames to be joined from two matrices.

X, Y sparse matrices to be made (semantically) conformable.
colnamesX, colnamesY

colnames to be joined from two matrices.
collation.locale

locale to be used for ordering of the joined dimension. Defaults to pure numeri-
cal unicode ordering "C". See ttMatrix for details.

Details

Given a sparse matrix X with rownames rX and a sparse matrix Y with rownames rY, the function
jMatrix produces joined rownames rXY with all unique entries in c(rX, rY), reordered according
to the specified locale, if necessary.

Further, two sparse matrices M1 and M2 are returned to link X and Y to the new joined dimension
rXY. Specifically, X2 = M1 %*% X and Y2 = M2 %*% Y will have conformable rXY rows, so

https://colombia.sil.org/es/resources/archives/18886

22 jMatrix

crossprod(X2, Y2) can be computed. Note that the result will be empty when there is no overlap
between the rownames of X and Y.

The function jcrossprod is a shortcut to compute the above crossproduct immediately, using
jMatrix internally to harmonize the rows. Similarly, tjcrossprod computes the tcrossprod, har-
monizing the columns of two matrices using jMatrix.

Value

jMatrix returns a list of three elements (for naming, see Details above):

M1 sparse pattern matrix of type ngCMatrix with dimensions c(length(rXY),length(rX))

M2 sparse pattern matrix of type ngCMatrix with dimensions c(length(rXY),length(rY))

rownames unique joined row names rXY

jcrossprod and tjcrossprod return a sparse Matrix of type ngCMatrix when both X and Y are
pattern matrices. Otherwise they return a sparse Matrix of type dgCMatrix.

Note

Actually, it is unimportant whether the inputs to jMatrix are row or column names. However, care
has to be taken to use the resulting matrices in the right transposition. To make this function easier
to explain, I consistently talk only about row names above.

Author(s)

Michael Cysouw

Examples

example about INNER JOIN from wikipedia
http://en.wikipedia.org/wiki/Sql_join#Inner_join
this might look complex, but it is maximally efficient on large sparse matrices

Employee table as sparse Matrix
Employee.LastName <- c("Rafferty","Jones","Heisenberg","Robinson","Smith","John")
Employee.DepartmentID <- c(31,33,33,34,34,NA)
E.LN <- ttMatrix(Employee.LastName, simplify = TRUE)
E.DID <- ttMatrix(Employee.DepartmentID, simplify = TRUE)

(Employees <- tcrossprod(E.LN, E.DID))

Department table as sparse Matrix
Department.DepartmentID <- c(31,33,34,35)
Department.DepartmentName <- c("Sales","Engineering","Clerical","Marketing")
D.DID <- ttMatrix(Department.DepartmentID, simplify = TRUE)
D.DN <- ttMatrix(Department.DepartmentName, simplify = TRUE)

(Departments <- tcrossprod(D.DN, D.DID))

INNER JOIN on DepartmentID (i.e. on the columns of these two matrices)
result is a sparse matrix linking Employee.LastName to Department.DepartmentName,

pwMatrix 23

internally having used the DepartmentID for the linking

(JOIN <- tjcrossprod(Employees, Departments))

Note that in this example it is much easier to directly use jMatrix on the DepartmentIDs
instead of first making sparse matrices from the data
and then using tjcrossprod on the matrices to get the INNER JOIN
(only the ordering is different in this direct approach)

J <- jMatrix(Employee.DepartmentID, Department.DepartmentID)
JOIN <- crossprod(J$M1, J$M2)
rownames(JOIN) <- Employee.LastName
colnames(JOIN) <- Department.DepartmentName
JOIN

pwMatrix Construct ‘part-whole’ (pw) Matrices from tokenized strings

Description

A part-whole Matrix is a sparse matrix representation of a vector of strings (‘wholes’) split into
smaller parts by a specified separator. It basically summarizes which strings consist of which parts.
By itself, this is not a very interesting transformation, but it allows for quite fancy computations by
simple matrix manipulations.

Usage

pwMatrix(strings, sep = "", gap.length = 0, gap.symbol = "\u2043", simplify = FALSE)

Arguments

strings a vector (or list) of strings to be separated into parts
sep The separator to be used. Defaults to space sep = " ". If separation in indi-

vidual characters is needed, use sep = "". There is no fancy parsing of strings
implemented (e.g. to catch complex unicode combined characters), that has to
be done externally. The preferred route is to prepare the separation of the strings
by using spaces, and then call this function.

gap.length This adds the specified number of gap symbols between each pair of strings.
This is only important for generating higher ngram-statistics later on, when no
ordering of the strings is implied. For example, when the strings are alphabet-
ically ordered words, any bigram-statistics should not count the bigrams con-
sisting of the last character of the a word with the first character of the next
word.

gap.symbol The gap symbol to insert (see gap.length above). It defaults to U+2043 HYPHEN
BULLET on the assumption that this character will not often be included in data.

simplify by default, the row and column names are not included into the matrix to keep
the matrix as lean as possible. The row names (‘parts’) are returned separately.
Using simplify = T the row and column names will be added into the matrix.
Note that the column names are simply the vector that went into the function.

24 pwMatrix

Details

Internally, this is basically using strsplit and some cosmetic changes, returning a sparse matrix.

Value

By default (when simplify = F) the output is a list with two elements, containing:

M a sparse pattern Matrix of type ngCMatrix with all input strings as columns, and
all separated elements as rows.

rownames all different characters from the strings in order (i.e. all individual tokens of the
original strings).

When simplify = T, then only the matrix M with row and column names is returned.

Author(s)

Michael Cysouw

See Also

Used in splitStrings and splitWordlist

Examples

By itself, this functions does nothing really interesting
example <- c("this","is","an","example")
pw <- pwMatrix(example)
pw

However, making a type-token Matrix (with ttMatrix) of the rownames
and then taking a matrix product, results in frequencies of each element in the strings
tt <- ttMatrix(pw$rownames)
distr <- (tt$M*1) %*% (pw$M*1)
rownames(distr) <- tt$rownames
colnames(distr) <- example
distr

Use banded sparse matrix with superdiagonal ('shift matrix') to get co-occurrence counts
of adjacent characters. Rows list first character, columns adjacent character.
Non-zero entries list number of co-occurrences
S <- bandSparse(n = ncol(tt$M), k = 1) * 1
TT <- tt$M * 1
(C <- TT %*% S %*% t(TT))

show the non-zero entries as triplets:
s <- summary(C)
first <- tt$rownames[s[,1]]
second <- tt$rownames[s[,2]]
freq <- s[,3]
data.frame(first,second,freq)

rKhatriRao 25

rKhatriRao ‘reduced’ Khatri-Rao product (sparse matrices)

Description

This function performs a Khatri-Rao product (‘column-wise Kronecker product’, see KhatriRao
for more info) on two sparse matrices. However, the result of such a product on sparse matrices
normally results in very many empty rows. This function removes those empty rows, and, most
importantly, it produces row names only for the remaining rows. For large sparse matrices this is
much more efficient than first producing all rownames, and then removing the one with the empty
rows.

Usage

rKhatriRao(X, Y,
rownamesX = rownames(X), rownamesY = rownames(Y),
simplify = FALSE, binder = ":", FUN = "*")

Arguments

X,Y matrices of with the same number of columns.
rownamesX, rownamesY

row names of matrices X and Y. These can be specified separately, but they
default to the row names of the matrices.

simplify by default, the names of rows and columns are not included into the matrix
to keep the matrix as lean as possible: the row names are returned separately.
Using include.dimnames=T adds the row names into the matrix. The column
names are directly taken from X.

binder symbol to include between the row names of X and Y for the resulting matrix

FUN function to be used in the KhatriRao product, passed internally to the workhorse
KhatriRao

Details

Up to 1e6 row names to be produced goes reasonably quick with the basic KhatriRao function.
However, larger amounts of pasting of row names becomes very slow, and the row names take an
enormous amount of RAM. This function solves that problem by only producing row names for the
non-empty rows.

Value

By default, the result is a list of two items:

M resulting sparse product matrix with empty rows removed

rownames a vector with the resulting row names for the non-empty rows

When simplify=T, then the matrix is return with the row names included.

26 rowMax

Note

This function allows for the row names of the input matrices to be added separately, and the resulting
row names are returned separately by default. This might seem a bit unusual, given the nice way
how R integrates row names into matrices. However, it turns out often to be easier to store row- and
column names separately to efficiently work with large sparse matrices.

Author(s)

Michael Cysouw

See Also

KhatriRao

Examples

two sparse matrices with row names

X <- rSparseMatrix(1e4, 1e3, 1e4)
Y <- rSparseMatrix(1e4, 1e3, 1e4)

rownames(X) <- 1:nrow(X)
rownames(Y) <- 1:nrow(Y)

the basic KhatriRao product from the Matrix package is very fast
but almost all rows are empty

system.time(M <- KhatriRao(X, Y))
sum(rowSums(M)==0)/nrow(M) # 99.9% empty rows

To produce all row names takes a long time with KhatriRao from Matrix
with the current example with 1e8 row names it took a minute on my laptop
so: don't try the following, except on a large machine!

system.time(M <- KhatriRao(X, Y, make.dimnames = TRUE))

Using the current special version works just fine and is reasonably quick
system.time(M <- rKhatriRao(X, Y))

rowMax Row and column extremes (sparse matrices)

Description

Compute maxima and minima for all rows or columns of sparse matrices. Optionally also return
which elements are the maxima/minima per row/column.

rowMax 27

Usage

rowMax(X, which = FALSE, ignore.zero = TRUE)
colMax(X, which = FALSE, ignore.zero = TRUE)

rowMin(X, which = FALSE, ignore.zero = TRUE)
colMin(X, which = FALSE, ignore.zero = TRUE)

Arguments

X a sparse matrix in a format of the Matrix package, typically dgCMatrix . The
maxima or minima will be calculated for each row or column of this matrix.

which optionally return a sparse matrix of the same dimensions as X marking the posi-
tions of the columns- or row-wise maxima or minima.

ignore.zero By default, only the non-zero elements are included in the computations. How-
ever, when ignore.zero = F then zeros are also considered. This basically
means that for all maxima below zero, the maximum will be set to zero. Like-
wise, for all minima above zero, the minimum will be set to zero.

Details

The basic workhorse of these functions is the function rollup from the package slam.

Value

By default, these functions returns a sparseVector with the non-zero maxima or minima. Use
additionally as.vector to turn this into a regular vector.

When which = T, the result is a list of two items:

max/min the same sparse vector as described above.

which a sparse pattern matrix of the kind ngCMatrix indicating the position of the
extrema. Note that an extreme might occur more than once per row/column. In
that case multiple entries in the row/column are indicated.

Author(s)

Michael Cysouw

Examples

rowMax(X, ignore.zero = FALSE) is the same as apply(X, 1, max)
however, with large sparse matrices, the 'apply' approach will start eating away at memory
and things become slower.
X <- rSparseMatrix(1e3, 1e3, 1e2)
system.time(m1 <- rowMax(X, ignore.zero = FALSE))
system.time(m2 <- apply(X, 1, max)) # slower
all.equal(as.vector(m1), m2) # but same result

to see the effect even stronger, try something larger
depending on the amount of available memory, the 'apply' approach will give an error

28 rSparseMatrix

"problem too large"
Not run:
X <- rSparseMatrix(1e6, 1e6, 1e6)
system.time(m1 <- rowMax(X, ignore.zero = FALSE))
system.time(m2 <- apply(X, 1, max))

End(Not run)

speed depends most strongly on the number of entries in the matrix
also some performance loss with size of matrix
up to 1e5 entries is still reasonably fast

X <- rSparseMatrix(1e7, 1e7, 1e5)
system.time(m <- rowMax(X))

X <- rSparseMatrix(1e7, 1e7, 1e5)
system.time(M <- rowMax(X)) # about ten times as slow

apply is not feasably on such large matrices
Error: problem too large...
Not run:
m <- apply(X, 1, max)

End(Not run)

rSparseMatrix Construct a random sparse matrix

Description

This convenience function constructs a random sparse matrix of specified size, with specified spar-
sity. This is mainly useful for testing speed and memory load of sparse matrix manipulations

Usage

rSparseMatrix(nrow, ncol, nnz,
rand.x = function(n) round(rnorm(nnz), 2), ...)

Arguments

nrow number of rows of the resulting matrix.

ncol number of columns of the resulting matrix.

nnz number of entries of the resulting matrix.

rand.x randomization used for the construction of the entries. if NULL then a pattern
matrix is constructed (random entries without values).

... Other arguments passed to sparseMatrix internally.

sim.nominal 29

Details

The sparsity of the resulting matrix (i.e. the fraction of non-zero entries to all entries) is nnz
nrow∗ncol .

Value

Returns a sparse matrix of the type dgCMatrix. Defaults to random numeric entries with two
decimal digits, generated randomly from a normal distribution with mean = 0 and sd = 1.

When rand.x = NULL then the result is a pattern matrix of type ngCMatrix.

Author(s)

Martin Maechler with slight tweaks by Michael Cysouw

See Also

For random permutation matrices, see pMatrix-class. Specifically note the construction option
(p10 <- as(sample(10),"pMatrix")).

Examples

example with reasonably large (100.000 by 100.000) but sparse matrix
(only one in 10.000 entries is non-zero). On average 10 entries per column.
X <- rSparseMatrix(1e5, 1e5, 1e6)
print(object.size(X), units = "auto")

speed of cosine similarity
system.time(M <- cosSparse(X))

reduce memory footprint by removing low values
print(object.size(M), units = "auto")
M <- drop0(M, tol = 0.1)
print(object.size(M), units = "auto")

sim.nominal Similarity-measures for nominal variables

Description

Nominal variables can be encoded as a combination of a sparse incidence and index matrix, as dis-
cussed at splitTable. The present two functions are easy-to-use shortcuts to use those sparse
matrices to computes pairwise similarities, either between observations (sim.obs) or attributes
(sim.att).

Usage

sim.att(D, method = "chuprov", sparse = TRUE, ...)
sim.obs(D, method = "hamming", sparse = TRUE, ...)

30 sim.nominal

Arguments

D Dataframe with nominal attributes (‘variables’) as columns and observations as
rows.

method method to be used for similarity computation. See Details below.
sparse All methods try to be as sparse as possible. Specifically, when there are no

observed co-occurrence, then nothing is computed. This might lead to slight
deviations in the results for some methods. Set sparse=F to force computation
for all cells. This leads to non-sparse results, so use with caution with large
datasets.

... Arguments passed internally to splitTable, especially useful for multi-valued
cells, using the option split. Note that method = hamming will give unexpected
results for the comparison of cells that both are multi-valued. Consider using
method = weighted instead.

Details

The function sim.att and sim.obs are convenience wrappers around the basic cosRow, cosCol
and assocRow, assocCol functions. The sim functions take a dataframe as input, internally calling
splitTable to turn the dataframe into sparse matrices, and then applying sparse matrix algebra to
efficiently compute similarities. Currently only a few exemplary methods are encoded.

sim.att computes similarities between the different nominal variables. The method chuprov com-
putes Chuprov’s T (very similar to Cramer’s V, but easier to compute efficiently). The method
g computes the G-test from Sokal and Rohlf (1982), also known as Dunning’s G from Dunning
(1993). This G is closely related to Mutual Information (G = 2*N*MI, with N being the sample
size). The method mutual returns the mutual information, and the method variation returns the
so-called ‘variation of information’ (join information - mutual information). Note that the this last
one is a metric, not a similarity. All these methods can be abbreviated, e.g use "c", "g", "m", and
"v".

sim.obs computes similarities between the different observation for the nominal variables. The
method hamming computes the relative Hamming similarity, i.e. the number of similarities devided
by the number of comparisons made (Goebl 1984 calls this the ‘Relativer Identitaetswert’). The
method weighted uses an inverse square root weighting on all similarities, i.e. rare similarities
count more. This is very similar to Goebl’s ‘Gewichteter Identitaetswert’, though note that his defi-
nition is slightly different from the one used here. Further, all methods as defined for assocSparse
can be used here, i.e. res, pmi, wpmi, poi, and new methods can be defined according to the
explanations as assocSparse.

Value

All methods return symmetric similarity matrices in the form dsCMatrix, only specifying the up-
per triangle. The only exception is when sparse=T is chose, then the result will be in the form
dsyMatrix.

Note

Note that these methods automatically take missing data into account. They also work with large
amount of missing data, but of course the validity of any similarity with much missing data is
problematic.

sim.nominal 31

The sim.att and sim.obs methods by default use sparse computations, which leads (among other
effects) to errors on the diagonal. The main diagonal should be one everywhere by definition, but
this will only be the case with the option sparse = F. The deviations with sparse = T should be
minimal in the non-diagonal entries, but computations should be faster, and the results often take
up less space.

Author(s)

Michael Cysouw

References

Goebl, Hans. 1984. Dialektometrische Studien: anhand italoromanischer, raetoromanischer und
galloromanischer Sprachmaterialien aus AIS und AFL. (Beihefte zur Zeitschrift fuer Romanische
Philologie). Tuebingen: Niemeyer.

Dunning, Ted. 1993. Accurate methods for the statistics of surprise and coincidence. Computa-
tional linguistics 19(1). 61-74.

Examples

first a simple example using the farms-dataset from MASS
library(MASS)

similarities between farms
s <- sim.obs(farms)
plot(hclust(as.dist(1-s), method = "ward.D"))

similarities between attributes (`variables`)
s <- sim.att(farms)
plot(hclust(as.dist(1-s), method = "ward.D"))

use the split option for multi-valued cells
farms2 <- as.matrix(farms)
farms2[1,1] <- "M1,M5"

s <- sim.obs(farms2, split = ",")
plot(hclust(as.dist(1-s), method = "ward.D"))

select only the 168 language from wals with more than 80 datapoints
data(wals)
sel <- wals$data[apply(wals$data,1,function(x){sum(!is.na(x))})>80,]

compare different similarities
w <- sim.obs(sel, "weighted")
h <- sim.obs(sel, "hamming")
r <- sim.obs(sel, "res")
p <- sim.obs(sel, "poi")
m <- sim.obs(sel, "wpmi")
i <- sim.obs(sel, "pmi")

pairs(~ as.dist(w) + as.dist(h) + as.dist(r) + as.dist(p) + as.dist(m) + as.dist(i),

32 sim.strings

labels = c("weighted","hamming","residuals","poisson","weighted PMI","PMI"))

a larger example with lots of missing data: the WALS-data as included here
computations go reasonably quick
(on 2566 observations and 131 attributes with 630 different values in total)
data(wals)
system.time(s <- sim.att(wals$data))
rownames(s) <- colnames(wals$data)
plot(hclust(as.dist(1-s), method = "ward.D"), cex = 0.5)

Note that using sparse=T speeds up computations because it
ignores zero co-occurrences
system.time(
chup.sparse <- sim.att(wals$data,method = "chuprov", sparse = TRUE)
)

some more similarities on the attributes
g <- sim.att(wals$data, method = "g") # Dunning's G
m <- sim.att(wals$data, method = "mutual") # Mutual Information
v <- sim.att(wals$data, method = "variation") # Variation of Information

Note the strong differences between these approaches
pairs(~ as.dist(chup.sparse) + as.dist(m) + as.dist(g) + as.dist(v),
labels=c("Chuprov's T","Mutual Information","G-statistic","Variation of Information"))

Relative Hamming similarity on all observations (languages) in WALS
time is not a problem, but the data is so sparse
that for many language-pairs there is no shared data
system.time(s <- sim.obs(wals$data))

sim.strings String similarity by cosine similarity between bigram vectors

Description

Efficient computation of pairwise string similarities using a cosine similarity on bigram vectors.

Usage

sim.strings(strings1, strings2 = NULL, sep = "", boundary = TRUE, ...)

Arguments

strings1, strings2

Vector with strings to be compared, will be treated as.character. When only
strings1 is provided, all pairwise similarities between its elements are com-
puted. When two different input vectors are provided, the pairwise similarities
between all elements from the first and the second vector are computed.

sim.strings 33

sep Separator used to split the strings into parts. This will be passed to strsplit
internally, so there is no fine-grained control possible on the splitting. If it is
important to get the splitting exactly right, consider pre-processing the splitting
by inserting a special symbol on the split-positions, and then choosing here to
split by this special symbol.

boundary In the default setting boundary = T, a special symbol is added to the front and
to the end of each string, adding special bigrams for the initial and the final
character. With words from real languages (which are mostly not very long) this
has a strong impact.

... Further arguments passed to splitStrings.

Details

The strings are converted into sparse matrices by splitStrings, and then assocSparse computes
a cosine similarity on the bigram vectors. Only the option of bigrams is currently used, because for
long lists of real words from a real language this seems to be an optimal tradeoff between speed and
useful similarity.

Value

When either length(strings1) == 1 or length(strings2) == 1, the result will be a normal vec-
tor with similarities between 0 and 1.

When both the input vectors are longer than 1, then the result will be a sparse matrix with simi-
larities. When only strings1 is provided, then the result is of type dsCMatrix. When two input
vectors are provided, the result is of type dgCMatrix.

Note

The overhead of converting the strings into sparse matrices makes this function not optimal for
small datasets. For large datasets the time of the conversion is negligible compared to the actual
similarity computation, and then this approach becomes very worthwhile, because fast, and based
on sparse matrix computation, that can be sped up by multicore processing in the future.

The result of sim.strings(a) and sim.strings(a,a) is identical, but the first version is more
efficient, both as to processing time, as well as to the size of the resulting objects.

Note

There is a bash-executable simstrings distributed with this package (based on the docopt pack-
age) that let you use this function directly in a bash-terminal. The easiest way to use this executable
is to softlink the executable to some directory in your bash PATH, for example /usr/local/bin
or simply ~/bin. To softlink the function sim.strings to this directory, use something like the
following in your bash terminal:

ln -is `Rscript -e 'cat(system.file("exec/simstrings", package="qlcMatrix"))'` ~/bin

From within R your can also use the following (again, optionally changing the linked-to directory
from ~/bin to anything more suitable on your system):

file.symlink(system.file("exec/simstrings", package="qlcMatrix"), "~/bin")

34 sim.strings

Author(s)

Michael Cysouw

See Also

splitStrings, cosSparse on which this function is based. Compare with adist from the utils
package. On large datasets, sim.strings seems to be about a factor 30 quicker. The package
stringdist offers many more string comparison methods.

Examples

----- simple example -----

example <- c("still","till","stable","stale","tale","tall","ill","all")
(sim <- round(sim.strings(example), digits = 3))

show similarity in non-metric MDS
mds <- MASS::isoMDS(as.dist(1-sim))$points
plot(mds, type = "n", ann = FALSE, axes = FALSE)
text(mds, labels = example)

----- large example -----

This similarity is meant to be used for large lists of wordforms.
for example, all 15526 wordforms from the English Dalby Bible
takes just a few seconds for the more than 1e8 pairwise comparisons
data(bibles)
words <- splitText(bibles$eng)$wordforms
system.time(sim <- sim.strings(words))

see most similar words
rownames(sim) <- colnames(sim) <- words
sort(sim["walk",], decreasing = TRUE)[1:10]

just compare all words to "walk". This is the same as above, but less comparisons
note that the overhead for the sparse conversion and matching of matrices is large
this one is faster than doing all comparisons, but only be a factor 10
system.time(sim <- sim.strings(words, "walk"))
names(sim) <- words
sort(sim, decreasing = TRUE)[1:10]

----- comparison with Levinshtein -----

don't try this with 'adist' from the utils package, it will take long!
for a comparison, only take 2000 randomly selected strings: about a factor 20 slower
w <- sample(words, 2000)
system.time(sim1 <- sim.strings(w))
system.time(sim2 <- adist(w))

compare the current approach with relative levenshtein similarity

sim.wordlist 35

= number of matches / (number of edits + number of matches)
for reasons of speed, just take 1000 random words from the english bible
w <- sample(words, 1000)
sim1 <- sim.strings(w)
tmp <- adist(w, counts = TRUE)
sim2 <- 1- (tmp / nchar(attr(tmp, "trafos")))

plotting relation between the two 'heatmap-style'
not identical, but usefully similar
image(log(table(
round(as.dist(sim1) / 3, digits = 2) * 3,
round(as.dist(sim2) / 3, digits = 2) * 3)),
xlab = "bigram similarity", ylab = "relative Levenshtein similarity")

sim.wordlist Similarity matrices from wordlists

Description

A few different approaches are implemented here to compute similarities from wordlists. sim.lang
computes similarities between languages, assuming a harmonized orthography (i.e. symbols can be
equated across languages). sim.con computes similarities between concepts, using only language-
internal similarities. sim.graph computes similarities between graphemes (i.e. language-specific
symbols) between languages, as a crude approximation of regular sound correspondences.

WARNING: All these methods are really very crude! If they seem to give expected results, then
this should be a lesson to rethink more complex methods proposed in the literature. However, in
most cases the methods implemented here should be taken as a proof-of-concept, showing that such
high-level similarities can be computed efficiently for large datasets. For actual research, I strongly
urge anybody to adapt the current methods, and fine-tune them as needed.

Usage

sim.lang(wordlist,
doculects = "DOCULECT", concepts = "CONCEPT", counterparts = "COUNTERPART",
method = "parallel", assoc.method = res, weight = NULL, sep = "")

sim.con(wordlist,
doculects = "DOCULECT", concepts = "CONCEPT", counterparts = "COUNTERPART",
method = "bigrams", assoc.method = res, weight = NULL, sep = "")

sim.graph(wordlist,
doculects = "DOCULECT", concepts = "CONCEPT", counterparts = "TOKENS",
method = "cooccurrence", assoc.method = poi, weight = NULL, sep = " ")

36 sim.wordlist

Arguments

wordlist Dataframe or matrix containing the wordlist data. Should have at least columns
corresponding to languages (DOCULECT), meanings (CONCEPT) and transla-
tions (COUNTERPART).

doculects, concepts, counterparts

The name (or number) of the column of wordlist in which the respective in-
formation is to be found. The defaults are set to coincide with the naming of the
example dataset included in this package. See huber.

method Specific approach for the computation of the similarities. See Details below.
assoc.method, weight

Measures to be used internally (passed on to assocSparse or cosSparse). See
Details below.

sep Separator to be used to split strings. See link{splitStrings} for details.

Details

The following methods are currently implemented (all methods can be abbreviated):

For sim.lang:

global: Global bigram similarity, i.e. ignoring the separation into concepts, and simply taking the
bigram vector of all words per language. Probably best combined with weight = idf.

parallel: By default, computes a parallel bigram similarity, i.e. splitting the bigram vectors per
language and per concepts, and then simply making one long vector per language from all
individual concept-bigram vectors. This approach seems to be very similar (if not slightly
better) than the widespread ‘average Levenshtein’ distance.

For sim.con:

colexification: Simply count the number of languages in which two concepts have at least
one complete identical translations. No normalization is attempted, and assoc.method and
weight are ignored (internally this just uses tcrossprod on the CW (concepts x words)
sparse matrix). Because no splitting of strings is necessary, this method is very quick.

global: Global bigram similarity, i.e. ignoring the separation into languages, and simply taking
the bigram vector of all words per concept. Probably best combined with weight = idf.

bigrams: By default, compute the similarity between concepts by comparing bigraphs, i.e. language-
specific bigrams. In that way, cross-linguistically recurrent partial similarities are uncovered.
It is very interesting to compare this measure with colexification above.

For sim.graph:

cooccurrence: Currently the only method implemented. Computes the co-occurrence statistics for
all pair of graphemes (e.g. between symbol x from language L1 and symbol y from language
L2). See Prokic & Cysouw (2013) for an example using this approach.

All these methods (except for sim.con(method = "colexification")) use either assocSparse
or cosSparse for the computation of the similarities. For the different measures available, see the
documentation there. Currently implemented are res, poi, pmi, wpmi for assocSparse and idf,
isqrt, none for cosWeight. It is actually very easy to define your own measure.

sim.wordlist 37

When weight = NULL, then assocSparse is used with the internal method as specified in assoc.method.
When weight is specified, then cosSparse is used with an Euclidean norm and the weighting as
specified in weight. When weight is specified, and specification of assoc.method is ignored.

Value

A sparse similarity matrix of class dsCMatrix. The magnitude of the actual values in the matrices
depend strongly on the methods chosen.

With sim.graph a list of two matrices is returned.

GG The grapheme by grapheme similarity matrix of class dsCMatrix

GD A pattern matrix of class indicating which grapheme belongs to which language.

Author(s)

Michael Cysouw

References

Prokic, Jelena and Michael Cysouw. 2013. Combining regular sound correspondences and geo-
graphic spread. Language Dynamics and Change 3(2). 147–168.

See Also

Based on splitWordlist for the underlying conversion of the wordlist into sparse matrices. The
actual similarities are mostly computed using assocSparse or cosSparse.

Examples

----- load data -----

an example wordlist, see help(huber) for details
data(huber)

----- similarity between languages -----

most time is spend splitting the strings
the rest does not really influence the time needed
system.time(sim <- sim.lang(huber, method = "p"))

a simple distance-based UPGMA tree

Not run:
note non-ASCII characters in data might lead to plot errors on some platforms
plot(hclust(as.dist(-sim), method = "average"), cex = .7)

End(Not run)

----- similarity between concepts -----

similarity based on bigrams

38 sim.words

system.time(simB <- sim.con(huber, method = "b"))
similarity based on colexification. much easier to calculate
system.time(simC <- sim.con(huber, method = "c"))

As an example, look at all adjectival concepts
adj <- c(1,5,13,14,28,35,40,48,67,89,105,106,120,131,137,146,148,
171,179,183,188,193,195,206,222,234,259,262,275,279,292,
294,300,309,341,353,355,359)

show them as trees

Not run:
note non-ASCII characters in data might lead to plot errors on some platforms
oldpar<-par("mfrow")
par(mfrow = c(1,2))
plot(hclust(as.dist(-simB[adj,adj]), method = "ward.D2"),
cex = .5, main = "bigrams")
plot(hclust(as.dist(-simC[adj,adj]), method = "ward.D2"),
cex = .5, main = "colexification")
par(mfrow = oldpar)

End(Not run)

----- similarity between graphemes -----

this is a very crude approach towards regular sound correspondences
when the languages are not too distantly related, it works rather nicely
can be used as a quick first guess of correspondences for input in more advanced methods

all 2080 graphemes in the data by all 2080 graphemes, from all languages
system.time(X <- sim.graph(huber))

throw away the low values
select just one pair of languages for a quick visualisation
X$GG <- drop0(X$GG, tol = 1)
colnames(X$GG) <- rownames(X$GG)
correspondences <- X$GG[X$GD[,"bora"],X$GD[,"muinane"]]

Not run:
note non-ASCII characters in data might lead to plot errors on some platforms
heatmap(as.matrix(correspondences))

End(Not run)

sim.words Similarity-measures for words between two languages, based on co-
occurrences in parallel text

sim.words 39

Description

Based on co-occurrences in a parallel text, this convenience function (a wrapper around various
other functions from this package) efficiently computes something close to translational equiva-
lence.

Usage

sim.words(text1, text2 = NULL, method = res, weight = NULL,
lowercase = TRUE, best = FALSE, tol = 0)

Arguments

text1, text2 Vectors of strings representing sentences. The names of the vectors should con-
tain IDs that identify the parallelism between the two texts. If there are no
specific names, the function assumes that the two vectors are perfectly parallel.
Within the strings, wordforms are simply separated based on spaces (i.e. every-
thing between two spaces is a wordform). For more details about the format-
assumptions, see splitText, which is used internally here.

method Method to be used as a co-occurrence statistic. See assocSparse for a detailed
presentation of the available methods. It is possible to define your own statistic,
when it can be formulated as a function of observed and expected frequencies.

weight When weight is specified, the function cosSparse is used for the co-occurrence
statistics (with a Euclidean normalization, i.e. norm2). The specified weight
function will be used, currently idf, sqrt, and none are available. For more
details, and for instructions how to formulate your own weight function, see
the discussion at cosSparse. When weight is specified, any specification of
method is ignored.

lowercase Should all words be turned into lowercase? See splitText for discussion how
this is implemented.

best When best = T, an additional sparse matrix is returned with a (simplistic) at-
tempt to find the best translational equivalents between the texts.

tol Tolerance: remove all values between -tol and +tol in the result. Low values
can mostly be ignored for co-occurrence statistics without any loss of infor-
mation. However, what is considered ‘low’ depends on the methods used to
calculate the statistics. See discussion below.

Details

Care is taken in this function to match multiple verses that are translated into one verse, see bibles
for a survey of the encoding assumptions taken here.

The parameter method can take anything that is also available for assocSparse. Similarities are
computed using that function.

When weight is specified, the similarities are computed using cosSparse with default setting of
norm = norm2. All available weights can also be used here.

The option best = T uses rowMax and colMax. This approach to get the ‘best’ translation is really
crude, but it works reasonably well with one-to-one and many-to-one situations. This option takes

40 sim.words

rather a lot more time to finish, as row-wise maxima for matrices is not trivial to optimize. Con-
sider raising tol, as this removes low values that won’t be important for the maxima anyway. See
examples below.

Guidelines for the value of tol are difficult to give, as it depends on the method used, but also on
the distribution of the data (i.e. the number of sentences, and the frequency distribution of the words
in the text). Some suggestions:

• when weight is specified, results range between -1 and +1. Then tol = 0.1 should never lead
to problems, but often even tol = 0.3 or higher will lead to identical results.

• when weight is not specified (i.e. assocSparse will be used), then results range between -inf
and +inf, so the tolerance is more problematic. In general, tol = 2 seems to be unproblematic.
Higher tolerance, e.g. tol = 10 can be used to find the ‘obvious’ translations, but you will
loose some of the more incidental co-occurrences.

Value

When best = F, a single sparse matrix is returned of type dgCMatrix with the values of the statistic
chosen. All unique wordforms of text1 are included as row names, and those from text2 as column
names.

When best = T, a list of two sparse matrices is returned:

sim the same matrix as above

best a sparse pattern matrix of type ngCMatrix with the same dimensions as the
previous matrix. Only the ‘best’ translations between the two languages are
marked

Author(s)

Michael Cysouw

References

Mayer, Thomas and Michael Cysouw. 2012. Language comparison through sparse multilingual
word alignment. Proceedings of the EACL 2012 Joint Workshop of LINGVIS & UNCLH, 54–62.
Avignon: Association for Computational Linguistics.

See Also

splitText, assocSparse and cosSparse are the central parts of this function. Also check rowMax,
which is used to extract the ‘best’ translations.

Examples

data(bibles)

----- small example of co-occurrences -----

as an example, just take partially overlapping parts of two bibles
sim.words uses the names to get the paralellism right, so this works
eng <- bibles$eng[1:5000]

splitStrings 41

deu <- bibles$deu[2000:7000]
sim <- sim.words(eng, deu, method = res)

but the statistics are not perfect (because too little data)
sorted co-occurrences for the english word "your" in German:
sort(sim["your",], decreasing = TRUE)[1:10]

----- complete example of co-occurrences -----

running the complete bibles takes a bit more time (but still manageable)
system.time(sim <- sim.words(bibles$eng, bibles$deu, method = res))

results are much better
sorted co-occurrences for the english word "your" in German:
sort(sim["your",], decreasing = TRUE)[1:10]

----- look for 'best' translations -----

note that selecting the 'best' takes even more time
system.time(sim2 <- sim.words(bibles$eng, bibles$deu, method = res, best = TRUE))

best co-occurrences for the English word "your"
which(sim2$best["your",])

but can be made faster by removing low values
(though the boundary in \code{tol = 5} depends on the method used
system.time(sim3 <- sim.words(bibles$eng, bibles$deu, best = TRUE, method = res, tol = 5))

note that the decision on the 'best' remains the same here
all.equal(sim2$best, sim3$best)

----- computations also work with other languages -----

All works completely language-independent
translations for 'we' in Tagalog:
sim <- sim.words(bibles$eng, bibles$tgl, best = TRUE, weight = idf, tol = 0.1)
which(sim$best["we",])

splitStrings Construct unigram and bigram matrices from a vector of strings

Description

A (possibly large) vector of strings is separated into sparse pattern matrices, which allows for effi-
cient computation on the strings.

42 splitStrings

Usage

splitStrings(strings, sep = "", bigrams = TRUE, boundary = TRUE,
bigram.binder = "", gap.symbol = "\u2043", left.boundary = "#",
right.boundary = "#", simplify = FALSE)

Arguments

strings Vector of strings to be separated into sparse matrices

sep Separator used to split the strings into parts. This will be passed to strsplit
internally, so there is no fine-grained control possible over the splitting. If it is
important to get the splitting exactly right, consider pre-processing the splitting
by inserting a special symbol on the split-positions, and then choosing to split
by this specific symbol.

bigrams By default, both unigrams and bigrams are computer. If bigrams are not needed,
setting bigrams = F will save on resources.

boundary Should a start symbol and a stop symbol be added to each string? This will only
be used for the determination of bigrams, and will be ignored if bigrams = F.

bigram.binder Only when bigrams = T. What symbol(s) should occur between the two parts of
the bigram?

gap.symbol Only when bigram = T. What symbol should be included to separate the strings?
It defaults to U+2043 HYPHEN BULLET on the assumption that this character will
not often be included in data. See pwMatrix for some more explanation about
the necessity of this gap symbol.

left.boundary, right.boundary

Symbols to be used as boundaries, only used when boundary = T.

simplify By default, various vectors and matrices are returned. However, when simplify
= T, only a single sparse matrix is returned. See Value.

Value

By default, the output is a list of six elements:

segments A vector with all splitted parts (i.e. all tokens) in order of occurrence, separated
between the original strings with gap symbols.

unigrams A vector with all unique parts occuring in the segments.

bigrams Only present when bigrams = T. A vector with all unique bigrams.

SW A sparse pattern matrix of class ngCMatrix specifying the distribution of seg-
ments (S) over the original strings (W, think ‘words’). This matrix is only inter-
esting in combination with the following matrices.

US A sparse pattern matrix of class ngCMatrix specifying the distribution of the
unique unigrams (U) over the tokenized segments (S).

BS Only present when bigrams = T. A sparse pattern matrix of class ngCMatrix
specifying the distribution of the unique bigrams (B) over the tokenized seg-
ments (S)

splitTable 43

When simplify = T the output is a single sparse matrix of class dgCMatrix. This is basically BS
%8% SW (when bigrams = T) or US %*% SW (when bigrams = F) with rows and column names
added into the matrix.

Note

Because of some internal idiosyncrasies, the ordering of the bigrams is first by second element, and
then by first element. This might change in future versions.

Author(s)

Michael Cysouw

See Also

sim.strings is a convenience function to quickly compute pairwise strings similarities, based on
splitStrings.

Examples

a simple example to see the function at work
example <- c("this","is","an","example")
splitStrings(example)
splitStrings(example, simplify = TRUE)

a bit larger, but still quick and efficient
taking 15526 wordforms from the English Dalby Bible and splitting them into bigrams
data(bibles)
words <- splitText(bibles$eng)$wordforms
system.time(S <- splitStrings(words, simplify = TRUE))

and then taking the cosine similarity between the bigram-vectors for all word pairs
system.time(sim <- cosSparse(S))

most similar words to "father"
sort(sim["father",], decreasing = TRUE)[1:20]

splitTable Construct sparse matrices from a nominal matrix/dataframe

Description

This function splits a matrix or dataframe into two sparse matrices: an incidence and an index
matrix. The incidence matrix links the observations (rows) to all possible values that occur in the
original matrix. The index matrix links the values to the attributes (columns). This encoding allows
for highly efficient calculations on nominal data.

44 splitTable

Usage

splitTable(data,
attributes = colnames(data), observations = rownames(data),

name.binder = ":", split = NULL)

Arguments

data a matrix (or data.frame) with observations as rows and nominal attributes as
columns. Numerical values in the data will be interpreted as classes (i.e. as
nominal data, aka categorical data).

attributes, observations

The row names and column names of the data will by default be extracted from
the input matrix. However, in special situations they can be added separately.
Note that names of the attributes (‘column names’) are needed for the production
of unique value names. In case of absent column names, new column names of
the form ‘X1’ are automatically generated.

name.binder Character string to be added between attribute names and value names. Defaults
to colon ‘:’.

split Character string to split values in each cell of the table, e.g. a comma or semi-
colon.

Value

A list containing the various row and column names, and the two sparse pattern matrices of format
ngCMatrix:

attributes vector of attribute names

values vector of unique value names

observations vector of observation names

OV sparse pattern matrix with observations as rows (O) and values as columns (V)

AV sparse pattern matrix with attributes as rows (A) and values as columns (V)

Note

Input of data as a matrix or as a data.frame might lead to different ordering of the values because
collation differs per locale (see the discussion at ttMatrix, which does the heavy lifting here).

The term ‘attribute’ is used in instead of the more common term ‘variable’ to allow for the capital
A to uniquely identify attributes and V to identify values.

Author(s)

Michael Cysouw

See Also

More methods to use such split tables can be found at sim.nominal.

splitText 45

Examples

start with a simple example from the MASS library
compare the original data with the encoding as sparse matrices
library(MASS)
farms
splitTable(farms)

As a more involved example, consider the WALS data included in this package
Transforming the reasonably large WALS data.frame \code{wals$data} is fast
(2566 observations, 131 attributes, 630 unique values)
The function `str' gives a useful summary of the result of the splitting
data(wals)
system.time(W <- splitTable(wals$data))
str(W)

Some basic use examples on the complete WALS data.
The OV-matrix can be used to quickly count the number of similarities
between all pairs of observations. Note that with the large amount of missing values
the resulting numbers are not really meaningfull. Some normalisation is necessary.
system.time(O <- tcrossprod(W$OV*1))
O[1:10,1:10]

The number of comparisons available for each pair of attributes
system.time(N <- crossprod(tcrossprod(W$OV*1, W$AV*1)))
N[1:10,1:10]

compute the number of available datapoints per observation (language) in WALS
once the sparse matrices W are computed, such calculations are much quicker than 'apply'
system.time(avail1 <- rowSums(W$OV))
system.time(avail2 <- apply(wals$data,1,function(x){sum(!is.na(x))}))
names(avail2) <- NULL
all.equal(avail1, avail2)

splitText Construct sparse matrices from parallel texts

Description

Convenience functions to read parallel texts and to split parallel texts into sparse matrices.

Usage

splitText(text, globalSentenceID = NULL, localSentenceID = names(text), sep = " ",
simplify = FALSE, lowercase = TRUE)

read.text(file)

46 splitText

Arguments

text vector of strings, typically sentences with wordforms separated by space (see
sep below). names of the vector elements are typically IDs to link across texts
(cf. the format as used in bibles).

globalSentenceID

Vector of all IDs that might possibly occur in the parallel texts, used to paral-
lelize the texts. Can for example be constructed by using union on the localSen-
tenceIDs.

localSentenceID

Vector of the IDs for the actual sentences in the present text. Typically present
as names of the text.

sep Separator on which the sentences should be parsed into wordforms. The im-
plementation is very simple here, there are no advanced options for guessing
punctuation. The variation in punctuation across a wide variety of languages
and scripts normally turns out to be too large to be easily automatically parsed.
Any advanced parsing has to be done externally, and here simply the parsed
symbol is used to actually split the text into parts. Typically, this parsing of
sentences into wordforms will be performed using space sep = " ". See also
bibles for some examples of such pre-parsing.

simplify By default (when simplify = F), this function returns a list of objects that rep-
resent the encoding of the text into sparse matrices. With simplify = T this list
is reduced to a single matrix (wordforms x globalSentenceID), with the actual
wordforms as row names.

lowercase By default, a mapping between the text and a lowercase version of the same
text. In the default output (with simplify = F), this is a sparse matrix linking
strings with mixed upper/lower case to string with only lower case. Note that
case folding is locale-specific, but here a simple universal case-folding is used
(as available through tolower).

file file name (or full path) for a file to be read.

Details

The function splitText is actually just a nice examples of how pwMatrix, jMatrix, and ttMatrix
can be used to work with parallel texts.

The function read.text is a convenience function to read parallel texts.

Value

When simplify = F, a list is returned with the following elements:

runningWords single vector with complete text (ignoring original sentence breaks), separated
into strings according to sep

wordforms vector with all wordforms as attested in the text (according to the specified sep-
arator). Ordering of wordforms is done by ttMatrix, which by default uses the
"C" collation locale.

lowercase only returned when lowercase = T. Vector with all unique wordforms after con-
version to lowercase.

splitText 47

RS Sparse pattern matrix of class ngCMatrix with runningWords (R) as rows and
sentence IDs (S) as columns. When globalSentenceID = NULL, then the sen-
tences are the elements of the original text. Else, they are the specified glob-
alSentenceIDs.

WR Sparse pattern matrix of class ngCMatrix with wordforms (W) as rows and run-
ning words (R) as columns.

wW only returned when lowercase = T. Sparse pattern matrix of class ngCMatrix
linking between lowercased wordforms and original wordforms.

When simplify = T the result is a single sparse Matrix (of type dgCMatrix) linking wordforms
(either with or without case) to sentences (either global or local). Note that the result with options
(simplify = T, lowercase = F) will result in the sparse matrix as available at paralleltext.info
(there the matrix is in .mtx format), with the wordforms included into the matrix as row names.
However, note that the resulting matrix from the code here will include frequencies for words that
occur more than once per sentence. These have been removed for the .mtx version available online.

Author(s)

Michael Cysouw

See Also

bibles for some texts that led to the development of this function. sim.words for a convenience
function to easily extract possible translations equivalents through co-occurrence (using splitText
for the data-preparation.)

Examples

a trivial examples to see the results of this function:
text <- c("This is a sentence .","A sentence this is !","Is this a sentence ?")
splitText(text)
splitText(text, simplify = TRUE, lowercase = FALSE)

reasonably quick with complete bibles (about 1-2 second per complete bible)
texts with only New Testament is even quicker
data(bibles)
system.time(eng <- splitText(bibles$eng, bibles$verses))
system.time(deu <- splitText(bibles$deu, bibles$verses))

Use example: Number of co-ocurrences between two bibles
(this is more conveniently performed by the function sim.words)
How often do words from the one language cooccur with words from the other language?
ENG <- (eng$wW * 1) %*% (eng$WR * 1) %*% (eng$RS * 1)
DEU <- (deu$wW * 1) %*% (deu$WR * 1) %*% (deu$RS * 1)
C <- tcrossprod(ENG,DEU)
rownames(C) <- eng$lowercase
colnames(C) <- deu$lowercase
C[c("father","father's","son","son's"),
c("vater","vaters","sohn","sohne","sohnes","sohns")
]

48 splitWordlist

Pure counts are not very interesting. This is better:
R <- assocSparse(t(ENG), t(DEU))
rownames(R) <- eng$lowercase
colnames(R) <- deu$lowercase
R[c("father","father's","son","son's"),
c("vater","vaters","sohn","sohne","sohnes","sohns")
]

For example: best co-occurrences for the english word "mine"
sort(R["mine",], decreasing = TRUE)[1:10]

To get a quick-and-dirty translation matrix:
adding maxima from both sides work quite well
but this takes some time

cm <- colMax(R, which = TRUE, ignore.zero = FALSE)$which
rm <- rowMax(R, which = TRUE, ignore.zero = FALSE)$which
best <- cm + rm
best <- as(best, "nMatrix")

which(best["your",])
which(best["went",])

A final speed check:
split all 4 texts, and simplify them into one matrix
They have all the same columns, so they can be rbind
system.time(all <- sapply(bibles[-1], function(x){splitText(x, bibles$verses, simplify = TRUE)}))
all <- do.call(rbind, all)

then try a single co-occerrence measure on all pairs from these 72K words
(so we are doing about 2.6e9 comparisons here!)
system.time(S <- cosSparse(t(all)))

this goes extremely fast! As long as everything fits into RAM this works nicely.
Note that S quickly gets large
print(object.size(S), units = "auto")

but most of it can be thrown away, because it is too low anyway
this leads to a factor 10 reduction in size:
S <- drop0(S, tol = 0.2)
print(object.size(S), units = "auto")

splitWordlist Construct sparse matrices from comparative wordlists (aka ‘Swadesh
list’)

splitWordlist 49

Description

A comparative wordlist (aka ‘Swadesh list’) is a collection of wordforms from different languages,
which are translations of a selected set of meanings. This function dismantles this data structure
into a set of sparse matrices.

Usage

splitWordlist(data,
doculects = "DOCULECT", concepts = "CONCEPT", counterparts = "COUNTERPART",
splitstrings = TRUE, sep = "", bigram.binder = "", grapheme.binder = "_",
simplify = FALSE)

Arguments

data A dataframe or matrix with each row describing a combination of language
(DOCULECT), meaning (CONCEPT) and translation (COUNTERPART).

doculects, concepts, counterparts

The name (or number) of the column of data in which the respective infor-
mation is to be found. The defaults are set to coincide with the naming of the
example dataset included in this package: huber.

splitstrings Should the counterparts be separated into unigrams and bigrams (using splitStrings)?
sep Separator to be passed to splitStrings to specify where to split the strings.

Only used when splitstrings = T, ignored otherwise.
bigram.binder Separator to be passed to splitStrings to be inserted between the parts of the

bigrams
grapheme.binder

Separator to be used to separate a grapheme from the language name. Graphemes
are language-specific symbols (i.e. the ’a’ in the one language is not assumed to
be the same as the ’a’ from another language).

simplify Should the output be reduced to the most important matrices only, with the row
and columns names included in the matrices? Defaults to simplify = F, sepa-
rating everything into different object. See Value below for details on the format
of the results.

Details

The meanings that are selected for a wordlist are called CONCEPTS here, and the translations into
the various languages COUNTERPARTS (following Poornima & Good 2010). The languages are
called DOCULECTS (‘documented lects’) to generalize over their status as dialects, languages, or
even small families (following Cysouw & Good 2013).

Value

There are four different possible outputs, depending on the option chosen.

By default, when splitstrings = T, simplify = F, the following list of 15 objects is returned. It
starts with 8 different character vectors, which are actually the row/column names of the follow-
ing sparse pattern matrices. The naming of the objects is an attempt to make everything easy to
remember.

50 splitWordlist

doculects Character vector with names of doculects in the data

concepts Character vector with names of concepts in the data

words Character vector with all words, i.e. unique counterparts per language. The
same string in the same language is only included once, but an identical string
occurring in different doculect is separately included for each doculects.

segments Character vector with all unigram-tokens in order of appearance, including bound-
ary symbols and gap symbols (see splitStrings for more information about
the gap symbols)

unigrams Character vector with all unique unigrams in the data

bigrams Character vector with all unique bigrams in the data

graphemes Character vector with all unique graphemes (i.e. combinations of unigrams+doculects)
occurring in the data

digraphs Character vector with all unique digraphs (i.e. combinations of bigrams+doculects)
occurring in the data

DW Sparse pattern matrix of class ngCMatrix linking doculects (D) to words (W)

CW Sparse pattern matrix of class ngCMatrix linking concepts (C) to words (W)

SW Sparse pattern matrix of class ngCMatrix linking all token-segments (S) to
words (W)

US Sparse pattern matrix of class ngCMatrix linking unigrams (U) to segments (S)

BS Sparse pattern matrix of class ngCMatrix linking bigrams (B) to segments (S)

GS Sparse pattern matrix of class ngCMatrix linking language-specific graphemes
(G) to segments (S)

TS Sparse pattern matrix of class ngCMatrix linking digraphs (T, as no other letter
was available) to segments (S)

When splitstrings = F, simplify = F, only the following objects from the above list are re-
turned:

doculects Character vector with names of doculects in the data

concepts Character vector with names of concepts in the data

words Character vector with all words, i.e. unique counterparts per language. The
same string in the same language is only included once, but an identical string
occurring in different doculect is separately included for each doculects.

DW Sparse pattern matrix of class ngCMatrix linking doculects (D) to words (W)

CW Sparse pattern matrix of class ngCMatrix linking concepts (C) to words (W)

When splitstrings = T, simplify = T only the bigram-separation is returned, and all row and
columns names are included into the matrices. However, for reasons of space, the words vector is
only included once:

DW Sparse pattern matrix of class ngCMatrix linking doculects (D) to words (W).
Doculects are in the rownames, colnames are left empty.

CW Sparse pattern matrix of class ngCMatrix linking concepts (C) to words (W).
Concepts are in the rownames, colnames are left empty.

splitWordlist 51

BW Sparse pattern matrix of class ngCMatrix linking bigrams (B) to words (W).
Bigrams (note: not digraphs!) are in the rownames. This matrix includes all
words as colnames.

Finally, when splitstrings = F, simplify = T, only the following subset of the above is returned.

DW Sparse pattern matrix of class ngCMatrix linking doculects (D) to words (W).
Doculects are in the rownames, colnames are left empty.

CW Sparse pattern matrix of class ngCMatrix linking concepts (C) to words (W).
Concepts are in the rownames, colnames are left empty.

Note

Note that the default behavior probably overgenerates information (specifically when splitstrings
= T), and might be performing unnecessary computation for specific goals. In practice, it might be
useful to tweak the underlying code (mainly by throwing out unnecessary steps) to optimize perfor-
mance.

Author(s)

Michael Cysouw

References

Cysouw, Michael & Jeff Good. 2013. Languoid, Doculect, Glossonym: Formalizing the notion
“language”. Language Documentation and Conservation 7. 331-359.

Poornima, Shakthi & Jeff Good. 2010. Modeling and Encoding Traditional Wordlists for Machine
Applications. Proceedings of the 2010 Workshop on NLP and Linguistics: Finding the Common
Ground.

See Also

sim.wordlist for various quick similarities that can be computed using these matrices.

Examples

----- load data -----

an example wordlist, see the help(huber) for details
data(huber)

----- show output -----

a selection, to see the result of splitWordlist
only show the simplified output here,
the full output is rather long even for just these six words
sel <- c(1:3, 1255:1258)
splitWordlist(huber[sel,], simplify = TRUE)

----- split complete data -----

52 splitWordlist

splitting the complete wordlist is a lot of work !
it won't get much quicker than this
most time goes into the string-splitting of the almost 26,000 words
Default version, included splitStrings:
system.time(H <- splitWordlist(huber))

Simplified version without splitStrings is much quicker:
system.time(H <- splitWordlist(huber, splitstrings = FALSE, simplify = TRUE))

----- investigate colexification -----

The simple version can be used to check how often two concepts
are expressed identically across all languages ('colexification')
H <- splitWordlist(huber, splitstrings = FALSE, simplify = TRUE)
sim <- tcrossprod(H$CW*1)

select only the frequent colexifications for a quick visualisation
diag(sim) <- 0
sim <- drop0(sim, tol = 5)
sim <- sim[rowSums(sim) > 0, colSums(sim) > 0]

Not run:
this might lead to errors on some platforms because of non-ASCII symbols
plot(hclust(as.dist(-sim), method = "average"), cex = .5)

End(Not run)

----- investigate regular sound correspondences -----

One central problem with data from many languages is the variation of orthography
It is preferred to solve that problem separately
e.g. check the column "TOKENS" in the huber data
This is a grapheme-separated version of the data.
can be used to investigate co-occurrence of graphemes (approx. phonemes)
H <- splitWordlist(huber, counterparts = "TOKENS", sep = " ")

co-occurrence of all pairs of the 2150 different graphemes through all languages
system.time(G <- assocSparse((H$CW*1) %*% t(H$SW*1) %*% t(H$GS*1), method = poi))
rownames(G) <- colnames(G) <- H$graphemes
G <- drop0(G, tol = 1)

select only one language pair for a quick visualisation
check the nice sound changes between bora and muinane!
GD <- H$GS %*% H$SW %*% t(H$DW)
colnames(GD) <- H$doculects
correspondences <- G[GD[,"bora"],GD[,"muinane"]]

Not run:
this might lead to errors on some platforms because of non-ASCII symbols
heatmap(as.matrix(correspondences))

End(Not run)

ttMatrix 53

ttMatrix Construct a ‘type-token’ (tt) Matrix from a vector

Description

A type-token matrix is a sparse matrix representation of a vector of entities. The rows of the ma-
trix (‘types’) represent all different entities in the vector, and the columns of the matrix (‘tokens’)
represent the entities themselves. The cells in the matrix represent which token belongs to which
type. This is basically a convenience wrapper around factor and sparseMatrix, with an option to
influence the ordering of the rows (‘types’) based on locale settings.

Usage

ttMatrix(vector, collation.locale = "C", simplify = FALSE)

Arguments

vector a vector of tokens to be represented as a sparse matrix. It will work without
complaining just as well when given a factor, but be aware that the ordering of
the levels in the factor depends on the locale, which is transparently handled by
this function. So better let this function turn the vector into a factor.

simplify by default, the row and column names are not included into the matrix to keep
the matrix as lean as possible. The row names (‘types’) are returned separately.
Using simplify = T the row and columns names will be added into the matrix.
Note that the column names are simply the vector that went into the function.

collation.locale

locale determining the ordering (‘collation’) of the entities. By default R mostly
uses ‘en_US.UTF-8’, though this might depend on the installation. By default,
this function sets the ordering to ‘C’, which means that characters are ordered
according to their Unicode-number. For more information about locale settings,
see locales.

Details

This function is a rather low-level preparation for later high level functions. A few simple uses are
described in the examples.

Value

By default (simplify = F), then the output is a list with two elements:

M sparse pattern Matrix of type ngCMatrix. Because of the structure of these ma-
trices, row-based encoding would be slightly more efficient. If RAM is crucial,
consider storing the matrix as its transpose

rownames a separate vector with the names of the types in the order of occurrence in the
matrix. This vector is separated from the matrix itself for reasons of efficiency
when dealing with many matrices.

When simplify = T, then only the matrix M with row and columns names is returned.

54 ttMatrix

Author(s)

Michael Cysouw

See Also

This function is used in various high-level functions like pwMatrix, splitText, splitTable and
splitWordlist.

Examples

Consider two nominal variables
one with eight categories, and one with three categories
var1 <- sample(8, 1000, TRUE)
var2 <- sample(3, 1000, TRUE)

turn them into type-token matrices
M1 <- ttMatrix(var1, simplify = TRUE)
M2 <- ttMatrix(var2, simplify = TRUE)

Then taking the `residuals' from assocSparse ...
x <- as.matrix(assocSparse(t(M1), t(M2), method = res))

... is the same as the residuals as given by a chi-square
x2 <- chisq.test(var1, var2)$residuals
class(x2) <- "matrix"
all.equal(x, x2, check.attributes = FALSE) # TRUE

A second quick example: consider a small piece of English text:
text <- "Once upon a time in midwinter, when the snowflakes were
falling like feathers from heaven, a queen sat sewing at her window,
which had a frame of black ebony wood. As she sewed she looked up at the snow
and pricked her finger with her needle. Three drops of blood fell into the snow.
The red on the white looked so beautiful that she thought to herself:
If only I had a child as white as snow, as red as blood, and as black
as the wood in this frame. Soon afterward she had a little daughter who was
as white as snow, as red as blood, and as black as ebony wood, and therefore
they called her Little Snow-White. And as soon as the child was born,
the queen died."

split by characters, make lower-case, and turn into a type-token matrix
split.text <- tolower(strsplit(text,"")[[1]])
M <- ttMatrix(split.text, simplify = TRUE)

rowSums give the character frequency
freq <- rowSums(M)
names(freq) <- rownames(M)
sort(freq, decreasing = TRUE)

shift the matrix one character to the right using a bandSparse matrix
S <- bandSparse(n = ncol(M), k = 1)
N <- M %*% S

unfold 55

use rKhatriRao on M and N to get frequencies of bigrams
B <- rKhatriRao(M, N, binder = "")
freqB <- rowSums(B$M)
names(freqB) <- B$rownames
sort(freqB, decreasing = TRUE)

then the association between N and M is related
to the transition probabilities between the characters.
P <- assocSparse(t(M), t(N))
plot(hclust(as.dist(-P), method = "ward.D"))

unfold Unfolding of Arrays

Description

Multidimensional Arrays ("Tensors") can be unfolded, i.e. multiple dimensions can be combined
into a single dimension in a block-wise fashion. Such unfoldings are central to tensor decomposi-
tion. In general, computations on tensors are regularly performed by reducing tensors to matrices
("2-dimensional tensors") and then use regular matrix algebra.

Usage

unfold(x, MARGINS)

unfold_to_matrix(x, ROWS, COLS = NULL)
tenmat(x, ROWS, COLS = NULL)

Arguments

x Sparse array to be unfolded, using simple_sparse_array from the package
spam.

MARGINS Margins ("dimensions") to be unfolded. The margins specified will be turned
into a single dimension, to be added as the last dimension of the resulting array
(see Details).

ROWS Margins of the original array to be unfolded into the rows of the resulting matrix.

COLS Margins of the original array to be unfolded into the columns of the resulting
matrix. If NULL, then all remaining margins, not included in ROWS are unfolded
here.

Details

The function unfold is a general approach to combining of multiple dimensions into a single di-
mensions. The function unfold_to_matrix is a special case in which the result is a 2-dimensional
matrix. This second function is made to emulate the functionality of the tenmat ("tensor to matrix")

56 unfold

from the Matlab Tensor Toolbox. For convenience, the function-name tenmat is also added as a
synonym for unfold_to_matrix.

Unfolding basically works by interspercing margins subsequently. E.g. margin A of size 3 (A1,
A2, A3) and a margin B of size 2 (B1, B2) are unfolded through c(A,B) as (A1B1, A2B1, A3B1,
A1B2, A2B2, A3B2), but they are unfolded through c{B,A} as (B1A1, B2A1, B1A2, B2A2, B1A3,
B2A3).

Value

unfold returns a simple_sparse_array with the new combined dimension added as the last di-
mension. All original dimensions are shifted forward. The relation between the original dimensions
and the new dimensions is stored as an permutation attribute, e.g. try attr(x, "p"). When mul-
tiple unfoldings are performed after each other, these permutations can be subsetted on each other
to obtain the final permutation. See examples below.

unfold_to_matrix and tenmat return a sparse matrix of class dgTMatrix.

Author(s)

Michael Cysouw <cysouw@mac.com>

References

see some old notes by Charles Van Loon that inspired this implementation at https://web.archive.
org/web/20210505120659/http://www.cs.cornell.edu/cv/SummerSchool/unfold.pdf. The
Matlab Tensor Toolbox can be found at https://www.tensortoolbox.org. A different Matlab
implementation is https://www.tensorlab.net.

Examples

example from Charles Van Loon:
x <- array(c(111, 211, 311, 411, 121, 221, 321,

421, 131, 231, 331, 431, 112, 212, 312, 412,
122, 222, 322, 422, 132, 232, 332, 432), dim = c(4, 3, 2))

x

s <- as.simple_sparse_array(x)
(s1 <- as.array(unfold_to_matrix(s,1)))

note this is identical to:
(s23 <- as.array(unfold(s,c(2,3))))
all.equal(s23, s1)

larger example from same source
x <- array(0, dim = c(2,3,2,2,3))
x[1,2,1,1,2] <- 12112
x[2,3,1,2,2] <- 23122
x[2,2,2,1,1] <- 22211
x[2,2,1,2,3] <- 22123
s <- as.simple_sparse_array(x)

as.array(unfold_to_matrix(s, c(1,2,3), c(4,5)))

https://web.archive.org/web/20210505120659/http://www.cs.cornell.edu/cv/SummerSchool/unfold.pdf
https://web.archive.org/web/20210505120659/http://www.cs.cornell.edu/cv/SummerSchool/unfold.pdf
https://www.tensortoolbox.org
https://www.tensorlab.net

unfoldBlockMatrix 57

use attribute "permutation" to track dimensions
first step: unfold 1,2,3 to become dimension 3
original dimensions 4,5 now become 1,2
s1 <- unfold(s, c(1,2,3))
(p1 <- attr(s1, "permutation"))

now take these dimension 1,2 (originally 4,5) and unfold them
s2 <- unfold(s1, c(1,2))
(p2 <- attr(s2, "permutation"))

use subsetting to track dimensions through subsequent unfolding
p2[p1]

unfoldBlockMatrix Unfolding of block matrices (sparse matrices)

Description

Utility function for some matrix manipulations for sparse block matrices.

Usage

unfoldBlockMatrix(X, colGroups, rowGroups = NULL)

Arguments

X Sparse block matrix to be unfolded into the individual blocks
colGroups, rowGroups

either vectors with group indices of the columns and rows, or sparse pattern ma-
trices with the groups as rows and the columns/rows of the X matrix as columns.
See example below.

Details

For some sparse manipulation it turns out the profitable to ‘unfold’ sparse block matrices, i.e. to
separate the blocks into their own rows and columns. Each block can then separately be manipulated
by using matrix products with diagonal matrices (see example below). For convenience, the function
also returns two matrices to ‘refold’ the unfolded matrix. Specifically, X = L %*% U %*% R

Value

When rowGroups != NULL then the result is a list of three matrices:

U The unfolded block matrix
L The left matrix for refolding the unfolded matrix
R The right matrix for refolding the unfolded matrix

When rowGroups = NULL then the R matrix is not returned, and the refolding works with only the L
matrix: X = L %*% U.

58 WALS

Note

The use of kronecker for sparse matrices in this function often leads to warnings about the sparse
format of the resulting matrices. These warnings can be ignored.

Author(s)

Michael Cysouw

See Also

This is used in the sparse computation of assocCol to divide each block by a different N.

Examples

specially prepared block matrix. For illustration purpuse, this one is not sparse
(X <- Matrix(c(rep(c(1,1,1,1,2,2,3,3,3,4),3),
rep(c(5,5,5,5,6,6,7,7,7,8),2)),10,5, sparse = TRUE))

this matrix has two column groups, and four row groups
groups can be specified as sparse matrices, or as grouping vectors
colG <- ttMatrix(c(1,1,1,2,2))$M*1
rowG <- ttMatrix(c(1,1,1,1,2,2,3,3,3,4))$M*1

unfold the matrix, with the result that each block has it's own rows/columns
the $L and $R matrices can be used to refold the matrix to it's original state
(M <- unfoldBlockMatrix(X, colG, rowG))

unfold and refold back: result is identical with M
with(M, all.equal(X, L %*% U %*% R))

Unfolded, each block can be easily reached for computations using diagonal matrices
for example, multiply each block by the sum of its cells, and then fold back again
this is a trick to apply computations to blocks in sparse block matrices
sums <- drop(crossprod(kronecker(Diagonal(nrow(colG)),rowG)) %*% rowSums(M$U))
S <- Diagonal(x = sums)

with(M, L %*% S %*% U %*% R)

WALS The World Atlas of Language Structures (WALS)

Description

The World Atlas of Language Structures (WALS) is a large database of structural (phonological,
grammatical, lexical) properties of languages gathered from descriptive materials (such as reference
grammars) by a team of 55 authors.

The first version of WALS was published as a book with CD-ROM in 2005 by Oxford Univer-
sity Press. The first online version was published in April 2008. The second online version was
published in April 2011. The current dataset is WALS 2013, published on 14 November 2013.

WALS 59

The included dataset wals takes a somewhat sensible selection from the complete WALS data. It
excludes attributes ("features" in WALS-parlance) that are definitially duplicates of others (3, 25,
95, 96, 97), those attributes that only list languages that are incompatible with other attributes (132,
133, 134, 135, 139, 140, 141, 142), and the ‘additional’ attributes that are marked as ‘B’ through ‘Z’.
Further, it removes those languages that do not have any data left after removing those attributes.
The result is a dataset with 2566 languages and 131 attributes.

Usage

data(wals)

Format

A list with two dataframes:

data the actual WALS data. The object wals$data contains a dataframe with data from 2566
languages on 131 different attributes. The column names identify the WALS features. For
details about these features, see https://wals.info/chapter

meta some metadata for the languages. The object wals$meta contains a dataframe with some
limited meta-information about these 2566 languages.

The three-letter WALS-codes are used as rownames in both dataframes. Further, the object wals$meta
contains the following variables.

name a character vector giving a name for each language

genus a factor with 522 levels with the genera according to M. Dryer

family a factor with 215 levels with the families according to M. Dryer

longitude a numeric vector with geo coordinates for all languages

latitude a numeric vector with geo coordinates for all languages

Details

All details about the meaning of the variables and much more meta-information is available at
https://wals.info.

Source

The current data was downloaded from https://wals.info in May 2014. The data is licensed
as https://creativecommons.org/licenses/by-nc-nd/2.0/de/deed.en. Some minor cor-
rections on the metadata have been performed (naming of variables, addition of missing coordi-
nates).

References

Dryer, Matthew S. & Haspelmath, Martin (eds.) 2013. The World Atlas of Language Struc-
tures Online. Leipzig: Max Planck Institute for Evolutionary Anthropology. (Available online
at https://wals.info, Accessed on 2013-11-14.)

https://wals.info/chapter
https://wals.info
https://wals.info
https://creativecommons.org/licenses/by-nc-nd/2.0/de/deed.en

60 WALS

Examples

data(wals)

plot all locations of the WALS languages, looks like a world map
plot(wals$meta[,4:5])

turn the large and mostly empty dataframe into sparse matrices
recoding is nicely optimized and quick for this reasonably large dataset
this works perfect as long as things stay within available RAM of the computer
system.time(

W <- splitTable(wals$data)
)

as an aside: note that the recoding takes only about 30% of the space
as.numeric(object.size(W) / object.size(wals$data))

compute similarities (Chuprov's T, similar to Cramer's V)
between all pairs of variables using sparse Matrix methods
system.time(sim <- sim.att(wals$data, method = "chuprov"))

some structure visible
rownames(sim) <- colnames(wals$data)
plot(hclust(as.dist(1-sim), method = "ward"), cex = 0.5)

Index

∗ array
unfold, 55

∗ datasets
bibles, 8
huber, 20
WALS, 58

∗ package
qlcMatrix-package, 2

∗ tensor
unfold, 55

∗ unfolding
unfold, 55

adist, 34
Array, 3
as.Matrix (Array), 3
assocCol, 7, 30, 58
assocCol (cosNominal), 12
assocNominal, 3
assocNominal (cosNominal), 12
assocRow, 7, 30
assocRow (cosNominal), 12
assocSparse, 3, 5, 11–13, 15, 30, 33, 36, 37,

39, 40

bibles, 8, 39, 46, 47

Cholesky, 17
colMax, 39
colMax (rowMax), 26
colMin (rowMax), 26
cor, 9, 11, 15
corSparse, 3, 7, 9, 14, 15
cosCol, 15, 30
cosCol (cosNominal), 12
cosMissing, 6
cosMissing (cosSparse), 14
cosNominal, 3, 12
cosRow, 15, 30
cosRow (cosNominal), 12

cosSparse, 3, 7, 10–13, 14, 34, 36, 37, 39, 40

dimRed, 16
dist, 19, 20
distSparse, 19

huber, 20, 36, 49

idf (cosSparse), 14
isqrt (cosSparse), 14

jcrossprod (jMatrix), 21
jMatrix, 3, 21, 46

KhatriRao, 25, 26

locales, 53

none (cosSparse), 14
norm1 (cosSparse), 14
norm2 (cosSparse), 14
normL (cosSparse), 14

pmi (assocSparse), 5
poi (assocSparse), 5
pwMatrix, 3, 23, 42, 46, 54

qlcMatrix (qlcMatrix-package), 2
qlcMatrix-package, 2

read.text (splitText), 45
res (assocSparse), 5
rKhatriRao, 2, 25
rowMax, 2, 26, 39, 40
rowMin (rowMax), 26
rSparseMatrix, 3, 28

sim.att, 13
sim.att (sim.nominal), 29
sim.con (sim.wordlist), 35
sim.graph (sim.wordlist), 35
sim.lang (sim.wordlist), 35

61

62 INDEX

sim.nominal, 3, 29, 44
sim.obs, 13
sim.obs (sim.nominal), 29
sim.strings, 3, 32, 43
sim.wordlist, 3, 35, 51
sim.words, 3, 15, 38, 47
simple_sparse_array, 4
sparseArray (Array), 3
sparsesvd, 17
sparseVector, 27
splitStrings, 3, 24, 33, 34, 41, 49, 50
splitTable, 3, 13, 29, 30, 43, 54
splitText, 3, 39, 40, 45, 54
splitWordlist, 3, 24, 37, 48, 54
strsplit, 33, 42

tenmat (unfold), 55
tjcrossprod (jMatrix), 21
tolower, 46
ttMatrix, 3, 21, 44, 46, 53

unfold, 3, 55
unfold_to_matrix (unfold), 55
unfoldBlockMatrix, 57

WALS, 58
wals (WALS), 58
wpmi (assocSparse), 5

	qlcMatrix-package
	Array
	assocSparse
	bibles
	corSparse
	cosNominal
	cosSparse
	dimRed
	distSparse
	huber
	jMatrix
	pwMatrix
	rKhatriRao
	rowMax
	rSparseMatrix
	sim.nominal
	sim.strings
	sim.wordlist
	sim.words
	splitStrings
	splitTable
	splitText
	splitWordlist
	ttMatrix
	unfold
	unfoldBlockMatrix
	WALS
	Index

