Package ‘prolific.api’

August 25, 2023
Title A User-Friendly Interface for Accessing the Prolific API
Version 0.5.2

Description A user-friendly interface for creating and managing empirical crowd-
sourcing studies via API access to <https://www.prolific.co>.

License GPL (>= 3)

Imports data.table (>= 1.14.6), jsonlite (>= 1.8.4), methods, utils
SystemRequirements curl (https://curl.se/)
Encoding UTF-8

RoxygenNote 7.2.1

Suggests htmltools, knitr, reactable, rmarkdown
VignetteBuilder knitr

NeedsCompilation no

Author Simon Lenau [aut, cre]

Maintainer Simon Lenau <lenau@cispa.de>
Depends R (>=3.5.0)

Repository CRAN

Date/Publication 2023-08-25 10:20:02 UTC

R topics documented:

prolific.api-package
API_ACCESS « v v v v v e e e e e e e e e e e e e e e e e e e
prolific_prescreenero e e e
prolific_study

Index

https://www.prolific.co

2 api_access

prolific.api-package R interface to the Prolific API

Description

A set of user-friendly functionalities for creating and managing potentially large numbers of studies
on the Prolific platform via its API. The platform is designed for recruiting participants for empirical
studies via crowd-sourcing, allowing to apply a number of prescreening characteristics to target
specific groups of participants for a study.

Object classes

prolific.api provides three ReferenceClasses to access the Prolific API, namely api_access,
prolific_study and prolific_prescreener. An overview is provided below.

api_access:

api_access objects provide functionalities for accessing the API, which requires to specify a
valid API token.

prolific_study:
prolific_study objects represent studies to be created or managed on Prolific. Users can create
new studies, or retrieve existing studies from Prolific and apply updates to them.

prolific_prescreener:

prolific_prescreener objects characterize the participants to be selected for a certain prolific_study,
i.e. the requirements that a person needs to meet to be recruited for the study.

Authentication

A researcher account on Prolific is required to use the functionalities of this package. To use

this account, a valid Prolific API token must be specified for authentication. These tokens are
workspace-specific and can be managed in the Settings -> Go to API token page menu
(https://app.prolific.co/researcher/workspaces/workspace_id/settings/tokens for an existing workspace_id).

api_access Prolific API access

Description

This class provides functionalities for accessing the Prolific API. The core method for this purpose
is access, which can be used to create, review, change, manage and delete studies on the Prolific
platform.

The fields and methods are available as in RefClass or S4 objects (see examples).

https://www.prolific.co/
https://docs.prolific.co/docs/api-docs/public/
https://docs.prolific.co/docs/api-docs/public/
https://docs.prolific.co/docs/api-docs/public/
https://docs.prolific.co/docs/api-docs/public/#section/Authentication
https://www.prolific.co/
https://docs.prolific.co/docs/api-docs/public/#section/Authentication
https://app.prolific.co/researcher/workspaces/<workspace_id>/settings/tokens
https://docs.prolific.co/docs/api-docs/public/

api_access 3

Fields

accessors (character):
The commands for accessing the API. The command for each type of access method can be
altered using this field. The default is

accessors = c(
get = "curl”,
post = "curl -X POST",
put = "curl -X PUT",
patch = "curl -X PATCH",

delete = "curl -X DELETE"
)

Note: A value for each of the names (get, post, put, patch and delete) is required, as
these represent the methods that can be used when accessing the API.

api_token (character):
The Prolific API token.

entrypoint (character):
The APT’s entrypoint URL.

Methods

access:

Main method for accessing the Prolific API

Parameters:

endpoint (character):
The endpoint to access. If this is a vector, its elements are collapsed by '/".

method (character):
The method to use. One of get, post, place, patch and delete. The commands associ-
ated with each method are defined in the accessors field of the api_access object.

data (json string, json file, list, prolific_study object or NULL)
The data to be transfered in the body of the API call. R-objects are converted to a json
string using jsonlite:toJSON . NULL means that no data is transfered.

as_list (logical):
Whether the return of the API call should be converted to a list or (if applicable) pro-
lific_study object, rather than returned as the raw json string.

Return Value:
A list or json string, depending on argument as_list.

Usage:

api_access$access(
endpoint,
method,
data,
as_list

https://docs.prolific.co/docs/api-docs/public/#section/Authentication
https://docs.prolific.co/docs/api-docs/public/#section/Get-started/Conventions
https://docs.prolific.co/docs/api-docs/public/
https://docs.prolific.co/docs/api-docs/public/
https://docs.prolific.co/docs/api-docs/public/

4 api_access

check_authorization:
Check whether the API authorization works

Return Value:
A logical value that indicates whether the API authorization works.

Usage:
api_access$check_authorization()

Examples

library(prolific.api)

Create API access
prolific_api_access <- api_access(api_token = "<api_token>")

View fields

RefClass Methods
prolific_api_access$accessors
prolific_api_access$api_token
prolific_api_access$entrypoint

S4 Methods

accessors(prolific_api_access)
api_token(prolific_api_access)
entrypoint(prolific_api_access)

Change fields

(this is usually only required for the api_token)
replace <new_token> in the by the actual API token
before running these lines

Not run:

RefClass Method

prolific_api_access$api_token <- "<new_token>"

S4 Method

api_token(prolific_api_access) <- "<new_token>"

End(Not run)

Note: For the following code to work,

you have to replace <new_token> in the lines above by the actual API token
Not run:

Check wheter Authorization is working

RefClass Method

prolific_api_access$check_authorization()

S4 Method

check_authorization(prolific_api_access)

Obtain list of existing studies

RefClass Method

list_of_studies <-
prolific_api_access$access(

https://docs.prolific.co/docs/api-docs/public/#section/Authentication
https://docs.prolific.co/docs/api-docs/public/#section/Authentication

prolific_prescreener 5

endpoint = "studies”,
method = "get",
as_list = TRUE
)
S4 Method
list_of_studies2 <-

access(
prolific_api_access,
endpoint = "studies”,
method = "get",

as_list = TRUE
)

End(Not run)

prolific_prescreener Prolific prescreening requirement

Description

Class that represents prescreening requirements to characterize the participants to be selected for a
certain study on Prolific, i.e. the persons to be recruited via Prolific. prolific_prescreener
objects are therefore mainly used in the eligibility_requirements field of prolific_studys.
The fields and methods are available as in RefClass or S4 objects (see examples).

The section ’Setting up prescreeners for Prolific’ below provides an overview and examples of how
to specify prescreening requirements.

Fields

title (character):
A valid title for a single prescreener that is available on the Prolific platform. To be valid, this
title must appear in the list of prescreeners obtainable from the Prolific APIL.
See the section ’Setting up prescreeners for Prolific’ as well as the prolific.api package vi-
gnette.

constraints (list):
The valid constraints for this particular prescreener.
When creating a prolific_prescreener object, an arbitrary number of constraints can be
specified using named or unnamed custom arguments. In the named case,

name_1 = value_1,...,name_i = value_i,
name = value pairs are used to set the constraints and values. Using the unnamed case
name_1,...,name_i

allows to ommit the values for prescreeners where value_1 = ... = value_i = TRUE. In that
way, users can simply provide the names of the groups to be recruited. See the section ’Setting
up prescreeners for Prolific’ as well as the examples and prolific.api package vignette.

https://docs.prolific.co/docs/api-docs/public/
../doc/prolificapi-package.html
../doc/prolificapi-package.html
../doc/prolificapi-package.html

6 prolific_prescreener

Setting up prescreeners for Prolific

Prescreeners are used to select participants for a prolific_study that meet certain characteristics.
In most cases, this selection is done with regard to the answers the participants gave in a survey
conducted by Prolific across all its members.

Choosing a prescreening variable:

At the moment, there are 265 variables which can be used to recruit specific subgroups from
Prolific. To obtain a list of all available prescreening variables, use

table_of_prescreeners <-
prescreeners(prolific_api_access)

where prolific_api_access is an api_access object with a valid api_token.

A prescreening variable is determined by the title field of the prolific_prescreener object.
To be valid, this title must appear in the title column of the resulting table_of_prescreeners.

Setting constraints for a particular prescreening variable:
The constraints are specified in the form

name_1 = value_1,
*

name_n = value_n

or

name_1,
*

name_n

For most prescreeners, the values value_1 ...value_n are logical values to select participants
that gave a certain answer in some pre-screening question. In this case, specifying

name_i = TRUE

for the prescreener means that participants who gave answer name_i are eligible for the study.
However, keep in mind there are some prescreeners that work in the opposite way, e.g. to specify
a list of participants to be exluded (see the sections ’Ex- or include a list of specific participants’
and 'Ex- or include all participants from previous studies’ below).

For all cases where the values value_1 ...value_n are logical,

name_1,
*

name_n
is an equivalent shortcut for

name_1 = TRUE,

L

name_n

TRUE

Yet, the constraint values are not always of type logical. In particular, there are prescreeners that
allow to select participants lying within a certain range of a numerical variable. For example,

prolific_prescreener 7

this is the case when selecting participants who are in a certain age bracket, where lower and upper
boundary for a person’s age are specified in the constraints. In this case, value_1, ..., value_n
in the above specification need to be numeric as well, and must be named e.g. as in

min_age = 50,
max_age = 60

for selecting participants between age 50 and 60 for the study.

The names name_1, ..., name_n are always taken literally. This means that they are not automat-
ically evaluated. Enclosing a name in an eval() command forces it to be evaluated rather than
taken literally. This is important for example in cases where the categories are stored in a list (see
the section 'Examples for prolific_prescreeners’ for an example).

To obtain the list of possible constraints for a particular prescreener with a valid title "the_title”
as described above, use

table_of_constraints <-
prescreeners(prolific_api_access,
filter=expression(title==c("the_title")),
show_full=TRUE)

The names name_1, ..., name_n of the constraints list should come from a single (typically the
name) column of the resulting table_of_constraints, the respective list elements represent the
values that participants have to meet.

To make this a bit clearer, the following section provides examples for setting up prescreening
requirements.

Examples for prolific_prescreeners:

Nationality requirements For example, a study can be set to exclusively target participants who
currently live in the UK or the USA by using

residential_prescreener <- prolific_prescreener(
title = "Current Country of Residence”,
"United Kingdom”, "United States”

)

or equivalently

list_of_countries <- list(
country_1="United Kingdom",
country_2="United States”)

residential_prescreener <- prolific_prescreener(
title = "Current Country of Residence”,
eval(list_of_countries$country_1),
eval(list_of_countries$country_2)

)

Note that "Current Country of Residence"” appears in the title column of table_of_prescreeners,

and "United Kingdom” as well as "United States"” appear in the name column of the result-

ing table_of_constraints described in the previous sections. Furthermore, note the use of

eval () to force evaluation of 1ist_of_countries$country_1and list_of_countries$country_2.
Age requirements Similarly, selecting participants who fall in the age range between 50 and 60

can be achieved through

8 prolific_prescreener

age_prescreener <- prolific_prescreener(

title = "Age",
"min_age" = 50,
"max_age" = 60

)

Ex- or include a list of specific participants Specific participants can be in- or excluded from a
study, for example if they participated in previous studies. This can be done in form of black-
or whitelists.

Consider two fictional participants with Prolific id’s 111 and 222. These can be specifically
excluded by using the exclusion list defined by
exclude_list_participants <- prolific_prescreener(
title = "Custom Blacklist”,
"1117, 222"

)

To exclusively recruit exactly these two participanty, use the include list defined by
include_list_participants <- prolific_prescreener(
title = "Custom Whitelist”,
H1 1 1 n R 1122211

)
Note: The IDs for these constraints need to be valid Prolific IDs when creating a study. The
above example for fictional IDs 111 and 222 will therefore always fail.

Ex- or include all participants from previous studies You can not only blacklist single partic-
ipants, but also the group(s) of participants who participated in of one or multiple of your
previous studies.

To exclude all participants from two fictional studies with IDs ABC and DEF, specify the pre-

screener
exclude_list_studies <- prolific_prescreener(
title = "Exclude participants from previous studies”,
IIABCII R HDEFH

)

To exclusively recruit participants from these studies, use

include_list_studies <- prolific_prescreener(
title = "Include participants from previous studies”,
HABCH R HDEFH

)

Note: The IDs for these constraints need to be valid Study IDs when creating a study. The above
example for fictional IDs ABC and DEF will therefore always fail.

Methods

validity_check:

Check whether the prescreener is valid in terms of the Prolific API.

Note: For checking a prescreener’s validity, an api_access object that passes check_authorization()
needs to be available. It suffices if any such api_access object is specified, since the reference

to it is determined automatically.

Return Value:

https://docs.prolific.co/docs/api-docs/public/

prolific_prescreener 9

* If the prescreener is valid: A logical value indicating that the study is valid
* If the prescreener is not valid: A character vector that lists the prescreener’s issues.

Usage:

prescreener$validity_check()
Examples
library("prolific.api”)
prolific_api_access <- api_access(api_token = "<api_token>")

Create a new study with two of the prescreening constraints

from the help section 'Examples for prolific_prescreeners'
in this package's documentation.
fancy_new_study_with_prescreeners <- prolific_study(

name = "A fancy study on Prolific”,

description = "Fancy description”,

external_study_url = "https://www.my_fancy_study_url.com”,
completion_code = "123ab456cd78",
estimated_completion_time = 1,
reward = 1,
total_available_places = 1,
eligibility_requirements = list(
Include only persons who live in the UK or the US
prolific_prescreener(
title = "Current Country of Residence”,
"United Kingdom”, "United States”
),
Include participants only if they are between
50 and 60 years old
prolific_prescreener(

title = "Age”,
"min_age"” = 50,
"max_age" = 60

Note: For the following code to work,
you have to replace <api_token> in the code above by the actual API token

Not run:
Post the 'fancy_new_study_with_prescreeners' to Prolific,
i.e. create it as a draft study on the platform
prolific_api_access$access(

endpoint = "studies”,

method = "post”,
data = fancy_new_study_with_prescreeners

Success: fancy_new_study_with_prescreeners got an ID - it is now a draft study on Prolific!
You can also inspect the study and requirements in the Prolific Web UI now.
fancy_new_study_with_prescreeners$id

10 prolific_study

End(Not run)

prolific_study Prolific study

Description

Class that represents Prolific studies, such that they can be transferred to or from the Prolific APIL.
This allows to create, review and update studies.

The fields and methods are available as in RefClass or S4 objects (see examples and the prolific.api
package vignette).

API access to interact with the Prolific platform is done by using objects from the api_access
class, i.e. prolific_studies are intended to be transferred as bodies in calls to the Prolific API
(see examples).

Fields

id (character):
The study’s ID on Prolific.
Note: This ID is set by Prolific and can not be changed by the user
(see the *Further (read-only) fields’ section below).

name (character):
Public name or title of the study (will be publicly visible when publishing the study).

internal_name (character):
Internal name of the study (not shown to participants).

description (character):
Description of the study (will be publicly visible when publishing the study).

external_study_url (character):
URL of the survey or experiment the participants will be redirected to (will be publicly visible
when publishing the study).
Note:

e The URL must be valid at the time the study is created on the Prolific platform.
* For the use of URL parameters, see field url_parameters.

url_parameters (list):
A named list of URL parameters that is appended to external_study_url. The default

list(
prolific_id = "{%PROLIFIC_PID%}",
study_id = "{%STUDY_ID%}",
session_id = "{%SESSION_ID%3}"

)

is used for passing the participant’s, study’s and session’s ID from Prolific to the data collec-
tion website.

https://docs.prolific.co/docs/api-docs/public/
../doc/prolificapi-package.html
../doc/prolificapi-package.html
https://docs.prolific.co/docs/api-docs/public/

prolific_study 11

prolific_id_option (character):
This determines the method of passing the respondent’s Prolific ID.
Valid options are:

* "url_parameters” for passing the ID as URL parameter {%PROLIFIC_PID%}
* "question” for letting the respondents enter their ID (e.g. via copy & paste), or
* "not_required” if the Prolific ID is not to be passed.

completion_code (character):
The completion code that is provided to participants after completing the study. This code
is used to prove that a participant completed the study. It is therefore visible for participants
after completing the study.

completion_option (character):
This determines the method for passing the completion_code.
Valid options are:

» "url"for passing the code as URL parameter when redirecting participants back to Pro-
lific after completing the study, or

* "code"for providing a code for copy and paste.

total_available_places (integer):
The number of participant you would like to recruit in the study (will be publicly visible when
publishing the study).

estimated_completion_time (integer):
The estimated time it takes to complete the study, in minutes (will be publicly visible when
publishing the study).

maximum_allowed_time (integer):
The maximum allowed time for participants to complete the study, in minutes.

reward (integer):
The amount of money (in pence) you pay for completing the study (will be publicly visible
when publishing the study).
Note: Compensation...

eligibility_requirements (list):
A list containing prolific_prescreener objects that characterize the participants to be
recruited. Note:

* NULL means that every participant can see and complete the study.
* Only persons fulfiling these requirements will be able to participate in the study.
device_compatibility (character):
Note: NULL means that all options are available.

peripheral_requirements (character):
A vector of technical requirements that participants have to fulfill to complete the study. One
or multiple values from

c("audio”, "camera”, "download"”, "microphone")

Note: NULL means that none of the requirements is needed.

naivety_distribution_rate (numeric):
A value between 1 and @ that controls the balance between speed of your study and the naivety
of the participants.
Prolific’s description of this field is rather vague, but it seems to imply that

12 prolific_study

* 1 means that less trained or ’professional’ participants will have access to the study.
* 0 means that all eligible participants will have access to the study at the same time.
* values between @ and 1 represent a tradeoff between both options.
further_fields (list):
Prolific studies can have various further fields, which (if used) are stored in further_fields.

These fields are read-only, and determined by Prolific. See the ’Further (read-only) fields’
section below for a list of these read-only fields.

... (further arguments):
Will be added to the further_fields field of the prolific_study (see above).

Types of fields

Required fields are required for creating a study on Prolific.
The values for all of these except completion_option and prolific_id_option should
be specified before publishing a study. Default values are only placeholders.

Optional fields are writable, but optional for Prolific.
The user can but does not have to set these fields when creating a study.
The required and optional fields are:

Required fields Optional fields
completion_code device_compatibility
completion_option internal_name
description maximum_allowed_time

eligibility_requirements naivety_distribution_rate
estimated_completion_time peripheral_requirements
external_study_url url_parameters

name

prolific_id_option

reward

total_available_places

Further (read-only) fields contain information that is determined internally by Prolific and read-
only.
The id-field is of particular relevance. Once a study is created via API access, it is obtained
from the API and stored in the prolific_study object, since it can be used to update,
manage or delete a study.
To fully represent the information that is obtainable from the Prolific API, the further_fields
list can contain some or all of the entries listed below. The corresponding overview provided
in the Prolific API documentation currently seems to be work in progress.

_links average_reward_per_hour
average_reward_per_hour_without_adjustment average_time_taken
currency_code date_created
device_compatibility discount_from_coupons

eligible_participant_count estimated_reward_per_hour

https://docs.prolific.co/docs/api-docs/public/
https://docs.prolific.co/docs/api-docs/public/
https://docs.prolific.co/docs/api-docs/public/
https://docs.prolific.co/docs/api-docs/public/#tag/Studies/paths/~1api~1v1~1studies~1%7Bid%7D~1/get

prolific_study

fees_per_submission
has_had_adjustment

is_pilot
last_email_update_sent_datetime
minimum_reward_per_hour
number_of_submissions
pilot_test_steps_state

13

fees_percentage
internal_name
is_underpaying
maximum_allowed_time
naivety_distribution_rate
peripheral_requirements
places_taken

project publish_at
published_at publisher
quota_requirements receipt

representative_sample

representative_sample_fee

researcher reward_level

share_id stars_remaining

status study_type

total_cost total_participant_pool
vat_percentage workspace

Methods

validity_check:

Check whether the study is valid in terms of the Prolific APL

Note: For checking the validity of the eligibility_requirements, an api_access object
that passes check_authorization() needs to be available. It suffices if any such api_access
object is specified, since the reference to it is determined automatically.

Return Value:
* If the study is valid: A logical value indicating that the study is valid
* If the study is not valid: A character vector that lists the studie’s issues.

Usage:
prolific_study$validity_check()

Examples

library(prolific.api)
prolific_api_access <- api_access(api_token = "<api_token>")

Create a new study
fancy_new_study <- prolific_study(
name = "A fancy study on Prolific”,
external_study_url = "https://www.my_fancy_study_url.com”,
completion_code = "123ab456cd78",
eligibility_requirements = list(),
estimated_completion_time = 1,
reward = 1,
total_available_places = @

)

Check the study's validity

https://docs.prolific.co/docs/api-docs/public/

prolific_study

print(fancy_new_study$validity_check())

Whoops, better add a description and change the total_available_places,

using RefClass and S4 methods for illustration

both are equivalent, so only one of the two commands is required in practice
RefClass variant

fancy_new_study$total_available_places <- 1L

S4 variant

total_available_places(fancy_new_study) <- 1L

RefClass variant

fancy_new_study$description <- "A fancy description”
S4 variant

description(fancy_new_study) <- "A fancy description”

Re-Check the study's validity
print(fancy_new_study$validity_check())

Note: For the following code to work,
you have to replace <api_token> in the code above by the actual API token

Not run:
Post the 'fancy_new_study' to Prolific - i.e. create it as a draft study on the platform
output_of_post <- prolific_api_access$access(

endpoint = "studies”,

method = "post”,

data = fancy_new_study

)

Success: fancy_new_study got an ID - it is now a draft study on Prolific!
fancy_new_study$id

Note: The output of the access() command with a prolific_study object as ‘data‘ argument
is a pointer to this prolific_study object.

The prolific_study object is updated by reference

print(tracemem(output_of_post) == tracemem(fancy_new_study))

Change the study's name
name (fancy_new_study) <- "A NEW name for 'fancy_new_study'”
Update (patch) the study on Prolific,
using S4 methods for illustration
output_of_patch <- access(
prolific_api_access,
endpoint = c("studies”, id(fancy_new_study)),
method = "patch”,
data = fancy_new_study

)

Note: As above, the output of the access() command is a pointer to the prolific_study object.
print(tracemem(output_of_post) == tracemem(fancy_new_study))

Delete fancy_new_study

prolific_study

prolific_api_access$access(
endpoint = c("studies”, id(fancy_new_study)),
method = "delete”,
as_list = FALSE

)

End(Not run)

15

Index

access, 2

access (api_access), 2
accessors, 3

accessors (api_access), 2
accessors<- (api_access), 2
api (prolific.api-package), 2
API_ACCESS (api_access), 2
api_access, 2,2, 3
api_access-class (api_access), 2
api_accessor (api_access), 2
api_token, 6

api_token (api_access), 2
api_token<- (api_access), 2

character, 3,5,9-11, 13
check_authorization (api_access), 2
check_authorization(), 8, 13
completion_code (prolific_study), 10
completion_code<- (prolific_study), 10
completion_option (prolific_study), 10
completion_option<- (prolific_study), 10
constraints (prolific_prescreener), 5
constraints<- (prolific_prescreener), 5

description (prolific_study), 10

description<- (prolific_study), 10

device_compatibility (prolific_study),
10

device_compatibility<-
(prolific_study), 10

eligibility_requirements, 5, 13
eligibility_requirements
(prolific_prescreener), 5
eligibility_requirements-field
(prolific_study), 10
eligibility_requirements<-
(prolific_study), 10
entrypoint (api_access), 2
entrypoint<- (api_access), 2

16

estimated_completion_time
(prolific_study), 10

estimated_completion_time<-
(prolific_study), 10

eval(),7

external_study_url (prolific_study), 10

external_study_url<- (prolific_study),
10

further arguments, 12
further_fields, /2

further_fields (prolific_study), 10
further_fields<- (prolific_study), 10

id (prolific_study), 10

id<- (prolific_study), 10

integer, 11

internal_name (prolific_study), 10
internal_name<- (prolific_study), 10

jsonlite:toJSON, 3

list, 3,5, 10-12
logical, 3,4,6,9, 13

maximum_allowed_time (prolific_study),
10

maximum_allowed_time<-
(prolific_study), 10

naivety_distribution_rate
(prolific_study), 10

naivety_distribution_rate<-
(prolific_study), 10

name (prolific_study), 10

name<- (prolific_study), 10

NULL, 3, 11

numeric, 11

peripheral_requirements
(prolific_study), 10

INDEX

peripheral_requirements<-
(prolific_study), 10
prescreener (prolific_prescreener), 5
prescreeners (prolific_prescreener), 5
prescreeners-method (api_access), 2
prescreening (prolific_prescreener), 5
project (prolific_study), 10
project<- (prolific_study), 10
prolific (prolific.api-package), 2
prolific.api-package, 2
prolific_id_option (prolific_study), 10
prolific_id_option<- (prolific_study),
10
prolific_prescreener, 2,5
prolific_prescreener-class
(prolific_prescreener), 5
prolific_prescreeners, 7
prolific_studies, 10
prolific_study, 2, 3,6, 10, 12
prolific_study-class (prolific_study),
10
prolific_studys, 5

ReferenceClasses, 2

requirements (prolific_prescreener), 5
reward (prolific_study), 10

reward<- (prolific_study), 10

screening (prolific_prescreener), 5
study, 2

title (prolific_prescreener), 5
title<- (prolific_prescreener), 5
total_available_places
(prolific_study), 10
total_available_places<-
(prolific_study), 10

url_parameters (prolific_study), 10
url_parameters<- (prolific_study), 10

validity_check (prolific_prescreener), 5

validity_check-prolific_prescreener
(prolific_prescreener), 5

validity_check-prolific_study
(prolific_study), 10

17

	prolific.api-package
	api_access
	prolific_prescreener
	prolific_study
	Index

