
Package ‘probably’
May 21, 2025

Title Tools for Post-Processing Predicted Values

Version 1.1.0

Description Models can be improved by post-processing class
probabilities, by: recalibration, conversion to hard probabilities,
assessment of equivocal zones, and other activities. 'probably'
contains tools for conducting these operations as well as calibration
tools and conformal inference techniques for regression models.

License MIT + file LICENSE

URL https://github.com/tidymodels/probably,

https://probably.tidymodels.org

BugReports https://github.com/tidymodels/probably/issues

Depends R (>= 4.1)

Imports butcher, cli, dplyr (>= 1.1.0), furrr, generics (>= 0.1.3),
ggplot2, hardhat, pillar, purrr, rlang (>= 1.1.0), tidyr (>=
1.3.0), tidyselect (>= 1.1.2), tune (>= 1.1.2), vctrs (>=
0.4.1), withr, workflows (>= 1.1.4), yardstick (>= 1.3.0)

Suggests betacal, covr, knitr, MASS, mgcv, modeldata (>= 1.1.0), nnet,
parsnip (>= 1.2.0), quantregForest, randomForest, recipes,
rmarkdown, rsample, testthat (>= 3.0.0)

VignetteBuilder knitr

ByteCompile true

Config/Needs/website tidyverse/tidytemplate

Config/testthat/edition 3

Encoding UTF-8

LazyData true

RoxygenNote 7.3.2

Collate 'bound_prediction.R' 'cal-apply-binary.R' 'cal-apply-impl.R'
'cal-apply-multi.R' 'cal-apply-regression.R' 'cal-apply.R'
'cal-estimate-beta.R' 'cal-estimate-isotonic.R'
'cal-estimate-linear.R' 'cal-estimate-logistic.R'

1

https://github.com/tidymodels/probably
https://probably.tidymodels.org
https://github.com/tidymodels/probably/issues

2 Contents

'cal-estimate-multinom.R' 'cal-estimate-utils.R'
'cal-estimate-none.R' 'cal-pkg-check.R' 'cal-plot-breaks.R'
'cal-plot-logistic.R' 'cal-plot-regression.R'
'cal-plot-utils.R' 'cal-plot-windowed.R' 'cal-utils.R'
'cal-validate.R' 'class-pred.R' 'conformal_infer.R'
'conformal_infer_cv.R' 'conformal_infer_quantile.R'
'conformal_infer_split.R' 'data.R'
'import-standalone-obj-type.R'
'import-standalone-types-check.R' 'make_class_pred.R'
'printing.R' 'probably-package.R' 'reexports.R'
'threshold_perf.R' 'utils.R' 'vctrs-compat.R' 'zzz.R'

NeedsCompilation no

Author Max Kuhn [aut, cre],
Davis Vaughan [aut],
Edgar Ruiz [aut],
Posit Software, PBC [cph, fnd] (ROR: <https://ror.org/03wc8by49>)

Maintainer Max Kuhn <max@posit.co>

Repository CRAN

Date/Publication 2025-05-21 13:30:02 UTC

Contents
append_class_pred . 3
as_class_pred . 4
boosting_predictions . 5
bound_prediction . 6
cal_apply . 6
cal_estimate_beta . 8
cal_estimate_isotonic . 10
cal_estimate_isotonic_boot . 12
cal_estimate_linear . 14
cal_estimate_logistic . 16
cal_estimate_multinomial . 19
cal_estimate_none . 21
cal_plot_breaks . 23
cal_plot_logistic . 26
cal_plot_regression . 28
cal_plot_windowed . 30
cal_validate_beta . 32
cal_validate_isotonic . 35
cal_validate_isotonic_boot . 37
cal_validate_linear . 39
cal_validate_logistic . 41
cal_validate_multinomial . 43
cal_validate_none . 45
class_pred . 47

https://ror.org/03wc8by49

append_class_pred 3

collect_metrics.cal_rset . 48
collect_predictions.cal_rset . 49
control_conformal_full . 49
int_conformal_cv . 50
int_conformal_full . 52
int_conformal_quantile . 55
int_conformal_split . 57
is_class_pred . 58
levels.class_pred . 59
locate-equivocal . 60
make_class_pred . 61
predict.int_conformal_full . 62
reportable_rate . 63
segment_naive_bayes . 64
species_probs . 65
threshold_perf . 65

Index 68

append_class_pred Add a class_pred column

Description

This function is similar to make_class_pred(), but is useful when you have a large number of
class probability columns and want to use tidyselect helpers. It appends the new class_pred
vector as a column on the original data frame.

Usage

append_class_pred(
.data,
...,
levels,
ordered = FALSE,
min_prob = 1/length(levels),
name = ".class_pred"

)

Arguments

.data A data frame or tibble.

... One or more unquoted expressions separated by commas to capture the columns
of .data containing the class probabilities. You can treat variable names like
they are positions, so you can use expressions like x:y to select ranges of vari-
ables or use selector functions to choose which columns. For make_class_pred,
the columns for all class probabilities should be selected (in the same order as
the levels object). For two_class_pred, a vector of class probabilities should
be selected.

4 as_class_pred

levels A character vector of class levels. The length should be the same as the number
of selections made through ..., or length 2 for make_two_class_pred().

ordered A single logical to determine if the levels should be regarded as ordered (in the
order given). This results in a class_pred object that is flagged as ordered.

min_prob A single numeric value. If any probabilities are less than this value (by row), the
row is marked as equivocal.

name A single character value for the name of the appended class_pred column.

Value

.data with an extra class_pred column appended onto it.

Examples

The following two examples are equivalent and demonstrate
the helper, append_class_pred()

library(dplyr)

species_probs |>
mutate(
.class_pred = make_class_pred(

.pred_bobcat, .pred_coyote, .pred_gray_fox,
levels = levels(Species),
min_prob = .5

)
)

lvls <- levels(species_probs$Species)

append_class_pred(
.data = species_probs,
contains(".pred_"),
levels = lvls,
min_prob = .5

)

as_class_pred Coerce to a class_pred object

Description

as_class_pred() provides coercion to class_pred from other existing objects.

Usage

as_class_pred(x, which = integer(), equivocal = "[EQ]")

boosting_predictions 5

Arguments

x A factor or ordered factor.

which An integer vector specifying the locations of x to declare as equivocal.

equivocal A single character specifying the equivocal label used when printing.

Examples

x <- factor(c("Yes", "No", "Yes", "Yes"))
as_class_pred(x)

boosting_predictions Boosted regression trees predictions

Description

Boosted regression trees predictions

Details

These data have a set of holdout predictions from 10-fold cross-validation and a separate collec-
tion of test set predictions from the same boosted tree model. The data were generated using the
sim_regression function in the modeldata package.

Value

boosting_predictions_oob, boosting_predictions_test
tibbles

Examples

data(boosting_predictions_oob)
str(boosting_predictions_oob)
str(boosting_predictions_test)

6 cal_apply

bound_prediction Truncate a numeric prediction column

Description

For user-defined lower_limit and/or upper_limit bound, ensure that the values in the .pred
column are coerced to these bounds.

Usage

bound_prediction(
x,
lower_limit = -Inf,
upper_limit = Inf,
call = rlang::current_env()

)

Arguments

x A data frame that contains a numeric column named .pred.
lower_limit, upper_limit

Single numerics (or NA) that define constraints on .pred.

call The call to be displayed in warnings or errors.

Value

x with potentially adjusted values.

Examples

data(solubility_test, package = "yardstick")

names(solubility_test) <- c("solubility", ".pred")

bound_prediction(solubility_test, lower_limit = -1)

cal_apply Applies a calibration to a set of existing predictions

Description

Applies a calibration to a set of existing predictions

cal_apply 7

Usage

cal_apply(.data, object, pred_class = NULL, parameters = NULL, ...)

S3 method for class 'data.frame'
cal_apply(.data, object, pred_class = NULL, parameters = NULL, ...)

S3 method for class 'tune_results'
cal_apply(.data, object, pred_class = NULL, parameters = NULL, ...)

S3 method for class 'cal_object'
cal_apply(.data, object, pred_class = NULL, parameters = NULL, ...)

Arguments

.data An object that can process a calibration object.

object The calibration object (cal_object).

pred_class (Optional, classification only) Column identifier for the hard class predictions (a
factor vector). This column will be adjusted based on changes to the calibrated
probability columns.

parameters (Optional) An optional tibble of tuning parameter values that can be used to filter
the predicted values before processing. Applies only to tune_results objects.

... Optional arguments; currently unused.

Details

cal_apply() currently supports data.frames only. It extracts the truth and the estimate columns
names from the calibration object.

See Also

https://www.tidymodels.org/learn/models/calibration/, cal_estimate_beta(), cal_estimate_isotonic(),
cal_estimate_isotonic_boot(), cal_estimate_linear(), cal_estimate_logistic(), cal_estimate_multinomial()

Examples

--
classification example

w_calibration <- cal_estimate_logistic(segment_logistic, Class)

cal_apply(segment_logistic, w_calibration)

https://www.tidymodels.org/learn/models/calibration/

8 cal_estimate_beta

cal_estimate_beta Uses a Beta calibration model to calculate new probabilities

Description

Uses a Beta calibration model to calculate new probabilities

Usage

cal_estimate_beta(
.data,
truth = NULL,
shape_params = 2,
location_params = 1,
estimate = dplyr::starts_with(".pred_"),
parameters = NULL,
...

)

S3 method for class 'data.frame'
cal_estimate_beta(
.data,
truth = NULL,
shape_params = 2,
location_params = 1,
estimate = dplyr::starts_with(".pred_"),
parameters = NULL,
...,
.by = NULL

)

S3 method for class 'tune_results'
cal_estimate_beta(
.data,
truth = NULL,
shape_params = 2,
location_params = 1,
estimate = dplyr::starts_with(".pred_"),
parameters = NULL,
...

)

S3 method for class 'grouped_df'
cal_estimate_beta(
.data,
truth = NULL,
shape_params = 2,

cal_estimate_beta 9

location_params = 1,
estimate = NULL,
parameters = NULL,
...

)

Arguments

.data An ungrouped data.frame object, or tune_results object, that contains pre-
dictions and probability columns.

truth The column identifier for the true class results (that is a factor). This should be
an unquoted column name.

shape_params Number of shape parameters to use. Accepted values are 1 and 2. Defaults to 2.
location_params

Number of location parameters to use. Accepted values 1 and 0. Defaults to 1.

estimate A vector of column identifiers, or one of dplyr selector functions to choose
which variables contains the class probabilities. It defaults to the prefix used by
tidymodels (.pred_). The order of the identifiers will be considered the same as
the order of the levels of the truth variable.

parameters (Optional) An optional tibble of tuning parameter values that can be used to filter
the predicted values before processing. Applies only to tune_results objects.

... Additional arguments passed to the models or routines used to calculate the new
probabilities.

.by The column identifier for the grouping variable. This should be a single un-
quoted column name that selects a qualitative variable for grouping. Default to
NULL. When .by = NULL no grouping will take place.

Details

This function uses the betacal::beta_calibration() function, and retains the resulting model.

Multiclass Extension

This method is designed to work with two classes. For multiclass, it creates a set of "one versus
all" calibrations for each class. After they are applied to the data, the probability estimates are
re-normalized to add to one. This final step might compromise the calibration.

References

Meelis Kull, Telmo M. Silva Filho, Peter Flach "Beyond sigmoids: How to obtain well-calibrated
probabilities from binary classifiers with beta calibration," Electronic Journal of Statistics 11(2),
5052-5080, (2017)

See Also

https://www.tidymodels.org/learn/models/calibration/, cal_validate_beta()

https://www.tidymodels.org/learn/models/calibration/

10 cal_estimate_isotonic

Examples

if (rlang::is_installed("betacal")) {
It will automatically identify the probability columns
if passed a model fitted with tidymodels
cal_estimate_beta(segment_logistic, Class)

}

cal_estimate_isotonic Uses an Isotonic regression model to calibrate model predictions.

Description

Uses an Isotonic regression model to calibrate model predictions.

Usage

cal_estimate_isotonic(
.data,
truth = NULL,
estimate = dplyr::starts_with(".pred"),
parameters = NULL,
...

)

S3 method for class 'data.frame'
cal_estimate_isotonic(
.data,
truth = NULL,
estimate = dplyr::starts_with(".pred"),
parameters = NULL,
...,
.by = NULL

)

S3 method for class 'tune_results'
cal_estimate_isotonic(
.data,
truth = NULL,
estimate = dplyr::starts_with(".pred"),
parameters = NULL,
...

)

S3 method for class 'grouped_df'
cal_estimate_isotonic(
.data,
truth = NULL,

cal_estimate_isotonic 11

estimate = NULL,
parameters = NULL,
...

)

Arguments

.data An ungrouped data.frame object, or tune_results object, that contains pre-
dictions and probability columns.

truth The column identifier for the true class results (that is a factor). This should be
an unquoted column name.

estimate A vector of column identifiers, or one of dplyr selector functions to choose
which variables contains the class probabilities. It defaults to the prefix used by
tidymodels (.pred_). The order of the identifiers will be considered the same as
the order of the levels of the truth variable.

parameters (Optional) An optional tibble of tuning parameter values that can be used to filter
the predicted values before processing. Applies only to tune_results objects.

... Additional arguments passed to the models or routines used to calculate the new
probabilities.

.by The column identifier for the grouping variable. This should be a single un-
quoted column name that selects a qualitative variable for grouping. Default to
NULL. When .by = NULL no grouping will take place.

Details

This function uses stats::isoreg() to create obtain the calibration values for binary classification
or numeric regression.

Multiclass Extension

This method is designed to work with two classes. For multiclass, it creates a set of "one versus
all" calibrations for each class. After they are applied to the data, the probability estimates are
re-normalized to add to one. This final step might compromise the calibration.

References

Zadrozny, Bianca and Elkan, Charles. (2002). Transforming Classifier Scores into Accurate Multi-
class Probability Estimates. Proceedings of the ACM SIGKDD International Conference on Knowl-
edge Discovery and Data Mining.

See Also

https://www.tidymodels.org/learn/models/calibration/, cal_validate_isotonic()

https://www.tidymodels.org/learn/models/calibration/

12 cal_estimate_isotonic_boot

Examples

--
Binary Classification

It will automatically identify the probability columns
if passed a model fitted with tidymodels
cal_estimate_isotonic(segment_logistic, Class)

Specify the variable names in a vector of unquoted names
cal_estimate_isotonic(segment_logistic, Class, c(.pred_poor, .pred_good))

dplyr selector functions are also supported
cal_estimate_isotonic(segment_logistic, Class, dplyr::starts_with(".pred_"))

--
Regression (numeric outcomes)

cal_estimate_isotonic(boosting_predictions_oob, outcome, .pred)

cal_estimate_isotonic_boot

Uses a bootstrapped Isotonic regression model to calibrate probabili-
ties

Description

Uses a bootstrapped Isotonic regression model to calibrate probabilities

Usage

cal_estimate_isotonic_boot(
.data,
truth = NULL,
estimate = dplyr::starts_with(".pred"),
times = 10,
parameters = NULL,
...

)

S3 method for class 'data.frame'
cal_estimate_isotonic_boot(
.data,
truth = NULL,
estimate = dplyr::starts_with(".pred"),
times = 10,
parameters = NULL,
...,
.by = NULL

cal_estimate_isotonic_boot 13

)

S3 method for class 'tune_results'
cal_estimate_isotonic_boot(
.data,
truth = NULL,
estimate = dplyr::starts_with(".pred"),
times = 10,
parameters = NULL,
...

)

S3 method for class 'grouped_df'
cal_estimate_isotonic_boot(
.data,
truth = NULL,
estimate = NULL,
times = 10,
parameters = NULL,
...

)

Arguments

.data An ungrouped data.frame object, or tune_results object, that contains pre-
dictions and probability columns.

truth The column identifier for the true class results (that is a factor). This should be
an unquoted column name.

estimate A vector of column identifiers, or one of dplyr selector functions to choose
which variables contains the class probabilities. It defaults to the prefix used by
tidymodels (.pred_). The order of the identifiers will be considered the same as
the order of the levels of the truth variable.

times Number of bootstraps.

parameters (Optional) An optional tibble of tuning parameter values that can be used to filter
the predicted values before processing. Applies only to tune_results objects.

... Additional arguments passed to the models or routines used to calculate the new
probabilities.

.by The column identifier for the grouping variable. This should be a single un-
quoted column name that selects a qualitative variable for grouping. Default to
NULL. When .by = NULL no grouping will take place.

Details

This function uses stats::isoreg() to create obtain the calibration values. It runs stats::isoreg()
multiple times, and each time with a different seed. The results are saved inside the returned
cal_object.

14 cal_estimate_linear

Multiclass Extension

This method is designed to work with two classes. For multiclass, it creates a set of "one versus
all" calibrations for each class. After they are applied to the data, the probability estimates are
re-normalized to add to one. This final step might compromise the calibration.

See Also

https://www.tidymodels.org/learn/models/calibration/, cal_validate_isotonic_boot()

Examples

It will automatically identify the probability columns
if passed a model fitted with tidymodels
cal_estimate_isotonic_boot(segment_logistic, Class)
Specify the variable names in a vector of unquoted names
cal_estimate_isotonic_boot(segment_logistic, Class, c(.pred_poor, .pred_good))
dplyr selector functions are also supported
cal_estimate_isotonic_boot(segment_logistic, Class, dplyr::starts_with(".pred"))

cal_estimate_linear Uses a linear regression model to calibrate numeric predictions

Description

Uses a linear regression model to calibrate numeric predictions

Usage

cal_estimate_linear(
.data,
truth = NULL,
estimate = dplyr::matches("^.pred$"),
smooth = TRUE,
parameters = NULL,
...,
.by = NULL

)

S3 method for class 'data.frame'
cal_estimate_linear(
.data,
truth = NULL,
estimate = dplyr::matches("^.pred$"),
smooth = TRUE,
parameters = NULL,
...,
.by = NULL

https://www.tidymodels.org/learn/models/calibration/

cal_estimate_linear 15

)

S3 method for class 'tune_results'
cal_estimate_linear(
.data,
truth = NULL,
estimate = dplyr::matches("^.pred$"),
smooth = TRUE,
parameters = NULL,
...

)

S3 method for class 'grouped_df'
cal_estimate_linear(
.data,
truth = NULL,
estimate = NULL,
smooth = TRUE,
parameters = NULL,
...

)

Arguments

.data Am ungrouped data.frame object, or tune_results object, that contains a
prediction column.

truth The column identifier for the observed outcome data (that is numeric). This
should be an unquoted column name.

estimate Column identifier for the predicted values

smooth Applies to the linear models. It switches between a generalized additive model
using spline terms when TRUE, and simple linear regression when FALSE.

parameters (Optional) An optional tibble of tuning parameter values that can be used to filter
the predicted values before processing. Applies only to tune_results objects.

... Additional arguments passed to the models or routines used to calculate the new
predictions.

.by The column identifier for the grouping variable. This should be a single un-
quoted column name that selects a qualitative variable for grouping. Default to
NULL. When .by = NULL no grouping will take place.

Details

This function uses existing modeling functions from other packages to create the calibration:

• stats::glm() is used when smooth is set to FALSE

• mgcv::gam() is used when smooth is set to TRUE

These methods estimate the relationship in the unmodified predicted values and then remove that
trend when cal_apply() is invoked.

16 cal_estimate_logistic

See Also

https://www.tidymodels.org/learn/models/calibration/, cal_validate_linear()

Examples

library(dplyr)
library(ggplot2)

head(boosting_predictions_test)

--
Before calibration

y_rng <- extendrange(boosting_predictions_test$outcome)

boosting_predictions_test |>
ggplot(aes(outcome, .pred)) +
geom_abline(lty = 2) +
geom_point(alpha = 1 / 2) +
geom_smooth(se = FALSE, col = "blue", linewidth = 1.2, alpha = 3 / 4) +
coord_equal(xlim = y_rng, ylim = y_rng) +
ggtitle("Before calibration")

--
Smoothed trend removal

smoothed_cal <-
boosting_predictions_oob |>
It will automatically identify the predicted value columns when the
standard tidymodels naming conventions are used.
cal_estimate_linear(outcome)

smoothed_cal

boosting_predictions_test |>
cal_apply(smoothed_cal) |>
ggplot(aes(outcome, .pred)) +
geom_abline(lty = 2) +
geom_point(alpha = 1 / 2) +
geom_smooth(se = FALSE, col = "blue", linewidth = 1.2, alpha = 3 / 4) +
coord_equal(xlim = y_rng, ylim = y_rng) +
ggtitle("After calibration")

cal_estimate_logistic Uses a logistic regression model to calibrate probabilities

Description

Uses a logistic regression model to calibrate probabilities

https://www.tidymodels.org/learn/models/calibration/

cal_estimate_logistic 17

Usage

cal_estimate_logistic(
.data,
truth = NULL,
estimate = dplyr::starts_with(".pred_"),
smooth = TRUE,
parameters = NULL,
...

)

S3 method for class 'data.frame'
cal_estimate_logistic(
.data,
truth = NULL,
estimate = dplyr::starts_with(".pred_"),
smooth = TRUE,
parameters = NULL,
...,
.by = NULL

)

S3 method for class 'tune_results'
cal_estimate_logistic(
.data,
truth = NULL,
estimate = dplyr::starts_with(".pred_"),
smooth = TRUE,
parameters = NULL,
...

)

S3 method for class 'grouped_df'
cal_estimate_logistic(
.data,
truth = NULL,
estimate = NULL,
smooth = TRUE,
parameters = NULL,
...

)

Arguments

.data An ungrouped data.frame object, or tune_results object, that contains pre-
dictions and probability columns.

truth The column identifier for the true class results (that is a factor). This should be
an unquoted column name.

18 cal_estimate_logistic

estimate A vector of column identifiers, or one of dplyr selector functions to choose
which variables contains the class probabilities. It defaults to the prefix used by
tidymodels (.pred_). The order of the identifiers will be considered the same as
the order of the levels of the truth variable.

smooth Applies to the logistic models. It switches between logistic spline when TRUE,
and simple logistic regression when FALSE.

parameters (Optional) An optional tibble of tuning parameter values that can be used to filter
the predicted values before processing. Applies only to tune_results objects.

... Additional arguments passed to the models or routines used to calculate the new
probabilities.

.by The column identifier for the grouping variable. This should be a single un-
quoted column name that selects a qualitative variable for grouping. Default to
NULL. When .by = NULL no grouping will take place.

Details

This function uses existing modeling functions from other packages to create the calibration:

• stats::glm() is used when smooth is set to FALSE

• mgcv::gam() is used when smooth is set to TRUE

Multiclass Extension:
This method has not been extended to multiclass outcomes. However, the natural multiclass
extension is cal_estimate_multinomial().

See Also

https://www.tidymodels.org/learn/models/calibration/, cal_validate_logistic()

Examples

It will automatically identify the probability columns
if passed a model fitted with tidymodels
cal_estimate_logistic(segment_logistic, Class)

Specify the variable names in a vector of unquoted names
cal_estimate_logistic(segment_logistic, Class, c(.pred_poor, .pred_good))

dplyr selector functions are also supported
cal_estimate_logistic(segment_logistic, Class, dplyr::starts_with(".pred_"))

https://www.tidymodels.org/learn/models/calibration/

cal_estimate_multinomial 19

cal_estimate_multinomial

Uses a Multinomial calibration model to calculate new probabilities

Description

Uses a Multinomial calibration model to calculate new probabilities

Usage

cal_estimate_multinomial(
.data,
truth = NULL,
estimate = dplyr::starts_with(".pred_"),
smooth = TRUE,
parameters = NULL,
...

)

S3 method for class 'data.frame'
cal_estimate_multinomial(
.data,
truth = NULL,
estimate = dplyr::starts_with(".pred_"),
smooth = TRUE,
parameters = NULL,
...,
.by = NULL

)

S3 method for class 'tune_results'
cal_estimate_multinomial(
.data,
truth = NULL,
estimate = dplyr::starts_with(".pred_"),
smooth = TRUE,
parameters = NULL,
...

)

S3 method for class 'grouped_df'
cal_estimate_multinomial(
.data,
truth = NULL,
estimate = NULL,
smooth = TRUE,
parameters = NULL,

20 cal_estimate_multinomial

...
)

Arguments

.data An ungrouped data.frame object, or tune_results object, that contains pre-
dictions and probability columns.

truth The column identifier for the true class results (that is a factor). This should be
an unquoted column name.

estimate A vector of column identifiers, or one of dplyr selector functions to choose
which variables contains the class probabilities. It defaults to the prefix used by
tidymodels (.pred_). The order of the identifiers will be considered the same as
the order of the levels of the truth variable.

smooth Applies to the logistic models. It switches between logistic spline when TRUE,
and simple logistic regression when FALSE.

parameters (Optional) An optional tibble of tuning parameter values that can be used to filter
the predicted values before processing. Applies only to tune_results objects.

... Additional arguments passed to the models or routines used to calculate the new
probabilities.

.by The column identifier for the grouping variable. This should be a single un-
quoted column name that selects a qualitative variable for grouping. Default to
NULL. When .by = NULL no grouping will take place.

Details

When smooth = FALSE, nnet::multinom() function is used to estimate the model, otherwise mgcv::gam()
is used.

See Also

https://www.tidymodels.org/learn/models/calibration/, cal_validate_multinomial()

Examples

library(modeldata)
library(parsnip)
library(dplyr)

f <-
list(
~ -0.5 + 0.6 * abs(A),
~ ifelse(A > 0 & B > 0, 1.0 + 0.2 * A / B, -2),
~ -0.6 * A + 0.50 * B - A * B

)

set.seed(1)
tr_dat <- sim_multinomial(500, eqn_1 = f[[1]], eqn_2 = f[[2]], eqn_3 = f[[3]])
cal_dat <- sim_multinomial(500, eqn_1 = f[[1]], eqn_2 = f[[2]], eqn_3 = f[[3]])
te_dat <- sim_multinomial(500, eqn_1 = f[[1]], eqn_2 = f[[2]], eqn_3 = f[[3]])

https://www.tidymodels.org/learn/models/calibration/

cal_estimate_none 21

set.seed(2)
rf_fit <-

rand_forest() |>
set_mode("classification") |>
set_engine("randomForest") |>
fit(class ~ ., data = tr_dat)

cal_pred <-
predict(rf_fit, cal_dat, type = "prob") |>
bind_cols(cal_dat)

te_pred <-
predict(rf_fit, te_dat, type = "prob") |>
bind_cols(te_dat)

cal_plot_windowed(cal_pred, truth = class, window_size = 0.1, step_size = 0.03)

smoothed_mn <- cal_estimate_multinomial(cal_pred, truth = class)

new_test_pred <- cal_apply(te_pred, smoothed_mn)

cal_plot_windowed(new_test_pred, truth = class, window_size = 0.1, step_size = 0.03)

cal_estimate_none Do not calibrate model predictions.

Description

Do not calibrate model predictions.

Usage

cal_estimate_none(
.data,
truth = NULL,
estimate = dplyr::starts_with(".pred"),
parameters = NULL,
...

)

S3 method for class 'data.frame'
cal_estimate_none(
.data,
truth = NULL,
estimate = dplyr::starts_with(".pred"),
parameters = NULL,
...,
.by = NULL

22 cal_estimate_none

)

S3 method for class 'tune_results'
cal_estimate_none(
.data,
truth = NULL,
estimate = dplyr::starts_with(".pred"),
parameters = NULL,
...

)

S3 method for class 'grouped_df'
cal_estimate_none(.data, truth = NULL, estimate = NULL, parameters = NULL, ...)

Arguments

.data An ungrouped data.frame object, or tune_results object, that contains pre-
dictions and probability columns.

truth The column identifier for the true outcome results (that is factor or numeric).
This should be an unquoted column name.

estimate A vector of column identifiers, or one of dplyr selector functions to choose
which variables contains the class probabilities or numeric predictions. It de-
faults to the prefix used by tidymodels (.pred_). For classification problems,
the order of the identifiers will be considered the same as the order of the levels
of the truth variable.

parameters (Optional) An optional tibble of tuning parameter values that can be used to filter
the predicted values before processing. Applies only to tune_results objects.

... Additional arguments passed to the models or routines used to calculate the new
probabilities.

.by The column identifier for the grouping variable. This should be a single un-
quoted column name that selects a qualitative variable for grouping. Default to
NULL. When .by = NULL no grouping will take place.

Details

This function does nothing to the predictions. It is used as a reference when tuning over different
calibration methods.

Examples

nada <- cal_estimate_none(boosting_predictions_oob, outcome, .pred)
nada

identical(
cal_apply(boosting_predictions_oob, nada),
boosting_predictions_oob

)

cal_plot_breaks 23

--

nichts <- cal_estimate_none(segment_logistic, Class)

identical(
cal_apply(segment_logistic, nichts),
segment_logistic

)

cal_plot_breaks Probability calibration plots via binning

Description

A plot is created to assess whether the observed rate of the event is about the same as the predicted
probability of the event from some model.

A sequence of even, mutually exclusive bins are created from zero to one. For each bin, the data
whose predicted probability falls within the range of the bin is used to calculate the observed event
rate (along with confidence intervals for the event rate). If the predictions are well calibrated, the
fitted curve should align with the diagonal line.

Usage

cal_plot_breaks(
.data,
truth = NULL,
estimate = dplyr::starts_with(".pred"),
num_breaks = 10,
conf_level = 0.9,
include_ribbon = TRUE,
include_rug = TRUE,
include_points = TRUE,
event_level = c("auto", "first", "second"),
...

)

S3 method for class 'data.frame'
cal_plot_breaks(
.data,
truth = NULL,
estimate = dplyr::starts_with(".pred"),
num_breaks = 10,
conf_level = 0.9,
include_ribbon = TRUE,
include_rug = TRUE,
include_points = TRUE,
event_level = c("auto", "first", "second"),

24 cal_plot_breaks

...,

.by = NULL
)

S3 method for class 'tune_results'
cal_plot_breaks(
.data,
truth = NULL,
estimate = dplyr::starts_with(".pred"),
num_breaks = 10,
conf_level = 0.9,
include_ribbon = TRUE,
include_rug = TRUE,
include_points = TRUE,
event_level = c("auto", "first", "second"),
...

)

S3 method for class 'grouped_df'
cal_plot_breaks(
.data,
truth = NULL,
estimate = NULL,
num_breaks = 10,
conf_level = 0.9,
include_ribbon = TRUE,
include_rug = TRUE,
include_points = TRUE,
event_level = c("auto", "first", "second"),
...

)

Arguments

.data An ungrouped data frame object containing predictions and probability columns.

truth The column identifier for the true class results (that is a factor). This should be
an unquoted column name.

estimate A vector of column identifiers, or one of dplyr selector functions to choose
which variables contains the class probabilities. It defaults to the prefix used by
tidymodels (.pred_). The order of the identifiers will be considered the same as
the order of the levels of the truth variable.

num_breaks The number of segments to group the probabilities. It defaults to 10.

conf_level Confidence level to use in the visualization. It defaults to 0.9.

include_ribbon Flag that indicates if the ribbon layer is to be included. It defaults to TRUE.

include_rug Flag that indicates if the Rug layer is to be included. It defaults to TRUE. In the
plot, the top side shows the frequency the event occurring, and the bottom the
frequency of the event not occurring.

cal_plot_breaks 25

include_points Flag that indicates if the point layer is to be included.

event_level single string. Either "first" or "second" to specify which level of truth to consider
as the "event". Defaults to "auto", which allows the function decide which one
to use based on the type of model (binary, multi-class or linear)

... Additional arguments passed to the tune_results object.

.by The column identifier for the grouping variable. This should be a single un-
quoted column name that selects a qualitative variable for grouping. Default to
NULL. When .by = NULL no grouping will take place.

Value

A ggplot object.

See Also

https://www.tidymodels.org/learn/models/calibration/, cal_plot_windowed(), cal_plot_logistic()

cal_plot_logistic(), cal_plot_windowed()

Examples

library(ggplot2)
library(dplyr)

cal_plot_breaks(
segment_logistic,
Class,
.pred_good

)

cal_plot_logistic(
segment_logistic,
Class,
.pred_good

)

cal_plot_windowed(
segment_logistic,
Class,
.pred_good

)

The functions support dplyr groups

model <- glm(Class ~ .pred_good, segment_logistic, family = "binomial")

preds <- predict(model, segment_logistic, type = "response")

gl <- segment_logistic |>
mutate(.pred_good = 1 - preds, source = "glm")

https://www.tidymodels.org/learn/models/calibration/

26 cal_plot_logistic

combined <- bind_rows(mutate(segment_logistic, source = "original"), gl)

combined |>
cal_plot_logistic(Class, .pred_good, .by = source)

The grouping can be faceted in ggplot2
combined |>

cal_plot_logistic(Class, .pred_good, .by = source) +
facet_wrap(~source) +
theme(legend.position = "")

cal_plot_logistic Probability calibration plots via logistic regression

Description

A logistic regression model is fit where the original outcome data are used as the outcome and the
estimated class probabilities for one class are used as the predictor. If smooth = TRUE, a generalized
additive model is fit using mgcv::gam() and the default smoothing method. Otherwise, a simple
logistic regression is used.

If the predictions are well calibrated, the fitted curve should align with the diagonal line. Confidence
intervals for the fitted line are also shown.

Usage

cal_plot_logistic(
.data,
truth = NULL,
estimate = dplyr::starts_with(".pred"),
conf_level = 0.9,
smooth = TRUE,
include_rug = TRUE,
include_ribbon = TRUE,
event_level = c("auto", "first", "second"),
...

)

S3 method for class 'data.frame'
cal_plot_logistic(
.data,
truth = NULL,
estimate = dplyr::starts_with(".pred"),
conf_level = 0.9,
smooth = TRUE,
include_rug = TRUE,
include_ribbon = TRUE,
event_level = c("auto", "first", "second"),

cal_plot_logistic 27

...,

.by = NULL
)

S3 method for class 'tune_results'
cal_plot_logistic(
.data,
truth = NULL,
estimate = dplyr::starts_with(".pred"),
conf_level = 0.9,
smooth = TRUE,
include_rug = TRUE,
include_ribbon = TRUE,
event_level = c("auto", "first", "second"),
...

)

S3 method for class 'grouped_df'
cal_plot_logistic(
.data,
truth = NULL,
estimate = NULL,
conf_level = 0.9,
smooth = TRUE,
include_rug = TRUE,
include_ribbon = TRUE,
event_level = c("auto", "first", "second"),
...

)

Arguments

.data An ungrouped data frame object containing predictions and probability columns.

truth The column identifier for the true class results (that is a factor). This should be
an unquoted column name.

estimate A vector of column identifiers, or one of dplyr selector functions to choose
which variables contains the class probabilities. It defaults to the prefix used by
tidymodels (.pred_). The order of the identifiers will be considered the same as
the order of the levels of the truth variable.

conf_level Confidence level to use in the visualization. It defaults to 0.9.

smooth A logical for using a generalized additive model with smooth terms for the pre-
dictor via mgcv::gam() and mgcv::s().

include_rug Flag that indicates if the Rug layer is to be included. It defaults to TRUE. In the
plot, the top side shows the frequency the event occurring, and the bottom the
frequency of the event not occurring.

include_ribbon Flag that indicates if the ribbon layer is to be included. It defaults to TRUE.

28 cal_plot_regression

event_level single string. Either "first" or "second" to specify which level of truth to consider
as the "event". Defaults to "auto", which allows the function decide which one
to use based on the type of model (binary, multi-class or linear)

... Additional arguments passed to the tune_results object.

.by The column identifier for the grouping variable. This should be a single un-
quoted column name that selects a qualitative variable for grouping. Default to
NULL. When .by = NULL no grouping will take place.

Value

A ggplot object.

See Also

https://www.tidymodels.org/learn/models/calibration/, cal_plot_windowed(), cal_plot_breaks()

cal_plot_breaks(), cal_plot_windowed()

Examples

library(ggplot2)
library(dplyr)

cal_plot_logistic(
segment_logistic,
Class,
.pred_good

)

cal_plot_logistic(
segment_logistic,
Class,
.pred_good,
smooth = FALSE

)

cal_plot_regression Regression calibration plots

Description

A scatter plot of the observed and predicted values is computed where the axes are the same. When
smooth = TRUE, a generalized additive model fit is shown. If the predictions are well calibrated, the
fitted curve should align with the diagonal line.

https://www.tidymodels.org/learn/models/calibration/

cal_plot_regression 29

Usage

cal_plot_regression(.data, truth = NULL, estimate = NULL, smooth = TRUE, ...)

S3 method for class 'data.frame'
cal_plot_regression(
.data,
truth = NULL,
estimate = NULL,
smooth = TRUE,
...,
.by = NULL

)

S3 method for class 'tune_results'
cal_plot_regression(.data, truth = NULL, estimate = NULL, smooth = TRUE, ...)

S3 method for class 'grouped_df'
cal_plot_regression(.data, truth = NULL, estimate = NULL, smooth = TRUE, ...)

Arguments

.data An ungrouped data frame object containing a prediction column.
truth The column identifier for the true results (numeric). This should be an unquoted

column name.
estimate The column identifier for the predictions. This should be an unquoted column

name
smooth A logical: should a smoother curve be added.
... Additional arguments passed to ggplot2::geom_point().
.by The column identifier for the grouping variable. This should be a single un-

quoted column name that selects a qualitative variable for grouping. Default to
NULL. When .by = NULL no grouping will take place.

Value

A ggplot object.

Examples

cal_plot_regression(boosting_predictions_oob, outcome, .pred)

cal_plot_regression(boosting_predictions_oob, outcome, .pred,
alpha = 1 / 6, cex = 3, smooth = FALSE

)

cal_plot_regression(boosting_predictions_oob, outcome, .pred,
.by = id,
alpha = 1 / 6, cex = 3, smooth = FALSE

)

30 cal_plot_windowed

cal_plot_windowed Probability calibration plots via moving windows

Description

A plot is created to assess whether the observed rate of the event is about the sample as the predicted
probability of the event from some model. This is similar to cal_plot_breaks(), except that the
bins are overlapping.

A sequence of bins are created from zero to one. For each bin, the data whose predicted probability
falls within the range of the bin is used to calculate the observed event rate (along with confidence
intervals for the event rate).

If the predictions are well calibrated, the fitted curve should align with the diagonal line.

Usage

cal_plot_windowed(
.data,
truth = NULL,
estimate = dplyr::starts_with(".pred"),
window_size = 0.1,
step_size = window_size/2,
conf_level = 0.9,
include_ribbon = TRUE,
include_rug = TRUE,
include_points = TRUE,
event_level = c("auto", "first", "second"),
...

)

S3 method for class 'data.frame'
cal_plot_windowed(
.data,
truth = NULL,
estimate = dplyr::starts_with(".pred"),
window_size = 0.1,
step_size = window_size/2,
conf_level = 0.9,
include_ribbon = TRUE,
include_rug = TRUE,
include_points = TRUE,
event_level = c("auto", "first", "second"),
...,
.by = NULL

)

S3 method for class 'tune_results'

cal_plot_windowed 31

cal_plot_windowed(
.data,
truth = NULL,
estimate = dplyr::starts_with(".pred"),
window_size = 0.1,
step_size = window_size/2,
conf_level = 0.9,
include_ribbon = TRUE,
include_rug = TRUE,
include_points = TRUE,
event_level = c("auto", "first", "second"),
...

)

S3 method for class 'grouped_df'
cal_plot_windowed(
.data,
truth = NULL,
estimate = NULL,
window_size = 0.1,
step_size = window_size/2,
conf_level = 0.9,
include_ribbon = TRUE,
include_rug = TRUE,
include_points = TRUE,
event_level = c("auto", "first", "second"),
...

)

Arguments

.data An ungrouped data frame object containing predictions and probability columns.

truth The column identifier for the true class results (that is a factor). This should be
an unquoted column name.

estimate A vector of column identifiers, or one of dplyr selector functions to choose
which variables contains the class probabilities. It defaults to the prefix used by
tidymodels (.pred_). The order of the identifiers will be considered the same as
the order of the levels of the truth variable.

window_size The size of segments. Used for the windowed probability calculations. It de-
faults to 10% of segments.

step_size The gap between segments. Used for the windowed probability calculations. It
defaults to half the size of window_size

conf_level Confidence level to use in the visualization. It defaults to 0.9.

include_ribbon Flag that indicates if the ribbon layer is to be included. It defaults to TRUE.

include_rug Flag that indicates if the Rug layer is to be included. It defaults to TRUE. In the
plot, the top side shows the frequency the event occurring, and the bottom the
frequency of the event not occurring.

32 cal_validate_beta

include_points Flag that indicates if the point layer is to be included.

event_level single string. Either "first" or "second" to specify which level of truth to consider
as the "event". Defaults to "auto", which allows the function decide which one
to use based on the type of model (binary, multi-class or linear)

... Additional arguments passed to the tune_results object.

.by The column identifier for the grouping variable. This should be a single un-
quoted column name that selects a qualitative variable for grouping. Default to
NULL. When .by = NULL no grouping will take place.

Value

A ggplot object.

See Also

https://www.tidymodels.org/learn/models/calibration/, cal_plot_logistic(), cal_plot_breaks()

cal_plot_breaks(), cal_plot_logistic()

Examples

library(ggplot2)
library(dplyr)

cal_plot_windowed(
segment_logistic,
Class,
.pred_good

)

More breaks
cal_plot_windowed(

segment_logistic,
Class,
.pred_good,
window_size = 0.05

)

cal_validate_beta Measure performance with and without using Beta calibration

Description

This function uses resampling to measure the effect of calibrating predicted values.

https://www.tidymodels.org/learn/models/calibration/

cal_validate_beta 33

Usage

cal_validate_beta(
.data,
truth = NULL,
estimate = dplyr::starts_with(".pred_"),
metrics = NULL,
save_pred = FALSE,
...

)

S3 method for class 'resample_results'
cal_validate_beta(
.data,
truth = NULL,
estimate = dplyr::starts_with(".pred_"),
metrics = NULL,
save_pred = FALSE,
...

)

S3 method for class 'rset'
cal_validate_beta(
.data,
truth = NULL,
estimate = dplyr::starts_with(".pred_"),
metrics = NULL,
save_pred = FALSE,
...

)

S3 method for class 'tune_results'
cal_validate_beta(
.data,
truth = NULL,
estimate = NULL,
metrics = NULL,
save_pred = FALSE,
...

)

Arguments

.data An rset object or the results of tune::fit_resamples() with a .predictions
column.

truth The column identifier for the true class results (that is a factor). This should be
an unquoted column name.

estimate A vector of column identifiers, or one of dplyr selector functions to choose
which variables contains the class probabilities. It defaults to the prefix used by

34 cal_validate_beta

tidymodels (.pred_). The order of the identifiers will be considered the same as
the order of the levels of the truth variable.

metrics A set of metrics passed created via yardstick::metric_set()

save_pred Indicates whether to a column of post-calibration predictions.

... Options to pass to cal_estimate_beta(), such as the shape_params and location_params
arguments.

Details

These functions are designed to calculate performance with and without calibration. They use
resampling to measure out-of-sample effectiveness. There are two ways to pass the data in:

• If you have a data frame of predictions, an rset object can be created via rsample functions.
See the example below.

• If you have already made a resampling object from the original data and used it with tune::fit_resamples(),
you can pass that object to the calibration function and it will use the same resampling scheme.
If a different resampling scheme should be used, run tune::collect_predictions() on the
object and use the process in the previous bullet point.

Please note that these functions do not apply to tune_result objects. The notion of "validation"
implies that the tuning parameter selection has been resolved.

collect_predictions() can be used to aggregate the metrics for analysis.

Value

The original object with a .metrics_cal column and, optionally, an additional .predictions_cal
column. The class cal_rset is also added.

Performance Metrics

By default, the average of the Brier scores is returned. Any appropriate yardstick::metric_set()
can be used. The validation function compares the average of the metrics before, and after the
calibration.

See Also

https://www.tidymodels.org/learn/models/calibration/, cal_estimate_beta()

Examples

library(dplyr)

if (rlang::is_installed("betacal")) {
segment_logistic |>
rsample::vfold_cv() |>
cal_validate_beta(Class)

}

https://www.tidymodels.org/learn/models/calibration/

cal_validate_isotonic 35

cal_validate_isotonic Measure performance with and without using isotonic regression cal-
ibration

Description

This function uses resampling to measure the effect of calibrating predicted values.

Usage

cal_validate_isotonic(
.data,
truth = NULL,
estimate = dplyr::starts_with(".pred"),
metrics = NULL,
save_pred = FALSE,
...

)

S3 method for class 'resample_results'
cal_validate_isotonic(
.data,
truth = NULL,
estimate = dplyr::starts_with(".pred"),
metrics = NULL,
save_pred = FALSE,
...

)

S3 method for class 'rset'
cal_validate_isotonic(
.data,
truth = NULL,
estimate = dplyr::starts_with(".pred"),
metrics = NULL,
save_pred = FALSE,
...

)

S3 method for class 'tune_results'
cal_validate_isotonic(
.data,
truth = NULL,
estimate = NULL,
metrics = NULL,
save_pred = FALSE,
...

36 cal_validate_isotonic

)

Arguments

.data An rset object or the results of tune::fit_resamples() with a .predictions
column.

truth The column identifier for the true class results (that is a factor). This should be
an unquoted column name.

estimate A vector of column identifiers, or one of dplyr selector functions to choose
which variables contains the class probabilities. It defaults to the prefix used by
tidymodels (.pred_). The order of the identifiers will be considered the same as
the order of the levels of the truth variable.

metrics A set of metrics passed created via yardstick::metric_set()

save_pred Indicates whether to a column of post-calibration predictions.

... Options to pass to cal_estimate_logistic(), such as the smooth argument.

Details

These functions are designed to calculate performance with and without calibration. They use
resampling to measure out-of-sample effectiveness. There are two ways to pass the data in:

• If you have a data frame of predictions, an rset object can be created via rsample functions.
See the example below.

• If you have already made a resampling object from the original data and used it with tune::fit_resamples(),
you can pass that object to the calibration function and it will use the same resampling scheme.
If a different resampling scheme should be used, run tune::collect_predictions() on the
object and use the process in the previous bullet point.

Please note that these functions do not apply to tune_result objects. The notion of "validation"
implies that the tuning parameter selection has been resolved.

collect_predictions() can be used to aggregate the metrics for analysis.

Value

The original object with a .metrics_cal column and, optionally, an additional .predictions_cal
column. The class cal_rset is also added.

Performance Metrics

By default, the average of the Brier scores (classification calibration) or the root mean squared error
(regression) is returned. Any appropriate yardstick::metric_set() can be used. The validation
function compares the average of the metrics before, and after the calibration.

See Also

https://www.tidymodels.org/learn/models/calibration/, cal_estimate_isotonic()

https://www.tidymodels.org/learn/models/calibration/

cal_validate_isotonic_boot 37

Examples

library(dplyr)

segment_logistic |>
rsample::vfold_cv() |>
cal_validate_isotonic(Class)

cal_validate_isotonic_boot

Measure performance with and without using bagged isotonic regres-
sion calibration

Description

This function uses resampling to measure the effect of calibrating predicted values.

Usage

cal_validate_isotonic_boot(
.data,
truth = NULL,
estimate = dplyr::starts_with(".pred"),
metrics = NULL,
save_pred = FALSE,
...

)

S3 method for class 'resample_results'
cal_validate_isotonic_boot(
.data,
truth = NULL,
estimate = dplyr::starts_with(".pred"),
metrics = NULL,
save_pred = FALSE,
...

)

S3 method for class 'rset'
cal_validate_isotonic_boot(
.data,
truth = NULL,
estimate = dplyr::starts_with(".pred"),
metrics = NULL,
save_pred = FALSE,
...

)

38 cal_validate_isotonic_boot

S3 method for class 'tune_results'
cal_validate_isotonic_boot(
.data,
truth = NULL,
estimate = NULL,
metrics = NULL,
save_pred = FALSE,
...

)

Arguments

.data An rset object or the results of tune::fit_resamples() with a .predictions
column.

truth The column identifier for the true class results (that is a factor). This should be
an unquoted column name.

estimate A vector of column identifiers, or one of dplyr selector functions to choose
which variables contains the class probabilities. It defaults to the prefix used by
tidymodels (.pred_). The order of the identifiers will be considered the same as
the order of the levels of the truth variable.

metrics A set of metrics passed created via yardstick::metric_set()

save_pred Indicates whether to a column of post-calibration predictions.

... Options to pass to cal_estimate_isotonic_boot(), such as the times argu-
ment.

Details

These functions are designed to calculate performance with and without calibration. They use
resampling to measure out-of-sample effectiveness. There are two ways to pass the data in:

• If you have a data frame of predictions, an rset object can be created via rsample functions.
See the example below.

• If you have already made a resampling object from the original data and used it with tune::fit_resamples(),
you can pass that object to the calibration function and it will use the same resampling scheme.
If a different resampling scheme should be used, run tune::collect_predictions() on the
object and use the process in the previous bullet point.

Please note that these functions do not apply to tune_result objects. The notion of "validation"
implies that the tuning parameter selection has been resolved.

collect_predictions() can be used to aggregate the metrics for analysis.

Value

The original object with a .metrics_cal column and, optionally, an additional .predictions_cal
column. The class cal_rset is also added.

cal_validate_linear 39

Performance Metrics

By default, the average of the Brier scores (classification calibration) or the root mean squared error
(regression) is returned. Any appropriate yardstick::metric_set() can be used. The validation
function compares the average of the metrics before, and after the calibration.

See Also

https://www.tidymodels.org/learn/models/calibration/, cal_estimate_isotonic_boot()

Examples

library(dplyr)

segment_logistic |>
rsample::vfold_cv() |>
cal_validate_isotonic_boot(Class)

cal_validate_linear Measure performance with and without using linear regression cali-
bration

Description

Measure performance with and without using linear regression calibration

Usage

cal_validate_linear(
.data,
truth = NULL,
estimate = dplyr::starts_with(".pred"),
metrics = NULL,
save_pred = FALSE,
...

)

S3 method for class 'resample_results'
cal_validate_linear(
.data,
truth = NULL,
estimate = dplyr::starts_with(".pred"),
metrics = NULL,
save_pred = FALSE,
...

)

https://www.tidymodels.org/learn/models/calibration/

40 cal_validate_linear

S3 method for class 'rset'
cal_validate_linear(
.data,
truth = NULL,
estimate = dplyr::starts_with(".pred"),
metrics = NULL,
save_pred = FALSE,
...

)

Arguments

.data An rset object or the results of tune::fit_resamples() with a .predictions
column.

truth The column identifier for the true class results (that is a factor). This should be
an unquoted column name.

estimate A vector of column identifiers, or one of dplyr selector functions to choose
which variables contains the class probabilities. It defaults to the prefix used by
tidymodels (.pred_). The order of the identifiers will be considered the same as
the order of the levels of the truth variable.

metrics A set of metrics passed created via yardstick::metric_set()

save_pred Indicates whether to a column of post-calibration predictions.
... Options to pass to cal_estimate_logistic(), such as the smooth argument.

Performance Metrics

By default, the average of the root mean square error (RMSE) is returned. Any appropriate yardstick::metric_set()
can be used. The validation function compares the average of the metrics before, and after the cali-
bration.

See Also

https://www.tidymodels.org/learn/models/calibration/, cal_estimate_linear()

Examples

library(dplyr)
library(yardstick)
library(rsample)

head(boosting_predictions_test)

reg_stats <- metric_set(rmse, ccc)

set.seed(828)
boosting_predictions_oob |>

Resample with 10-fold cross-validation
vfold_cv() |>
cal_validate_linear(truth = outcome, smooth = FALSE, metrics = reg_stats)

https://www.tidymodels.org/learn/models/calibration/

cal_validate_logistic 41

cal_validate_logistic Measure performance with and without using logistic calibration

Description

This function uses resampling to measure the effect of calibrating predicted values.

Usage

cal_validate_logistic(
.data,
truth = NULL,
estimate = dplyr::starts_with(".pred_"),
metrics = NULL,
save_pred = FALSE,
...

)

S3 method for class 'resample_results'
cal_validate_logistic(
.data,
truth = NULL,
estimate = dplyr::starts_with(".pred_"),
metrics = NULL,
save_pred = FALSE,
...

)

S3 method for class 'rset'
cal_validate_logistic(
.data,
truth = NULL,
estimate = dplyr::starts_with(".pred_"),
metrics = NULL,
save_pred = FALSE,
...

)

S3 method for class 'tune_results'
cal_validate_logistic(
.data,
truth = NULL,
estimate = NULL,
metrics = NULL,
save_pred = FALSE,
...

)

42 cal_validate_logistic

Arguments

.data An rset object or the results of tune::fit_resamples() with a .predictions
column.

truth The column identifier for the true class results (that is a factor). This should be
an unquoted column name.

estimate A vector of column identifiers, or one of dplyr selector functions to choose
which variables contains the class probabilities. It defaults to the prefix used by
tidymodels (.pred_). The order of the identifiers will be considered the same as
the order of the levels of the truth variable.

metrics A set of metrics passed created via yardstick::metric_set()

save_pred Indicates whether to a column of post-calibration predictions.

... Options to pass to cal_estimate_logistic(), such as the smooth argument.

Details

These functions are designed to calculate performance with and without calibration. They use
resampling to measure out-of-sample effectiveness. There are two ways to pass the data in:

• If you have a data frame of predictions, an rset object can be created via rsample functions.
See the example below.

• If you have already made a resampling object from the original data and used it with tune::fit_resamples(),
you can pass that object to the calibration function and it will use the same resampling scheme.
If a different resampling scheme should be used, run tune::collect_predictions() on the
object and use the process in the previous bullet point.

Please note that these functions do not apply to tune_result objects. The notion of "validation"
implies that the tuning parameter selection has been resolved.

collect_predictions() can be used to aggregate the metrics for analysis.

Value

The original object with a .metrics_cal column and, optionally, an additional .predictions_cal
column. The class cal_rset is also added.

Performance Metrics

By default, the average of the Brier scores is returned. Any appropriate yardstick::metric_set()
can be used. The validation function compares the average of the metrics before, and after the
calibration.

See Also

https://www.tidymodels.org/learn/models/calibration/, cal_estimate_logistic()

https://www.tidymodels.org/learn/models/calibration/

cal_validate_multinomial 43

Examples

library(dplyr)

classification example

segment_logistic |>
rsample::vfold_cv() |>
cal_validate_logistic(Class)

cal_validate_multinomial

Measure performance with and without using multinomial calibration

Description

This function uses resampling to measure the effect of calibrating predicted values.

Usage

cal_validate_multinomial(
.data,
truth = NULL,
estimate = dplyr::starts_with(".pred_"),
metrics = NULL,
save_pred = FALSE,
...

)

S3 method for class 'resample_results'
cal_validate_multinomial(
.data,
truth = NULL,
estimate = dplyr::starts_with(".pred_"),
metrics = NULL,
save_pred = FALSE,
...

)

S3 method for class 'rset'
cal_validate_multinomial(
.data,
truth = NULL,
estimate = dplyr::starts_with(".pred_"),
metrics = NULL,
save_pred = FALSE,

44 cal_validate_multinomial

...
)

S3 method for class 'tune_results'
cal_validate_multinomial(
.data,
truth = NULL,
estimate = NULL,
metrics = NULL,
save_pred = FALSE,
...

)

Arguments

.data An rset object or the results of tune::fit_resamples() with a .predictions
column.

truth The column identifier for the true class results (that is a factor). This should be
an unquoted column name.

estimate A vector of column identifiers, or one of dplyr selector functions to choose
which variables contains the class probabilities. It defaults to the prefix used by
tidymodels (.pred_). The order of the identifiers will be considered the same as
the order of the levels of the truth variable.

metrics A set of metrics passed created via yardstick::metric_set()

save_pred Indicates whether to a column of post-calibration predictions.

... Options to pass to cal_estimate_logistic(), such as the smooth argument.

Details

These functions are designed to calculate performance with and without calibration. They use
resampling to measure out-of-sample effectiveness. There are two ways to pass the data in:

• If you have a data frame of predictions, an rset object can be created via rsample functions.
See the example below.

• If you have already made a resampling object from the original data and used it with tune::fit_resamples(),
you can pass that object to the calibration function and it will use the same resampling scheme.
If a different resampling scheme should be used, run tune::collect_predictions() on the
object and use the process in the previous bullet point.

Please note that these functions do not apply to tune_result objects. The notion of "validation"
implies that the tuning parameter selection has been resolved.

collect_predictions() can be used to aggregate the metrics for analysis.

Value

The original object with a .metrics_cal column and, optionally, an additional .predictions_cal
column. The class cal_rset is also added.

cal_validate_none 45

Performance Metrics

By default, the average of the Brier scores is returned. Any appropriate yardstick::metric_set()
can be used. The validation function compares the average of the metrics before, and after the
calibration.

See Also

cal_apply(), cal_estimate_multinomial()

Examples

library(dplyr)

species_probs |>
rsample::vfold_cv() |>
cal_validate_multinomial(Species)

cal_validate_none Measure performance without using calibration

Description

This function uses resampling to measure the effect of calibrating predicted values.

Usage

cal_validate_none(
.data,
truth = NULL,
estimate = dplyr::starts_with(".pred_"),
metrics = NULL,
save_pred = FALSE,
...

)

S3 method for class 'resample_results'
cal_validate_none(
.data,
truth = NULL,
estimate = dplyr::starts_with(".pred_"),
metrics = NULL,
save_pred = FALSE,
...

)

S3 method for class 'rset'

46 cal_validate_none

cal_validate_none(
.data,
truth = NULL,
estimate = dplyr::starts_with(".pred_"),
metrics = NULL,
save_pred = FALSE,
...

)

S3 method for class 'tune_results'
cal_validate_none(
.data,
truth = NULL,
estimate = NULL,
metrics = NULL,
save_pred = FALSE,
...

)

Arguments

.data An rset object or the results of tune::fit_resamples() with a .predictions
column.

truth The column identifier for the true class results (that is a factor). This should be
an unquoted column name.

estimate A vector of column identifiers, or one of dplyr selector functions to choose
which variables contains the class probabilities. It defaults to the prefix used by
tidymodels (.pred_). The order of the identifiers will be considered the same as
the order of the levels of the truth variable.

metrics A set of metrics passed created via yardstick::metric_set()

save_pred Indicates whether to a column of post-calibration predictions.

... Options to pass to cal_estimate_logistic(), such as the smooth argument.

Details

This function exists to have a complete API for all calibration methods. It returns the same results
"with and without calibration" which, in this case, is always without calibration.

There are two ways to pass the data in:

• If you have a data frame of predictions, an rset object can be created via rsample functions.
See the example below.

• If you have already made a resampling object from the original data and used it with tune::fit_resamples(),
you can pass that object to the calibration function and it will use the same resampling scheme.
If a different resampling scheme should be used, run tune::collect_predictions() on the
object and use the process in the previous bullet point.

Please note that these functions do not apply to tune_result objects. The notion of "validation"
implies that the tuning parameter selection has been resolved.

class_pred 47

collect_predictions() can be used to aggregate the metrics for analysis.

Value

The original object with a .metrics_cal column and, optionally, an additional .predictions_cal
column. The class cal_rset is also added.

Performance Metrics

By default, the average of the Brier scores is returned. Any appropriate yardstick::metric_set()
can be used. The validation function compares the average of the metrics before, and after the
calibration.

See Also

cal_apply(), cal_estimate_none()

Examples

library(dplyr)

species_probs |>
rsample::vfold_cv() |>
cal_validate_none(Species) |>
collect_metrics()

class_pred Create a class prediction object

Description

class_pred() creates a class_pred object from a factor or ordered factor. You can optionally
specify values of the factor to be set as equivocal.

Usage

class_pred(x = factor(), which = integer(), equivocal = "[EQ]")

Arguments

x A factor or ordered factor.

which An integer vector specifying the locations of x to declare as equivocal.

equivocal A single character specifying the equivocal label used when printing.

Details

Equivocal values are those that you feel unsure about, and would like to exclude from performance
calculations or other metrics.

48 collect_metrics.cal_rset

Examples

x <- factor(c("Yes", "No", "Yes", "Yes"))

Create a class_pred object from a factor
class_pred(x)

Say you aren't sure about that 2nd "Yes" value. You could mark it as
equivocal.
class_pred(x, which = 3)

Maybe you want a different equivocal label
class_pred(x, which = 3, equivocal = "eq_value")

collect_metrics.cal_rset

Obtain and format metrics produced by calibration validation

Description

Obtain and format metrics produced by calibration validation

Usage

S3 method for class 'cal_rset'
collect_metrics(x, summarize = TRUE, ...)

Arguments

x An object produced by one of the validation function (or class cal_rset).

summarize A logical; should metrics be summarized over resamples (TRUE) or return the
values for each individual resample. See tune::collect_metrics() for more
details.

... Not currently used.

Value

A tibble

collect_predictions.cal_rset 49

collect_predictions.cal_rset

Obtain and format predictions produced by calibration validation

Description

Obtain and format predictions produced by calibration validation

Usage

S3 method for class 'cal_rset'
collect_predictions(x, summarize = TRUE, ...)

Arguments

x An object produced by one of the validation function (or class cal_rset).

summarize A logical; should predictions be summarized over resamples (TRUE) or return
the values for each individual resample. See tune::collect_predictions()
for more details.

... Not currently used.

Value

A tibble

control_conformal_full

Controlling the numeric details for conformal inference

Description

Controlling the numeric details for conformal inference

Usage

control_conformal_full(
method = "iterative",
trial_points = 100,
var_multiplier = 10,
max_iter = 100,
tolerance = .Machine$double.eps^0.25,
progress = FALSE,
required_pkgs = character(0),
seed = sample.int(10^5, 1)

)

50 int_conformal_cv

Arguments

method The method for computing the intervals. The options are 'search' (using)
stats::uniroot(), and 'grid'.

trial_points When method = "grid", how many points should be evaluated?

var_multiplier A multiplier for the variance model that determines the possible range of the
bounds.

max_iter When method = "iterative", the maximum number of iterations.

tolerance Tolerance value passed to all.equal() to determine convergence during the
search computations.

progress Should a progress bar be used to track execution?

required_pkgs An optional character string for which packages are required.

seed A single integer used to control randomness when models are (re)fit.

Value

A list object with the options given by the user.

int_conformal_cv Prediction intervals via conformal inference CV+

Description

Nonparametric prediction intervals can be computed for fitted regression workflow objects using
the CV+ conformal inference method described by Barber at al (2018).

Usage

int_conformal_cv(object, ...)

Default S3 method:
int_conformal_cv(object, ...)

S3 method for class 'resample_results'
int_conformal_cv(object, ...)

S3 method for class 'tune_results'
int_conformal_cv(object, parameters, ...)

Arguments

object An object from a tidymodels resampling or tuning function such as tune::fit_resamples(),
tune::tune_grid(), or similar. The object should have been produced in a way
that the .extracts column contains the fitted workflow for each resample (see
the Details below).

int_conformal_cv 51

... Not currently used.

parameters An tibble of tuning parameter values that can be used to filter the predicted val-
ues before processing. This tibble should select a single set of hyper-parameter
values from the tuning results. This is only required when a tuning object is
passed to object.

Details

This function implements the CV+ method found in Section 3 of Barber at al (2018). It uses
the resampled model fits and their associated holdout residuals to make prediction intervals for
regression models.

This function prepares the objects for the computations. The predict() method computes the
intervals for new data.

This method was developed for V-fold cross-validation (no repeats). Interval coverage is unknown
for any other resampling methods. The function will not stop the computations for other types of
resamples, but we have no way of knowing whether the results are appropriate.

Value

An object of class "int_conformal_cv" containing the information to create intervals. The predict()
method is used to produce the intervals.

References

Rina Foygel Barber, Emmanuel J. Candès, Aaditya Ramdas, Ryan J. Tibshirani "Predictive infer-
ence with the jackknife+," The Annals of Statistics, 49(1), 486-507, 2021

See Also

predict.int_conformal_cv()

Examples

library(workflows)
library(dplyr)
library(parsnip)
library(rsample)
library(tune)
library(modeldata)

set.seed(2)
sim_train <- sim_regression(200)
sim_new <- sim_regression(5) |> select(-outcome)

sim_rs <- vfold_cv(sim_train)

We'll use a neural network model
mlp_spec <-

mlp(hidden_units = 5, penalty = 0.01) |>
set_mode("regression")

52 int_conformal_full

Use a control function that saves the predictions as well as the models.
Consider using the butcher package in the extracts function to have smaller
object sizes

ctrl <- control_resamples(save_pred = TRUE, extract = I)

set.seed(3)
nnet_res <-

mlp_spec |>
fit_resamples(outcome ~ ., resamples = sim_rs, control = ctrl)

nnet_int_obj <- int_conformal_cv(nnet_res)
nnet_int_obj

predict(nnet_int_obj, sim_new)

int_conformal_full Prediction intervals via conformal inference

Description

Nonparametric prediction intervals can be computed for fitted workflow objects using the conformal
inference method described by Lei at al (2018).

Usage

int_conformal_full(object, ...)

Default S3 method:
int_conformal_full(object, ...)

S3 method for class 'workflow'
int_conformal_full(object, train_data, ..., control = control_conformal_full())

Arguments

object A fitted workflows::workflow() object.

... Not currently used.

train_data A data frame with the original predictor data used to create the fitted workflow
(predictors and outcomes). If the workflow does not contain these values, pass
them here. If the workflow used a recipe, this should be the data that were inputs
to the recipe (and not the product of a recipe).

control A control object from control_conformal_full() with the numeric minutiae.

int_conformal_full 53

Details

This function implements what is usually called "full conformal inference" (see Algorithm 1 in Lei
et al (2018)) since it uses the entire training set to compute the intervals.

This function prepares the objects for the computations. The predict() method computes the
intervals for new data.

For a given new_data observation, the predictors are appended to the original training set. Then,
different "trial" values of the outcome are substituted in for that observation’s outcome and the
model is re-fit. From each model, the residual associated with the trial value is compared to a
quantile of the distribution of the other residuals. Usually the absolute values of the residuals are
used. Once the residual of a trial value exceeds the distributional quantile, the value is one of the
bounds.

The literature proposed using a grid search of trial values to find the two points that correspond to the
prediction intervals. To use this approach, set method = "grid" in control_conformal_full().
However, the default method "search uses two different one-dimensional iterative searches on
either side of the predicted value to find values that correspond to the prediction intervals.

For medium to large data sets, the iterative search method is likely to generate slightly smaller
intervals. For small training sets, grid search is more likely to have somewhat smaller intervals (and
will be more stable). Otherwise, the iterative search method is more precise and several folds faster.

To determine a range of possible values of the intervals, used by both methods, the initial set of
training set residuals are modeled using a Gamma generalized linear model with a log link (see the
reference by Aitkin below). For a new sample, the absolute size of the residual is estimated and a
multiple of this value is computed as an initial guess of the search boundaries.

Speed:
The time it takes to compute the intervals depends on the training set size, search parameters (i.e.,
convergence criterion, number of iterations), the grid size, and the number of worker processes
that are used. For the last item, the computations can be parallelized using the future and furrr
packages.
To use parallelism, the future::plan() function can be invoked to create a parallel backend. For
example, let’s make an initial workflow:

library(tidymodels)
library(probably)
library(future)

tidymodels_prefer()

Make a fitted workflow from some simulated data:
set.seed(121)
train_dat <- sim_regression(200)
new_dat <- sim_regression(5) |> select(-outcome)

lm_fit <-
workflow() |>
add_model(linear_reg()) |>
add_formula(outcome ~ .) |>
fit(data = train_dat)

54 int_conformal_full

Create the object to be used to make prediction intervals
lm_conform <- int_conformal_full(lm_fit, train_dat)

We’ll use a "multisession" parallel processing plan to compute the intervals for the five new
samples in parallel:

plan("multisession")

This is run in parallel:
predict(lm_conform, new_dat)

Warning in serialize(data, node$con, xdr = FALSE): 'package:workflowsets' may
not be available when loading
Warning in serialize(data, node$con, xdr = FALSE): 'package:workflowsets' may
not be available when loading
Warning in serialize(data, node$con, xdr = FALSE): 'package:workflowsets' may
not be available when loading
Warning in serialize(data, node$con, xdr = FALSE): 'package:workflowsets' may
not be available when loading
Warning in serialize(data, node$con, xdr = FALSE): 'package:workflowsets' may
not be available when loading
Warning in serialize(data, node$con, xdr = FALSE): 'package:workflowsets' may
not be available when loading
Warning in serialize(data, node$con, xdr = FALSE): 'package:workflowsets' may
not be available when loading
Warning in serialize(data, node$con, xdr = FALSE): 'package:workflowsets' may
not be available when loading
Warning in serialize(data, node$con, xdr = FALSE): 'package:workflowsets' may
not be available when loading
Warning in serialize(data, node$con, xdr = FALSE): 'package:workflowsets' may
not be available when loading

A tibble: 5 x 2
.pred_lower .pred_upper
<dbl> <dbl>
1 -17.9 59.6
2 -33.7 51.1
3 -30.6 48.2
4 -17.3 59.6
5 -23.3 55.2

Using simulations, there are slightly sub-linear speed-ups when using parallel processing to com-
pute the row-wise intervals.
In comparison with parametric intervals:

predict(lm_fit, new_dat, type = "pred_int")

A tibble: 5 x 2
.pred_lower .pred_upper
<dbl> <dbl>

int_conformal_quantile 55

1 -19.2 59.1
2 -31.8 49.7
3 -31.0 47.6
4 -17.8 60.1
5 -23.6 54.3

Value

An object of class "int_conformal_full" containing the information to create intervals (which
includes the training set data). The predict() method is used to produce the intervals.

References

Jing Lei, Max G’Sell, Alessandro Rinaldo, Ryan J. Tibshirani and Larry Wasserman (2018) Distribution-
Free Predictive Inference for Regression, Journal of the American Statistical Association, 113:523,
1094-1111

Murray Aitkin, Modelling Variance Heterogeneity in Normal Regression Using GLIM, Journal
of the Royal Statistical Society Series C: Applied Statistics, Volume 36, Issue 3, November 1987,
Pages 332–339.

See Also

predict.int_conformal_full()

int_conformal_quantile

Prediction intervals via conformal inference and quantile regression

Description

Nonparametric prediction intervals can be computed for fitted regression workflow objects using
the split conformal inference method described by Romano et al (2019). To compute quantiles, this
function uses Quantile Random Forests instead of classic quantile regression.

Usage

int_conformal_quantile(object, ...)

S3 method for class 'workflow'
int_conformal_quantile(object, train_data, cal_data, level = 0.95, ...)

Arguments

object A fitted workflows::workflow() object.

... Options to pass to quantregForest::quantregForest() (such as the number
of trees).

56 int_conformal_quantile

train_data, cal_data
Data frames with the predictor and outcome data. train_data should be the
same data used to produce object and cal_data is used to produce predictions
(and residuals). If the workflow used a recipe, these should be the data that were
inputs to the recipe (and not the product of a recipe).

level The confidence level for the intervals.

Details

Note that the significance level should be specified in this function (instead of the predict()
method).

cal_data should be large enough to get a good estimates of a extreme quantile (e.g., the 95th for
95% interval) and should not include rows that were in the original training set.

Note that the because of the method used to construct the interval, it is possible that the prediction
intervals will not include the predicted value.

Value

An object of class "int_conformal_quantile" containing the information to create intervals
(which includes object). The predict() method is used to produce the intervals.

References

Romano, Yaniv, Evan Patterson, and Emmanuel Candes. "Conformalized quantile regression."
Advances in neural information processing systems 32 (2019).

See Also

predict.int_conformal_quantile()

Examples

library(workflows)
library(dplyr)
library(parsnip)
library(rsample)
library(tune)
library(modeldata)

set.seed(2)
sim_train <- sim_regression(500)
sim_cal <- sim_regression(200)
sim_new <- sim_regression(5) |> select(-outcome)

We'll use a neural network model
mlp_spec <-

mlp(hidden_units = 5, penalty = 0.01) |>
set_mode("regression")

mlp_wflow <-

int_conformal_split 57

workflow() |>
add_model(mlp_spec) |>
add_formula(outcome ~ .)

mlp_fit <- fit(mlp_wflow, data = sim_train)

mlp_int <- int_conformal_quantile(mlp_fit, sim_train, sim_cal,
level = 0.90

)
mlp_int

predict(mlp_int, sim_new)

int_conformal_split Prediction intervals via split conformal inference

Description

Nonparametric prediction intervals can be computed for fitted regression workflow objects using
the split conformal inference method described by Lei et al (2018).

Usage

int_conformal_split(object, ...)

Default S3 method:
int_conformal_split(object, ...)

S3 method for class 'workflow'
int_conformal_split(object, cal_data, ...)

Arguments

object A fitted workflows::workflow() object.

... Not currently used.

cal_data A data frame with the original predictor and outcome data used to produce
predictions (and residuals). If the workflow used a recipe, this should be the
data that were inputs to the recipe (and not the product of a recipe).

Details

This function implements what is usually called "split conformal inference" (see Algorithm 1 in Lei
et al (2018)).

This function prepares the statistics for the interval computations. The predict() method computes
the intervals for new data and the signficance level is specified there.

cal_data should be large enough to get a good estimates of a extreme quantile (e.g., the 95th for
95% interval) and should not include rows that were in the original training set.

58 is_class_pred

Value

An object of class "int_conformal_split" containing the information to create intervals (which
includes object). The predict() method is used to produce the intervals.

References

Lei, Jing, et al. "Distribution-free predictive inference for regression." Journal of the American
Statistical Association 113.523 (2018): 1094-1111.

See Also

predict.int_conformal_split()

Examples

library(workflows)
library(dplyr)
library(parsnip)
library(rsample)
library(tune)
library(modeldata)

set.seed(2)
sim_train <- sim_regression(500)
sim_cal <- sim_regression(200)
sim_new <- sim_regression(5) |> select(-outcome)

We'll use a neural network model
mlp_spec <-

mlp(hidden_units = 5, penalty = 0.01) |>
set_mode("regression")

mlp_wflow <-
workflow() |>
add_model(mlp_spec) |>
add_formula(outcome ~ .)

mlp_fit <- fit(mlp_wflow, data = sim_train)

mlp_int <- int_conformal_split(mlp_fit, sim_cal)
mlp_int

predict(mlp_int, sim_new, level = 0.90)

is_class_pred Test if an object inherits from class_pred

levels.class_pred 59

Description

is_class_pred() checks if an object is a class_pred object.

Usage

is_class_pred(x)

Arguments

x An object.

Examples

x <- class_pred(factor(1:5))

is_class_pred(x)

levels.class_pred Extract class_pred levels

Description

The levels of a class_pred object do not include the equivocal value.

Usage

S3 method for class 'class_pred'
levels(x)

Arguments

x A class_pred object.

Examples

x <- class_pred(factor(1:5), which = 1)

notice that even though `1` is not in the `class_pred` vector, the
level remains from the original factor
levels(x)

60 locate-equivocal

locate-equivocal Locate equivocal values

Description

These functions provide multiple methods of checking for equivocal values, and finding their loca-
tions.

Usage

is_equivocal(x)

which_equivocal(x)

any_equivocal(x)

Arguments

x A class_pred object.

Value

is_equivocal() returns a logical vector the same length as x where TRUE means the value is
equivocal.

which_equivocal() returns an integer vector specifying the locations of the equivocal values.

any_equivocal() returns TRUE if there are any equivocal values.

Examples

x <- class_pred(factor(1:10), which = c(2, 5))

is_equivocal(x)

which_equivocal(x)

any_equivocal(x)

make_class_pred 61

make_class_pred Create a class_pred vector from class probabilities

Description

These functions can be used to convert class probability estimates to class_pred objects with an
optional equivocal zone.

Usage

make_class_pred(..., levels, ordered = FALSE, min_prob = 1/length(levels))

make_two_class_pred(
estimate,
levels,
threshold = 0.5,
ordered = FALSE,
buffer = NULL

)

Arguments

... Numeric vectors corresponding to class probabilities. There should be one for
each level in levels, and it is assumed that the vectors are in the same order as
levels.

levels A character vector of class levels. The length should be the same as the number
of selections made through ..., or length 2 for make_two_class_pred().

ordered A single logical to determine if the levels should be regarded as ordered (in the
order given). This results in a class_pred object that is flagged as ordered.

min_prob A single numeric value. If any probabilities are less than this value (by row), the
row is marked as equivocal.

estimate A single numeric vector corresponding to the class probabilities of the first level
in levels.

threshold A single numeric value for the threshold to call a row to be labeled as the first
value of levels.

buffer A numeric vector of length 1 or 2 for the buffer around threshold that defines
the equivocal zone (i.e., threshold - buffer[1] to threshold + buffer[2]).
A length 1 vector is recycled to length 2. The default, NULL, is interpreted as no
equivocal zone.

Value

A vector of class class_pred.

62 predict.int_conformal_full

Examples

library(dplyr)

good <- segment_logistic$.pred_good
lvls <- levels(segment_logistic$Class)

Equivocal zone of .5 +/- .15
make_two_class_pred(good, lvls, buffer = 0.15)

Equivocal zone of c(.5 - .05, .5 + .15)
make_two_class_pred(good, lvls, buffer = c(0.05, 0.15))

These functions are useful alongside dplyr::mutate()
segment_logistic |>

mutate(
.class_pred = make_two_class_pred(

estimate = .pred_good,
levels = levels(Class),
buffer = 0.15

)
)

Multi-class example
Note that we provide class probability columns in the same
order as the levels
species_probs |>

mutate(
.class_pred = make_class_pred(

.pred_bobcat, .pred_coyote, .pred_gray_fox,
levels = levels(Species),
min_prob = .5

)
)

predict.int_conformal_full

Prediction intervals from conformal methods

Description

Prediction intervals from conformal methods

Usage

S3 method for class 'int_conformal_full'
predict(object, new_data, level = 0.95, ...)

S3 method for class 'int_conformal_cv'

reportable_rate 63

predict(object, new_data, level = 0.95, ...)

S3 method for class 'int_conformal_quantile'
predict(object, new_data, ...)

S3 method for class 'int_conformal_split'
predict(object, new_data, level = 0.95, ...)

Arguments

object An object produced by predict.int_conformal_full().

new_data A data frame of predictors.

level The confidence level for the intervals.

... Not currently used.

Details

For the CV+. estimator produced by int_conformal_cv(), the intervals are centered around the
mean of the predictions produced by the resample-specific model. For example, with 10-fold cross-
validation, .pred is the average of the predictions from the 10 models produced by each fold. This
may differ from the prediction generated from a model fit that was trained on the entire training set,
especially if the training sets are small.

Value

A tibble with columns .pred_lower and .pred_upper. If the computations for the prediction
bound fail, a missing value is used. For objects produced by int_conformal_cv(), an additional
.pred column is also returned (see Details below).

See Also

int_conformal_full(), int_conformal_cv()

reportable_rate Calculate the reportable rate

Description

The reportable rate is defined as the percentage of class predictions that are not equivocal.

Usage

reportable_rate(x)

Arguments

x A class_pred object.

64 segment_naive_bayes

Details

The reportable rate is calculated as (n_not_equivocal / n).

Examples

x <- class_pred(factor(1:5), which = c(1, 2))

3 / 5
reportable_rate(x)

segment_naive_bayes Image segmentation predictions

Description

Image segmentation predictions

Details

These objects contain test set predictions for the cell segmentation data from Hill, LaPan, Li and
Haney (2007). Each data frame are the results from different models (naive Bayes and logistic
regression).

Value

segment_naive_bayes, segment_logistic
a tibble

Source

Hill, LaPan, Li and Haney (2007). Impact of image segmentation on high-content screening data
quality for SK-BR-3 cells, BMC Bioinformatics, Vol. 8, pg. 340, https://bmcbioinformatics.
biomedcentral.com/articles/10.1186/1471-2105-8-340.

Examples

data(segment_naive_bayes)
data(segment_logistic)

https://bmcbioinformatics.biomedcentral.com/articles/10.1186/1471-2105-8-340
https://bmcbioinformatics.biomedcentral.com/articles/10.1186/1471-2105-8-340

species_probs 65

species_probs Predictions on animal species

Description

Predictions on animal species

Details

These data are holdout predictions from resampling for the animal scat data of Reid (2015) based
on a C5.0 classification model.

Value

species_probs a tibble

Source

Reid, R. E. B. (2015). A morphometric modeling approach to distinguishing among bobcat, coyote
and gray fox scats. Wildlife Biology, 21(5), 254-262

Examples

data(species_probs)
str(species_probs)

threshold_perf Generate performance metrics across probability thresholds

Description

threshold_perf() can take a set of class probability predictions and determine performance char-
acteristics across different values of the probability threshold and any existing groups.

Usage

threshold_perf(.data, ...)

S3 method for class 'data.frame'
threshold_perf(
.data,
truth,
estimate,
thresholds = NULL,
metrics = NULL,
na_rm = TRUE,

66 threshold_perf

event_level = "first",
...

)

Arguments

.data A tibble, potentially grouped.

... Currently unused.

truth The column identifier for the true two-class results (that is a factor). This should
be an unquoted column name.

estimate The column identifier for the predicted class probabilities (that is a numeric).
This should be an unquoted column name.

thresholds A numeric vector of values for the probability threshold. If unspecified, a series
of values between 0.5 and 1.0 are used. Note: if this argument is used, it must
be named.

metrics Either NULL or a yardstick::metric_set() with a list of performance metrics
to calculate. The metrics should all be oriented towards hard class predictions
(e.g. yardstick::sensitivity(), yardstick::accuracy(), yardstick::recall(),
etc.) and not class probabilities. A set of default metrics is used when NULL (see
Details below).

na_rm A single logical: should missing data be removed?

event_level A single string. Either "first" or "second" to specify which level of truth to
consider as the "event".

Details

Note that that the global option yardstick.event_first will be used to determine which level is
the event of interest. For more details, see the Relevant level section of yardstick::sens().

The default calculated metrics are:

• yardstick::j_index()

• yardstick::sens()

• yardstick::spec()

• distance = (1 - sens) ^ 2 + (1 - spec) ^ 2

If a custom metric is passed that does not compute sensitivity and specificity, the distance metric is
not computed.

Value

A tibble with columns: .threshold, .estimator, .metric, .estimate and any existing groups.

threshold_perf 67

Examples

library(dplyr)
data("segment_logistic")

Set the threshold to 0.6
> 0.6 = good
< 0.6 = poor
threshold_perf(segment_logistic, Class, .pred_good, thresholds = 0.6)

Set the threshold to multiple values
thresholds <- seq(0.5, 0.9, by = 0.1)

segment_logistic |>
threshold_perf(Class, .pred_good, thresholds)

It works with grouped data frames as well
Let's mock some resampled data
resamples <- 5

mock_resamples <- resamples |>
replicate(

expr = sample_n(segment_logistic, 100, replace = TRUE),
simplify = FALSE

) |>
bind_rows(.id = "resample")

resampled_threshold_perf <- mock_resamples |>
group_by(resample) |>
threshold_perf(Class, .pred_good, thresholds)

resampled_threshold_perf

Average over the resamples
resampled_threshold_perf |>

group_by(.metric, .threshold) |>
summarise(.estimate = mean(.estimate))

Index

∗ datasets
boosting_predictions, 5
segment_naive_bayes, 64
species_probs, 65

all.equal(), 50
any_equivocal (locate-equivocal), 60
append_class_pred, 3
as_class_pred, 4

betacal::beta_calibration(), 9
boosting_predictions, 5
boosting_predictions_oob

(boosting_predictions), 5
boosting_predictions_test

(boosting_predictions), 5
bound_prediction, 6

cal_apply, 6
cal_apply(), 15, 45, 47
cal_estimate_beta, 8
cal_estimate_beta(), 7, 34
cal_estimate_isotonic, 10
cal_estimate_isotonic(), 7, 36
cal_estimate_isotonic_boot, 12
cal_estimate_isotonic_boot(), 7, 38, 39
cal_estimate_linear, 14
cal_estimate_linear(), 7, 40
cal_estimate_logistic, 16
cal_estimate_logistic(), 7, 36, 40, 42, 44,

46
cal_estimate_multinomial, 19
cal_estimate_multinomial(), 7, 18, 45
cal_estimate_none, 21
cal_estimate_none(), 47
cal_plot_breaks, 23
cal_plot_breaks(), 28, 30, 32
cal_plot_logistic, 26
cal_plot_logistic(), 25, 32
cal_plot_regression, 28

cal_plot_windowed, 30
cal_plot_windowed(), 25, 28
cal_validate_beta, 32
cal_validate_beta(), 9
cal_validate_isotonic, 35
cal_validate_isotonic(), 11
cal_validate_isotonic_boot, 37
cal_validate_isotonic_boot(), 14
cal_validate_linear, 39
cal_validate_linear(), 16
cal_validate_logistic, 41
cal_validate_logistic(), 18
cal_validate_multinomial, 43
cal_validate_multinomial(), 20
cal_validate_none, 45
class_pred, 47, 61
collect_metrics.cal_rset, 48
collect_predictions.cal_rset, 49
control_conformal_full, 49
control_conformal_full(), 52, 53

future::plan(), 53

ggplot2::geom_point(), 29

int_conformal_cv, 50
int_conformal_cv(), 63
int_conformal_full, 52
int_conformal_full(), 63
int_conformal_quantile, 55
int_conformal_split, 57
is_class_pred, 58
is_equivocal (locate-equivocal), 60

levels.class_pred, 59
locate-equivocal, 60

make_class_pred, 61
make_class_pred(), 3
make_two_class_pred (make_class_pred),

61

68

INDEX 69

mgcv::gam(), 15, 18, 20, 26, 27
mgcv::s(), 27

nnet::multinom(), 20

predict(), 51, 53, 57
predict.int_conformal_cv

(predict.int_conformal_full),
62

predict.int_conformal_cv(), 51
predict.int_conformal_full, 62
predict.int_conformal_full(), 55, 63
predict.int_conformal_quantile

(predict.int_conformal_full),
62

predict.int_conformal_quantile(), 56
predict.int_conformal_split

(predict.int_conformal_full),
62

predict.int_conformal_split(), 58

quantregForest::quantregForest(), 55

reportable_rate, 63

segment_logistic (segment_naive_bayes),
64

segment_naive_bayes, 64
species_probs, 65
stats::glm(), 15, 18
stats::isoreg(), 11, 13
stats::uniroot(), 50

threshold_perf, 65
tune::collect_metrics(), 48
tune::collect_predictions(), 34, 36, 38,

42, 44, 46, 49
tune::fit_resamples(), 33, 34, 36, 38, 40,

42, 44, 46, 50
tune::tune_grid(), 50

which_equivocal (locate-equivocal), 60
workflows::workflow(), 52, 55, 57

yardstick::accuracy(), 66
yardstick::j_index(), 66
yardstick::metric_set(), 34, 36, 38–40,

42, 44–47, 66
yardstick::recall(), 66
yardstick::sens(), 66
yardstick::sensitivity(), 66
yardstick::spec(), 66

	append_class_pred
	as_class_pred
	boosting_predictions
	bound_prediction
	cal_apply
	cal_estimate_beta
	cal_estimate_isotonic
	cal_estimate_isotonic_boot
	cal_estimate_linear
	cal_estimate_logistic
	cal_estimate_multinomial
	cal_estimate_none
	cal_plot_breaks
	cal_plot_logistic
	cal_plot_regression
	cal_plot_windowed
	cal_validate_beta
	cal_validate_isotonic
	cal_validate_isotonic_boot
	cal_validate_linear
	cal_validate_logistic
	cal_validate_multinomial
	cal_validate_none
	class_pred
	collect_metrics.cal_rset
	collect_predictions.cal_rset
	control_conformal_full
	int_conformal_cv
	int_conformal_full
	int_conformal_quantile
	int_conformal_split
	is_class_pred
	levels.class_pred
	locate-equivocal
	make_class_pred
	predict.int_conformal_full
	reportable_rate
	segment_naive_bayes
	species_probs
	threshold_perf
	Index

