Package ‘processcheckR’

October 14, 2022
Type Package

Title Rule-Based Conformance Checking of Business Process Event Data
Version 0.1.4
Date 2022-10-03

Description Check compliance of event-data from (business) processes with respect to speci-
fied rules. Rules supported are of three types: frequency (activities that should (not) hap-
pen x number of times), order (succession between activities) and exclusiveness (and and exclu-
sive choice between activities).

License MIT + file LICENSE
Encoding UTF-8
Depends R(>=3.5.0)

Imports dplyr, bupaR (>=0.5.1), rlang, edeaR (>= 0.9.0), stringr,
stringi, glue, lifecycle, tidyr

RoxygenNote 7.2.1

Suggests knitr, rmarkdown, eventdataR, covr, compare, testthat (>=
3.0.0)

VignetteBuilder knitr

URL https://bupar.net/, https://github.com/bupaverse/processcheckr,
https://bupaverse.github.io/processcheckR/

BugReports https://github.com/bupaverse/processcheckr/issues
Config/testthat/edition 3
NeedsCompilation no

Author Gert Janssenswillen [aut, cre],
Gerard van Hulzen [ctb]

Maintainer Gert Janssenswillen <gert.janssenswillen@uhasselt.be>
Repository CRAN
Date/Publication 2022-10-03 09:40:08 UTC

https://bupar.net/
https://github.com/bupaverse/processcheckr
https://bupaverse.github.io/processcheckR/
https://github.com/bupaverse/processcheckr/issues

2

R topics documented:

absent

absent L L e e e 2
and L e e 3
check_rule e e e 4
CONLAINS o v e it i e e e e e e e e e e e e e e e e e e e 6
containS_bEtWEEN e e e e e 7
contains_exactly 8
endsS e e e 8
filter_rules e 9
precedence e e e e e e e 11
responded_eXiSteNnCe e e e e e 12
TESPOMSE « « v v v v v e e e e e e e e e e e e e e e e e 12
] 2 1 13
SUCCESSION . . . v v v v i e e e e e 14
XOT & o o e e e e e e e e e e e e e e e e e e 15

Index 16

absent Absent
Description

Check if the specified activity is absent from a case.

The absent rule can be used to check whether an activity is absent in a case or not. The n parameter
can be configured to create a different level of absence. When n = @, an activity is not allowed to

occur even a single time. The maximum number of times it is allowed to occur is n.

Usage

absent(activity, n = 0)

Arguments
activity character: The activity to check. This should be an activity of the log supplied
to check_rule.
n numeric (default @): The allowed number of occurences of the activity, e.g. n =
0 means the activity should be absent, n = 1 means it is allowed to occur once.
See Also

Other Cardinality rules: contains_between(), contains_exactly(), contains()

and 3

Examples

library(bupaR)
library(eventdataR)

Check for which patients the activity "MRI SCAN"” is absent.
patients %>%
check_rule(absent("MRI SCAN"))

Check for which patients the activity "Blood test” occurs maximum a single time,
but not 2 times or more.

patients %>%

check_rule(absent(”"Blood test”, n = 1))

and AND

Description

Check for co-existence of two activities.

Theand rule checks whether two activities both occur in a case (or are both absent). If activity_a
exists, activity_b should also exist, and vice versa.

Usage

and(activity_a, activity_b)

Arguments
activity_a character: Activity A. This should be an activity of the log supplied to check_rule.
activity_b character: Activity B. This should be an activity of the log supplied to check_rule.
See Also

Other Exclusiveness rules: xor ()

Examples

library(bupaR)
library(eventdataR)

Check that if a patients is registered, he's also checked-out, and vice versa.
patients %>%
check_rule(and("Registration”, "Check-out"))

4 check rule

check_rule Check Declarative Rule(s)

Description

This function can be used to check rules or constraint templates on event data. It needs a log
(object of class log or derivatives, e.g. grouped_log, eventlog, activitylog, etc.). and (a)
rule(s). Rules can be made with the following templates:

* Cardinality:
— absent: Check if the specified activity is absent from a case,
— contains: Check if the specified activity is present (contained) in a case,

— contains_between: Check if the specified activity is present (contained) in a case be-
tween the minimum and maximum number of times,

— contains_exactly: Check if the specified activity is present (contained) in a case for
exactly n times.

e Relation:

ends: Check if cases end with the specified activity,

— starts: Check if cases start with the specified activity.

— precedence: Check for precedence between two activities,

— response: Check for response between two activities,

— responded_existence: Check for responded existence between two activities,
— succession: Check for succession between two activities.

e Exclusiveness:

— and: Check for co-existence of two activities,
— xor: Check for exclusiveness of two activities.

Usage
check_rule(log, rule, label = NULL, eventlog = deprecated())

S3 method for class 'log'
check_rule(log, rule, label = NULL, eventlog = deprecated())

check_rules(log, ..., eventlog = deprecated())

S3 method for class 'log'

check_rules(log, ..., eventlog = deprecated())
Arguments
log log: Object of class log or derivatives (grouped_log, eventlog, activitylog,
etc.).

rule A rule created by a rule function.

check rule 5

label character (default NULL): Optionally, the column name under which the result
of the rule should be stored.

eventlog [Deprecated]; please use log instead.

Name-rule pairs created by rule functions.

Details

The rules or constraint templates in this package are (partially) based on DecSerFlow (Declarative
Service Flow Language). For more information, see the References below.

Grouped Logs:
When applied to a grouped_log, the grouping variables are ignored but retained in the returned
log.

Value

An annotated log (of same type as input), where — for every rule — a new column indicates whether
the rule holds or not. The name of the new column can optionally be set using the label argument,
or by the name of each rule in the name-rule pairs.

Methods (by class)

e check_rule(log): Check rule on a log.

Functions

¢ check_rules(log): Check rules on a log.

References

van der Aalst, W. M. P., & Pesic, M. (2006). DecSerFlow: Towards a Truly Declarative Service
Flow Language. In M. Bravetti, M. Nuifiez, & G. Zavattaro (Eds.), Proceedings of the 3rd In-
ternational Workshop on Web Services and Formal Methods (Vol. 4184, pp. 1-23). Springer.
doi:10.1007/11841197_1

See Also

filter_rules

Examples

library(bupaR)
library(eventdataR)

Check whether MRI Scan is preceded by Blood test.
patients %>%
check_rule(precedence("Blood test”,”MRI SCAN"))

Check whether MRI Scan is preceded by Blood test, and the case starts with Registration.
patients %>%

https://doi.org/10.1007/11841197_1

6 contains

check_rules(rulel = precedence(”"Blood test”,”MRI SCAN"),
rule2 = starts("Registration”))

contains Contains

Description

Check if the specified activity is present (contained) in a case.

The contains rule examines whether the supplied activity is present in a case or not. The argu-
ment n can be used to set a minimum number of occurences that should be present in each case.

Usage

contains(activity, n = 1)

Arguments

activity character: The activity to check. This should be an activity of the log supplied
to check_rule.

n numeric (default 1): The minimum number of times the activity should be
present. Should be greater than or equal to 1. Use absent instead to check
for absent (i.e. n = @) activities.

See Also

Other Cardinality rules: absent(), contains_between(), contains_exactly()

Examples

library(bupaR)
library(eventdataR)

Each patient should be registered at least once.
patients %>%
check_rule(contains(”"Registration”))

Check whether some patients have received 2 or more blood tests.
patients %>%
check_rule(contains(”"Blood test”, n = 2))

contains_between 7

contains_between Contains Between

Description

Check if the specified activity is present (contained) in a case between the minimum and maximum
number of times.

The contains_between rule examines whether the supplied activity is present in a case for a
certain interval of times. The arguments min and max can be used to specify the allowed interval of
occurences.

Usage

contains_between(activity, min = 1, max = 1)

Arguments
activity character: The activity to check. This should be an activity of the log supplied
to check_rule.
min numeric (default 1): The minimum number of times the activity should be
present (inclusive). Should be greater than or equal to 0.
max numeric (default 1): The maximum number of times the activity should be
present (inclusive). Should be greater than or equal to min.
See Also

Other Cardinality rules: absent(), contains_exactly(), contains()

Examples

library(bupaR)
library(eventdataR)

A patients should have between @ and 4 blood tests (including @ and 4).
patients %>%
check_rule(contains_between(”"Blood test”, min = @, max = 4))

8 ends

contains_exactly Contains Exactly

Description

Check if the specified activity is present (contained) in a case for exactly n times.

The contains_exactly rule examines whether the supplied activity is present in a case for an
exact number of n times.

Usage

contains_exactly(activity, n = 1)

Arguments
activity character: The activity to check. This should be an activity of the log supplied
to check_rule.
n numeric (default 1): The exact number of times the activity should be present.
Should be greater than or equal to 1. Use absent instead to check for absent
(i.e. n = 0) activities.
See Also

Other Cardinality rules: absent (), contains_between(), contains()

Examples

library(bupaR)
library(eventdataR)

Each patient should have exactly one registration activity instance.
patients %>%
check_rule(contains_exactly("Registration”, n = 1))

ends Ends

Description

Check if cases end with the specified activity.

Usage

ends(activity)

filter_rules 9

Arguments
activity character: The end activity. This should be an activity of the log supplied to
check_rule.
See Also

Other Ordering rules: precedence(), responded_existence(), response(), starts(), succession()

Examples

library(bupaR)
library(eventdataR)

A patient's last activity should be the Check-out
patients %>%
check_rule(ends("Check-out"))

filter_rules Filter Using Declarative Rules

Description

This function can be used to filter event data using declaritive rules or constraint templates. It needs
a log (object of class log or derivatives, e.g. grouped_log, eventlog, activitylog, etc.). and a
set of rules. Rules can be made with the following templates:

* Cardinality:
— absent: Check if the specified activity is absent from a case,
— contains: Check if the specified activity is present (contained) in a case,

— contains_between: Check if the specified activity is present (contained) in a case be-
tween the minimum and maximum number of times,

— contains_exactly: Check if the specified activity is present (contained) in a case for
exactly n times.
* Relation:

— ends: Check if cases end with the specified activity,

— starts: Check if cases start with the specified activity.

— precedence: Check for precedence between two activities,

— response: Check for response between two activities,

— responded_existence: Check for responded existence between two activities,
— succession: Check for succession between two activities.

e Exclusiveness:

— and: Check for co-existence of two activities,
— xor: Check for exclusiveness of two activities.

10 filter_rules

Usage

filter_rules(log, ..., eventlog = deprecated())

S3 method for class 'log'

filter_rules(log, ..., eventlog = deprecated())
Arguments
log log: Object of class log or derivatives (grouped_log, eventlog, activitylog,
etc.).
Name-rule pairs created by rule functions.
eventlog [Deprecated]; please use log instead.
Details

The rules or constraint templates in this package are (partially) based on DecSerFlow (Declarative
Service Flow Language). For more information, see the References below.

Grouped Logs:
When applied to a grouped_log, the grouping variables are ignored but retained in the returned
log.

Value

A filtered log (of same type as input) that satisfied the specified rules.

Methods (by class)

e filter_rules(log): Filter a log using declaritive rules.

References

van der Aalst, W. M. P., & Pesic, M. (2006). DecSerFlow: Towards a Truly Declarative Service
Flow Language. In M. Bravetti, M. Nifiez, & G. Zavattaro (Eds.), Proceedings of the 3rd In-
ternational Workshop on Web Services and Formal Methods (Vol. 4184, pp. 1-23). Springer.
doi:10.1007/11841197_1

See Also

check_rules

Examples

library(bupaR)
library(eventdataR)

Filter where Blood test precedes MRI SCAN and Registration is the start of the case.
patients %>%
filter_rules(precedence(”"Blood test”,"”MRI SCAN"),
starts(”Registration”))

https://doi.org/10.1007/11841197_1

precedence 11

precedence Precedence

Description

Check for precedence between two activities.

If activity_b occured, it should be preceded by activity_a in the same case, i.e., if B was exe-
cuted, it could not have been executed before A was executed. For example, the trace [A,C,B,B,A]
satisfies the precedence relation.

Usage

precedence(activity_a, activity_b)

Arguments
activity_a character: Activity A. This should be an activity of the log supplied to check_rule.
activity_b character: Activity B. This should be an activity of the log supplied to check_rule.
See Also

Other Ordering rules: ends(), responded_existence(), response(), starts(), succession()

Examples

library(bupaR)
library(eventdataR)

A MRI Scan should be preceeded by a Blood test.

patients %>%
check_rule(precedence("Blood test”,”MRI SCAN"))

12 response

responded_existence Responded Existence

Description

Check for responded existence between two activities.

If activity_a occurs in a case, activity_b should also occur (before or after).

Usage

responded_existence(activity_a, activity_b)

Arguments
activity_a character: Activity A. This should be an activity of the log supplied to check_rule.
activity_b character: Activity B. This should be an activity of the log supplied to check_rule.
See Also

Other Ordering rules: ends(), precedence(), response(), starts(), succession()

Examples

library(bupaR)
library(eventdataR)

When a Blood test occurs, a MRI Scan should also have
happened for this patient (before or after the test).

patients %>%
check_rule(responded_existence(”Blood test”,”MRI SCAN"))

response Response

Description

Check for response between two activities.

If activity_a is executed, it should be (eventually) followed by activity_b. The response
relation is very relaxed, because B does not have to be executed immediately after A, and multiple
As can be executed between the first A and the subsequent B. For example, the trace [B,A,A,A,C,B]
satisfies the response relation.

starts 13

Usage

response(activity_a, activity_b)

Arguments
activity_a character: Activity A. This should be an activity of the log supplied to check_rule.
activity_b character: Activity B. This should be an activity of the log supplied to check_rule.
See Also

Other Ordering rules: ends(), precedence(), responded_existence(), starts(), succession()

Examples

library(bupaR)
library(eventdataR)

A blood test should eventually be followed by Discuss Results.
patients %>%
check_rule(response(”Blood test”,"”Discuss Results”))

starts Starts

Description

Check if cases start with the specified activity.

Usage
starts(activity)
Arguments
activity character: The start activity. This should be an activity of the log supplied to
check_rule.
See Also

Other Ordering rules: ends (), precedence(), responded_existence(), response(), succession()

14 succession

Examples

library(bupaR)
library(eventdataR)

Each patients should first be registered.
patients %>%
check_rule(starts("Registration”))

succession Succession

Description

Check for succession between two activities.

succession checks the bi-directional execution order of activity_a and activity_b, i.e., both
response and precedence relations have to hold: every A has to be (eventually) followed by B, and
there has to be an A before every B. For example, the trace [A,C,A,B,B] satisfies the succession
relation.

Usage

succession(activity_a, activity_b)

Arguments
activity_a character: Activity A. This should be an activity of the log supplied to check_rule.
activity_b character: Activity B. This should be an activity of the log supplied to check_rule.
See Also

Other Ordering rules: ends(), precedence(), responded_existence(), response(), starts()

Examples

library(bupaR)
library(eventdataR)

Blood test should always happen before a MRI Scan,
and both should happen when one of them happens.
patients %>%

check_rule(succession("Blood test”,"MRI SCAN"))

Xxor 15

xor XOR

Description

Check for exclusiveness of two activities.

If activity_a exists, activity_b should not exist, and vice versa.

Usage

xor(activity_a, activity_b)

Arguments
activity_a character: Activity A. This should be an activity of the log supplied to check_rule.
activity_b character: Activity B. This should be an activity of the log supplied to check_rule.
See Also

Other Exclusiveness rules: and()

Examples

library(bupaR)
library(eventdataR)

A patient should not receive both an X-Ray and MRI Scan.
patients %>%
check_rule(xor("X-Ray","MRI SCAN"))

Index

* Cardinality rules responded_existence, 4,9, 11,12, 13, 14
absent, 2 response, 4,9, 11, 12,12, 13, 14
contains, 6
contains_between, 7 starts, 4,9, 11-13, 13, 14
contains_exactly, 8 succession, 4, 9, 11-13, 14

+x Exclusiveness rules
and, 3 xor, 3, 4,9, 15
xor, 15

* Ordering rules
ends, 8

precedence, 11
responded_existence, 12
response, 12

starts, 13
succession, 14

absent, 2, 4, 6-9
activitylog, 4,9, 10
and, 3,4,9,15

character, 2, 3, 5-9, 11-15

check_rule, 2, 3,4, 6-9, 11-15

check_rules, 10

check_rules (check_rule), 4

contains, 2, 4, 6, 7-9

contains_between, 2, 4, 6,
6

, 8,
contains_exactly, 2,4, 6, 7, 8

7,8 9
7,8,9

ends, 4,8,9, 11-14
eventlog, 4, 9, 10

filter_rules, 5,9
grouped_log, 4, 5,9, 10
log,4, 5,9, 10

NULL, 5
numeric, 2, 6-8

precedence, 4, 9, 11, 12-14

16

	absent
	and
	check_rule
	contains
	contains_between
	contains_exactly
	ends
	filter_rules
	precedence
	responded_existence
	response
	starts
	succession
	xor
	Index

