Package ‘pryr’

January 17, 2023

Title Tools for Computing on the Language

Version 0.1.6

Description Useful tools to pry back the covers of R and understand the
language at a deeper level.

License GPL-2

URL https://github.com/hadley/pryr

BugReports https://github.com/hadley/pryr/issues

Depends R (>=3.1.0)

Imports codetools, lobstr, methods, Repp (>=0.11.0), stringr
Suggests testthat (>=0.8.0)

LinkingTo Rcpp
Encoding UTF-8
RoxygenNote 7.2.3

NeedsCompilation yes

Author Hadley Wickham [aut, cre],
R Core team [ctb] (Some code extracted from base R)

Maintainer Hadley Wickham <hadley@rstudio.com>

Repository CRAN

Date/Publication 2023-01-17 17:50:02 UTC

R topics documented:

bytes . . . ..
call tree . . .
compose . . .
dots . .. ..
enclosing_env
explicit . . .


https://github.com/hadley/pryr
https://github.com/hadley/pryr/issues

2 bytes
find_funs . . . . .. e e 7
find_UsSes . . . . . . e e e e e e e e 8
ftype . . . . 9
is_active_binding . . . . . . ... 9
IS_PTOMISE « . v v v v v o e e e e e e e e e e e e e e e e e e e e e e 10
make_call . . . . . L e 11
make_function . . . . . . . e 11
mem_change . . . . . . . . .. e e e e 12
mem_used . . . ... L e e e e e e e e e e 13
method_from_call . . . . . . . . . e 13
modify_call . . . . . .. 14
modify_lang . . . . . . L e 15
ODJECE_SIZE . . . . . o o e e e e 15
OLYPE . v o e e e e e e e e e e 17
PAreNt_PromiSe . . . . . v v v v e i e e e e e e e e e e e e e e e e e 17
PATENIV . . . . o L e e e e e e e e e e e 18
PATENIVS . . L o o L e e e e e e e e e e 18
partial . ... 19
rebind . . . .. e 21
IS . e e e e 22
SEXP_LYPE « v v e e e e e e e e e e e e e 22
ShOW_C_SOUICE . . . . . . . e e 23
standardise_call . . . . . . . . .. L e 24
SUDS . . . e e e 24
SUDSHItULE_Q . . . . . o o e e e e 25
track_CoOpY . . . . o o e e e 26
unenclose . . . . . L. e e e e 26
uneval . ... L e e e 27
wWhere . . .. e e e 28
Do<a-To . . . . e e e e e e e e 28
Do<C-To . . . . e 29
Po<d-To . . . . e 30

Index 31

bytes Print the byte-wise representation of a value

Description

Print the byte-wise representation of a value

Usage

bytes(x, split = TRUE)

bits(x, split = TRUE)



call tree 3

Arguments
X An R vector of type integer, numeric, logical or character.
split Whether we should split the output string at each byte.
References

https://en.wikipedia.org/wiki/Two’s_complement for more information on the representa-
tion used for ints.

https://en.wikipedia.org/wiki/IEEE_floating_point for more information the floating-point
representation used for doubles.

https://en.wikipedia.org/wiki/Character_encoding for an introduction to character encod-
ing, and ?Encoding for more information on how R handles character encoding.

Examples

## Encoding doesn't change the internal bytes used to represent characters;
## it just changes how they are interpretted!

x <-y <= z <= "\u9b3c”
Encoding(y) <- "bytes”
Encoding(z) <- "latinl”
print(x); print(y); print(z)
bytes(x); bytes(y); bytes(z)
bits(x); bits(y); bits(z)

## In R, integers are signed ints. The first bit indicates the sign, but
## values are stored in a two's complement representation. We see that
## NA_integer_ is really just the smallest negative integer that can be
## stored in 4 bytes

bits(NA_integer_)

## There are multiple kinds of NAs, NaNs for real numbers
## (at least, on 64bit architectures)

print( c(NA_real_, NA_real_ + 1) )

rbind( bytes(NA_real_ ), bytes(NA_real_ + 1) )

rbind( bytes(NaN), bytes(0/0) )

call_tree Display a call (or expression) as a tree.

Description

call_tree takes a quoted expression. ast does the quoting for you.

Usage

call_tree(x, width = getOption("width"))

ast(x)


https://en.wikipedia.org/wiki/Two's_complement
https://en.wikipedia.org/wiki/IEEE_floating_point
https://en.wikipedia.org/wiki/Character_encoding

4 compose

Arguments

X quoted call, list of calls, or expression to display

width displays width, defaults to current width as reported by getOption("width")
Examples

call_tree(quote(f(x, 1, g0, h@EO))))
call_tree(quote(if (TRUE) 3 else 4))
call_tree(expression(1, 2, 3))

ast(f(x, 1, g0, h(i()))

ast(if (TRUE) 3 else 4)
ast(function(a =1, b = 2) {a + b})
ast(fFOOO)

compose Compose multiple functions

Description

In infix and prefix forms.

Usage

compose(...)

f %%¢g
Arguments
n functions to apply in order from right to left
f, g two functions to compose for the infix form
Examples

not_null <- ! %.% is.null
not_null(4)
not_null(NULL)

add1l <- function(x) x + 1
compose (add1,add1) (8)



dots 5

dots Capture unevaluated dots.

Description

Capture unevaluated dots.

Usage
dots(...)

named_dots(...)

Arguments

... passed in to the parent function

Value

a list of expressions (not expression objects). named_dots will use the deparsed expressions as
default names.

Examples

y <=2
str(dots(x = 1, y, z = ))
str(named_dots(x = 1, y, z =))

enclosing_env Find the environment that encloses of a function.

Description

This is a wrapper around environment with a consistent syntax.

Usage

enclosing_env(f)

Arguments

f The name of a function.

Examples

enclosing_env("plot")
enclosing_env("t.test")



explicit Tools for making promises explicit

Description

Deprecated: please use the lazyeval package instead.

Usage

explicit(x)

eval2(x, data = NULL, env = parent.frame())

Arguments
X expression to make explicit, or to evaluate.
data Data in which to evaluate code
env Enclosing environment to use if data is a list or data frame.
f A compact syntax for anonymous functions.
Description

A compact syntax for anonymous functions.

Usage
f(..., .env = parent.frame())
Arguments
The last argument is the body of the function, all others are arguments to the
function. If there is only one argument, the formals are guessed from the code.
.env parent environment of the created function
Value
a function
Examples
fix +y)

f(x +y)(1, 10)
f(x, y=2, x+y)

f{y <= runif(1); x + y}



fget 7

fget Find a function with specified name.

Description

Find a function with specified name.

Usage

fget(name, env = parent.frame())

Arguments

name length one character vector giving name

env environment to start search in.

Examples

c <-10
fget("c")

find_funs Find functions matching criteria.

Description

This is a flexible function that matches function component against a regular expression, returning
the name of the function if there are any matches. fun_args and fun_calls are helper functions
that make it possible to search for functions with specified argument names, or which call certain
functions.

Usage

find_funs(env = parent.frame(), extract, pattern, ...)
fun_calls(f)
fun_args(f)

fun_body (f)



8 find_uses
Arguments
env environment in which to search for functions
extract component of function to extract. Should be a function that takes a function as
input as returns a character vector as output, like fun_calls or fun_args.
pattern stringr regular expression to results of extract function.
other arguments passed on to grepl
f function to extract information from
Examples
find_funs("”package:base”, fun_calls, "match.fun”, fixed = TRUE)
find_funs("package:stats"”, fun_args, "*[A-Z]1+$")
fun_calls(match.call)
fun_calls(write.csv)
fun_body(write.csv)
find_funs("package:utils”, fun_body, "write", fixed = TRUE)
find_uses Find all functions in that call supplied functions.
Description
Find all functions in that call supplied functions.
Usage
find_uses(envs, funs, match_any = TRUE)
Arguments
envs Vector of environments to look in. Can be specified by name, position or as
environment
funs Functions to look for
match_any If TRUE return functions that use any of funs. If FALSE, return functions that use
all of funs.
Examples
names(find_uses("package:base”, "sum"))
envs <- c("package:base”, "package:utils"”, "package:stats")
funs <- c("match.call”, "sys.call")

find_uses(envs, funs)



ftype 9

ftype Determine function type.

Description

This function figures out whether the input function is a regular/primitive/internal function, a inter-
nal/S3/S4 generic, or a S3/S4/RC method. This is function is slightly simplified as it’s possible for
a method from one class to be a generic for another class, but that seems like such a bad idea that
hopefully no one has done it.

Usage

ftype(f)

Arguments

f unquoted function name

Value

a character of vector of length 1 or 2.

See Also

Other object inspection: otype(), sexp_type()

Examples

ftype(*%in%")
ftype(sum)
ftype(t.data.frame)
ftype(t.test) # Tricky!
ftype(writelLines)
ftype(unlist)

is_active_binding Active binding info

Description

Active binding info

Usage

is_active_binding(x)



10 is_promise

Arguments

X unquoted object name

Examples

x <- 10
is_active_binding(x)
X %<a-% runif(1)
is_active_binding(x)
y <= X
is_active_binding(y)

is_promise Promise info

Description

Promise info

Usage
is_promise(x)

promise_info(x)

Arguments

X unquoted object name

See Also

Other promise tools: uneval()

Examples

x <- 10
is_promise(x)
(function(x) is_promise(x))(x = 10)



make_call 11

make_call Make and evaluate calls.

Description

Make and evaluate calls.

Usage
make_call(f, ..., .args = list())
do_call(f, ..., .args = list(), .env = parent.frame())
Arguments
f Function to call. For make_call, either a string, a symbol or a quoted call. For
do_call, a bare function name or call.
., .args Arguments to the call either in or out of a list
.env Environment in which to evaluate call. Defaults to parent frame.
Examples

# f can either be a string, a symbol or a call
make_call("f", a = 1)

make_call(quote(f), a = 1)
make_call(quote(f()), a = 1)

#' Can supply arguments individual or in a list
make_call(quote(f), a =1, b = 2)
make_call(quote(f), list(a =1, b = 2))

make_function Make a function from its components.

Description

This constructs a new function given it’s three components: list of arguments, body code and parent
environment.

Usage

make_function(args, body, env = parent.frame())



12 mem_change
Arguments
args A named list of default arguments. Note that if you want arguments that don’t
have defaults, you’ll need to use the special function alist, e.g. alist(a=, b
=1 )
body A language object representing the code inside the function. Usually this will
be most easily generated with quote
env The parent environment of the function, defaults to the calling environment of
make_function
Examples

f <- function(x) x + 3
g <- make_function(alist(x = ), quote(x + 3))

# The components of the functions are identical

identical (formals(f), formals(g))
identical(body(f), body(g))
identical(environment(f), environment(g))

# But the functions are not identical because f has src code reference
identical(f, g)

attr(f, "srcref") <- NULL
# Now they are:
stopifnot(identical(f, g))

mem_change Determine change in memory from running code

Description

Determine change in memory from running code

Usage

mem_change (code)

Arguments

code Code to evaluate.

Value

Change in memory (in megabytes) before and after running code.



mem_used 13

Examples

# Need about 4 mb to store 1 million integers
mem_change(x <- 1:1e6)

# We get that memory back when we delete it
mem_change (rm(x))

mem_used How much memory is currently used by R?

Description

R breaks down memory usage into Vcells (memory used by vectors) and Ncells (memory used by
everything else). However, neither this distinction nor the "gc trigger" and "max used" columns are
typically important. What we’re usually most interested in is the the first column: the total mem-
ory used. This function wraps around gc() to return the total amount of memory (in megabytes)
currently used by R.

Usage

mem_used ()

Value

Megabytes of ram used by R objects.

Examples

mem_used ()

method_from_call Given a function class, find correspoding §4 method

Description

Given a function class, find correspoding S4 method

Usage

method_from_call(call, env = parent.frame())

Arguments

call unquoted function call

env environment in which to look for function definition



14 modify_call

Examples

library(stats4)

# From example(mle)

y <- c(26, 17, 13, 12, 20, 5, 9, 8, 5, 4, 8)

nLL <- function(lambda) -sum(dpois(y, lambda, log = TRUE))
fit <- mle(nLL, start = list(lambda = 5), nobs = length(y))

method_from_call (summary(fit))
method_from_call(coef(fit))
method_from_call(length(fit))

modify_call Modify the arguments of a call.

Description

Modify the arguments of a call.

Usage

modify_call(call, new_args)

Arguments
call A call to modify. It is first standardised with standardise_call.
new_args A named list of expressions (constants, names or calls) used to modify the call.
Use NULL to remove arguments.
Examples

call <- quote(mean(x, na.rm = TRUE))

# Modify an existing argument
modify_call(call, list(na.rm = FALSE))
modify_call(call, list(x = quote(y)))

# Remove an argument
modify_call(call, list(na.rm = NULL))

# Add a new argument
modify_call(call, list(trim = 0.1))

# Add an explicit missing argument
modify_call(call, list(na.rm = quote(expr = )))



modify_lang

15

modify_lang Recursively modify a language object

Description

Recursively modify a language object

Usage
modify_lang(x, f, ...)
Arguments
X object to modify: should be a call, expression, function or list of the above.
f function to apply to leaves
other arguments passed to f
Examples

a_to_b <- function(x) {

if (is.name(x) && identical(x, quote(a))) return(quote(b))
X

3
examples <- list(
quote(a <- 5),
alist(a =1, ¢ = a),

function(a = 1) a x 10,

expression(a <- 1, a, f(a), f(a

)
modify_lang(examples, a_to_b)

= a))

# Modifies all objects called a, but doesn't modify arguments named a

object_size

Compute the size of an object.

Description

object_size works similarly to object.size, but counts more accurately and includes the size of
environments. compare_size makes it easy to compare the output of object_size and object.size.
Usage

object_size(..., env = parent.frame())

compare_size(x)



16 object_size

Arguments
env Environment in which to terminate search. This defaults to the current envi-
ronment so that you don’t include the size of objects that are already stored
elsewhere.
Xy oo Set of objects to compute total size.
Value

An estimate of the size of the object, in bytes.

Environments

object_size attempts to take into account the size of the environments associated with an object.
This is particularly important for closures and formulas, since otherwise you may not realise that
you’ve accidentally captured a large object. However, it’s easy to over count: you don’t want to
include the size of every object in every environment leading back to the emptyenv (). object_size
takes a heuristic approach: it never counts the size of the global env, the base env, the empty env or
any namespace.

Additionally, the env argument allows you to specify another environment at which to stop. This de-
faults to the environment from which object_size is called to prevent double-counting of objects
created elsewhere.

Examples

# object.size doesn't keep track of shared elements in an object
# object_size does

X <= 1:1e4

z <- list(x, x, x)

compare_size(z)

# this means that object_size is not transitive
object_size(x)

object_size(z)

object_size(x, z)

# object.size doesn't include the size of environments, which makes
# it easy to miss objects that are carrying around large environments
f <= function() {

X <- 1:1e4

a~b
3

compare_size(f())



otype

17

otype Determine object type.

Description

Determine object type.

Usage

otype(x)

Arguments

X object to determine type of

Details
Figure out which object system an object belongs to:
* base: no class attribute

¢ S3: class attribute, but not S4
S4: isS4, but not RC

¢ RC: inherits from "refClass"

See Also

Other object inspection: ftype(), sexp_type()

Examples

otype(data.frame())
otype(1:10)

parent_promise Find the parent (first) promise.

Description

Find the parent (first) promise.

Usage

parent_promise(x)



18 parenvs

Arguments

X unquoted name of promise to find initial value for for.

Examples

f <= function(x) g(x)
g <- function(y) h(y)
h <- function(z) parent_promise(z)

h(x + 1)
gx + 1)
f(x +1)

parenv Get parent/ancestor environment

Description

Get parent/ancestor environment

Usage

parenv(env = parent.frame(), n = 1)

Arguments

env an environment

n number of parents to go up
Examples

adder <- function(x) function(y) x + vy
add2 <- adder(2)

parenv(add2)
parenvs Given an environment or object, return an envlist of its parent envi-
ronments.
Description

If e is not specified, it will start with environment from which the function was called.

Usage

parenvs(e = parent.frame(), all = FALSE)



partial 19

Arguments
e An environment or other object.
all If FALSE (the default), stop at the global environment or the empty environment.
If TRUE, print all parents, stopping only at the empty environment (which is the
top-level environment).
Examples

# Print the current environment and its parents
parenvs()

# Print the parent environments of the load_all function
e <- parenvs(parenvs)
e

H

Get all parent environments, going all the way to empty env
<- parenvs(parenvs, TRUE)

[¢]

# Print e with paths
print(e, path = TRUE)

# Print the first 6 environments in the envlist
e[1:6]

# Print just the parent environment of load_all.
# This is an envlist with one element.

e[1]

# Pull that environment out of the envlist and see what's in it.
el[[1]]
1s(e[[11], all.names = TRUE)

partial Partial apply a function, filling in some arguments.

Description

Partial function application allows you to modify a function by pre-filling some of the arguments.
It is particularly useful in conjunction with functionals and other function operators.

Usage

partial(*_f*, ..., .env = parent.frame(), .lazy = TRUE)



20

Arguments

.f.‘

.env

.lazy

Design choices

partial

a function. For the output source to read well, this should be an be a named
function. This argument has the weird (non-syntactic) name _f so it doesn’t
accidentally capture any argument names begining with f.

named arguments to f that should be partially applied.

the environment of the created function. Defaults to parent.frame and you
should rarely need to modify this.

If TRUE arguments evaluated lazily, if FALSE, evaluated when partial is called.

There are many ways to implement partial function application in R. (see e.g. dots in https:
//github.com/crowding/vadr for another approach.) This implementation is based on creating
functions that are as similar as possible to the anonymous function that’d you’d create by hand, if
you weren’t using partial.

Examples

# Partial is designed to replace the use of anonymous functions for
# filling in function arguments. Instead of:
compactl <- function(x) Filter(Negate(is.null), x)

# we can write:

compact2 <- partial(Filter, Negate(is.null))

# and the generated source code is very similar to what we made by hand

compact1
compact2

# Note that the evaluation occurs "lazily"” so that arguments will be
# repeatedly evaluated
f <- partial(runif, n = rpois(1, 5))

.f.‘
O
fO

# You can override this by saying .lazy = FALSE
f <- partial(runif, n = rpois(1, 5), .lazy = FALSE)

.f.‘
O
fO

# This also means that partial works fine with functions that do
# non-standard evaluation

my_long_variable <- 1:10

plot2 <- partial(plot, my_long_variable)

plot2()

plot2(runif(10), type = "1")


https://github.com/crowding/vadr
https://github.com/crowding/vadr

rebind

21

rebind Rebind an existing name.

Description

This function is similar to <<- with two exceptions:

Usage

rebind(name, value, env = parent.frame())

Arguments
name name of existing binding to re-assign
value new value
env environment to start search in.
Details

* if no existing binding is found, it throws an error

* it does not recurse past the global environment into the attached packages

Examples

a<-1

rebind("a", 2)

a

# Throws error if no existing binding
## Not run: rebind("b", 2)

local({
rebind("a", 3)
»

a

# Can't find get because doesn't look past globalenv
## Not run: rebind("get”, 1)



22 sexp_type

rls Recursive Is.

Description
Performs 1s all the way up to a top-level environment (either the parent of the global environment,
the empty environment or a namespace environment).

Usage

rls(env = parent.frame(), all.names = TRUE)

Arguments
env environment to start the search at. Defaults to the parent. frame. If a function
is supplied, uses the environment associated with the function.
all.names Show all names, even those starting with .? Defaults to TRUE, the opposite of
1s
Author(s)
Winston Chang
sexp_type Inspect internal attributes of R objects.
Description

typename determines the internal C typename, address returns the memory location of the object,
and ref's returns the number of references pointing to the underlying object.

Usage
sexp_type(x)
inspect(x, env = parent.frame())
refs(x)
address(x)

typename (x)



show_c_source 23

Arguments
X name of object to inspect. This can not be a value.
env When inspecting environments, don’t go past this one.

Non-standard evaluation

All functions uses non-standard evaluation to capture the symbol you are referring to and the envi-
ronment in which it lives. This means that you can not call any of these functions on objects created
in the function call. All the underlying C level functions use Rf_findVar to get to the underlying
SEXP.

See Also

Other object inspection: ftype(), otype()

Examples

x <-1:10
## Not run: .Internal(inspect(x))

typename(x)
refs(x)
address(x)

y <= 1L

typename(y)

z <- list(1:10)
typename(z)
delayedAssign(”a", 1 + 2)
typename(a)

a

typename(a)

x <- 1:5

address(x)
x[1] <- 3L
address(x)

show_c_source Find C source code for internal R functions

Description

Opens a link to code search on github.

Usage

show_c_source(fun)



24 subs

Arguments

fun Internal or .Primitive function call.

Examples

show_c_source(.Internal(mean(x)))
show_c_source(.Primitive(sum(x)))

standardise_call Standardise a function call

Description

Standardise a function call

Usage

standardise_call(call, env = parent.frame())

Arguments
call A call
env Environment in which to look up call value.
subs A version of substitute that works in the global environment.
Description

This version of substitute is more suited for interactive exploration because it will perform sub-
stitution in the global environment: the regular version has a special case for the global environment
where it effectively works like quote

Usage

subs(x, env = parent.frame())

Arguments
X a quoted call
env an environment, or something that behaves like an environment (like a list or

data frame), or a reference to an environment (like a positive integer or name,
see as.environment for more details)



substitute_q 25

Substitution rules

Formally, substitution takes place by examining each name in the expression. If the name refers to:

* an ordinary variable, it’s replaced by the value of the variable.
* apromise, it’s replaced by the expression associated with the promise.

e ..., it’s replaced by the contents of . . .

Examples
a<-1
b <-2
substitute(a + b)
subs(a + b)

substitute_q A version of substitute that evaluates its first argument.

Description

This version of substitute is needed because substitute does not evaluate it’s first argument, and
it’s often useful to be able to modify a quoted call.

Usage

substitute_q(x, env)

Arguments
X a quoted call
env an environment, or something that behaves like an environment (like a list or
data frame), or a reference to an environment (like a positive integer or name,
see as.environment for more details)
Examples

x <- quote(a + b)
substitute(x, list(a =1, b =
substitute_q(x, list(a =1, b



26 unenclose

track_copy Track if an object is copied

Description
The title is somewhat misleading: rather than checking if an object is modified, this really checks
to see if a name points to the same object.

Usage

track_copy(var, env = parent.frame(), quiet = FALSE)

Arguments
var variable name (unquoted)
env environment name in which to track changes
quiet if FALSE, prints a message on change; if FALSE only the return value of the
function is used
Value

a zero-arg function, that when called returns a boolean indicating if the object has changed since
the last time this function was called

Examples

a<-1:5

track_a <- track_copy(a)
track_a()

a[3] <- 3L

track_a()

a[3] <- 3

track_a()

rm(a)

track_a()

unenclose Unenclose a closure.

Description

Unenclose a closure by substituting names for values found in the enclosing environment.

Usage

unenclose(f)



uneval 27

Arguments

f a closure

Examples

power <- function(exp) {
function(x) x * exp

3

square <- power(2)

cube <- power(3)

square
cube
unenclose(square)
unenclose(cube)

uneval Capture the call associated with a promise.

Description

This is an alternative to subsitute that performs one job, and so gives a stronger signal regarding the
intention of your code. It returns an error if the name is not associated with a promise.

Usage
uneval (x)
Arguments
X unquoted variable name that refers to a promise. An error will be thrown if it’s
not a promise.
See Also

Other promise tools: is_promise()

Examples

f <- function(x) {
uneval (x)

3

f(a + b)

f(1+4)

delayedAssign(”"x", 1 + 4)
uneval (x)

X

uneval (x)



28 %<a-%

where Find where a name is defined.

Description

Implements the regular scoping rules, but instead of returning the value associated with a name, it
returns the environment in which it is located.

Usage

where(name, env = parent.frame())

Arguments

name name, as string, to look for

env environment to start at. Defaults to the calling environment of this function.

Examples

x <-1
where("x")
where("t.test")
where("mean”)
where("where")

%<a-% Create an active binding.

Description

Infix form of makeActiveBinding which creates an active binding between a name and an expres-
sion: every time the name is accessed the expression is recomputed.

Usage

X %<a-% value

Arguments

X unquoted expression naming variable to create

value unquoted expression to evaluate every time name is accessed



%<c-% 29

Examples

X %<a-% runif (1)

X

X

X %<a-% runif(10)

X

X

rm(x)

%<c=% Create a constant (locked) binding.
Description

Infix wrapper for assign + lockBinding that creates a constant: a binding whose value can not be
changed.

Usage

X %<c-% value

Arguments
X unquoted expression naming variable to create
value constant value

Examples

X %<c-% 10
#' Generates an error:
## Not run: x <- 20

Note that because of R's operator precedence rules, you
need to wrap compound RHS expressions in ()

#
#
y %<c-% 1 + 2
y
z
z

%<c=% (1 + 2)



30 %<d-%

%<d-% Create an delayed binding.

Description

Infix form of delayedAssign which creates an delayed or lazy binding, which only evaluates the
expression the first time it is used.

Usage

x %<d-% value

Arguments

X unquoted expression naming variable to create

value unquoted expression to evaluate the first time name is accessed
Examples

X %<d-% (a + b)
a<-10

b <- 100

X



Index

* object inspection
ftype, 9
otype, 17
sexp_type, 22

* promise tools
is_promise, 10
uneval, 27

%.% (compose), 4

%<a-%, 28

%<c-%, 29

%<d-%, 30

address (sexp_type), 22
alist, 12
as.environment, 24, 25
assign, 29

ast (call_tree), 3

bits (bytes), 2
bytes, 2

call_tree, 3
compare_size (object_size), 15
compose, 4

delayedAssign, 30
do_call (make_call), 11
dots, 5

emptyenv, 16
enclosing_env, 5
Encoding, 3
environment, 5
eval?2 (explicit), 6
explicit, 6

f,6

fget, 7
find_funs, 7
find_uses, 8
ftype, 9, 17, 23

31

fun_args (find_funs), 7
fun_body (find_funs), 7
fun_calls (find_funs), 7

grepl, 8§

inspect (sexp_type), 22
is_active_binding, 9
is_promise, 10, 27
isS4, 17

lockBinding, 29
1s, 22

make_call, 11
make_function, 11
makeActiveBinding, 28
mem_change, 12
mem_used, 13
method_from_call, 13
modify_call, 14
modify_lang, 15

named_dots (dots), 5

object.size, 15
object_size, 15
otype, 9, 17, 23

parent.frame, 20, 22
parent_promise, 17
parenv, 18

parenvs, 18

partial, 19

promise_info (is_promise), 10

quote, 12, 24

rebind, 21
refs (sexp_type), 22
rls, 22



32

sexp_type, 9, 17,22
show_c_source, 23
standardise_call, /4, 24
subs, 24

substitute, 24
substitute_q, 25

track_copy, 26
typename (sexp_type), 22

unenclose, 26
uneval, 10, 27

where, 28

INDEX



	bytes
	call_tree
	compose
	dots
	enclosing_env
	explicit
	f
	fget
	find_funs
	find_uses
	ftype
	is_active_binding
	is_promise
	make_call
	make_function
	mem_change
	mem_used
	method_from_call
	modify_call
	modify_lang
	object_size
	otype
	parent_promise
	parenv
	parenvs
	partial
	rebind
	rls
	sexp_type
	show_c_source
	standardise_call
	subs
	substitute_q
	track_copy
	unenclose
	uneval
	where
	%<a-%
	%<c-%
	%<d-%
	Index

