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ames_HCD Historical numbers of revertant colonies in the Ames test (OECD 471)

Description

This data set contains artificial historical control data that was sampled in order to mimic the number
of revertant colonies based on two or three petri dishes.

Usage

ames_HCD
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Format

A data.frame with 2 rows and 10 columns:

rev_col no. of revertant colonies

no_dish no. of petri dishes in the control group

as.data.frame.predint Store prediction intervals or limits as a data.frame

Description

Get the prediction intervals or limits of an object of class predint and save them as a data.frame.

Usage

## S3 method for class 'predint'
as.data.frame(x, ...)

Arguments

x object of class predint

... additional arguments to be passed to base::as.data.frame()

Value

This function returns the prediction intervals or limits stored in an object of class "predint" as a
data.frame

Examples

### PI for quasi-Poisson data
pred_int <- quasi_pois_pi(histdat=ames_HCD,

newoffset=3,
nboot=100,
traceplot = FALSE)

# Return the prediction intervals as a data.frame
as.data.frame(pred_int)

# Please note that nboot was set to 100 in order to decrease computing time
# of the example. For a valid analysis set nboot=10000.
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bb_dat1 Beta-binomial data (example 1)

Description

This data set contains sampled beta-binomial data from 10 clusters each of size 50. The data set
was sampled with rbbinom(n=10, size=50, prob=0.1, rho=0.06).

Usage

bb_dat1

Format

A data.frame with 10 rows and 2 columns:

succ number of successes

fail number of failures

bb_dat2 Beta-binomial data (example 2)

Description

This data set contains sampled beta-binomial data from 3 clusters each of different size. The data
set was sampled with rbbinom(n=3, size=c(40, 50, 60), prob=0.1, rho=0.06).

Usage

bb_dat2

Format

A data.frame with 3 rows and 2 columns:

succ number of successes

fail number of failures
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bb_pi Simple uncalibrated prediction intervals for beta-binomial data

Description

bb_pi() is a helper function that is internally called by beta_bin_pi(). It calculates simple un-
calibrated prediction intervals for binary data with overdispersion changing between the clusters
(beta-binomial).

Usage

bb_pi(
newsize,
histsize,
pi,
rho,
q = qnorm(1 - 0.05/2),
alternative = "both",
newdat = NULL,
histdat = NULL,
algorithm = NULL

)

Arguments

newsize number of experimental units in the historical clusters

histsize number of experimental units in the future clusters

pi binomial proportion

rho intra class correlation

q quantile used for interval calculation

alternative either "both", "upper" or "lower" alternative specifies, if a prediction interval
or an upper or a lower prediction limit should be computed

newdat additional argument to specify the current data set

histdat additional argument to specify the historical data set

algorithm used to define the algorithm for calibration if called via beta_bin_pi(). This
argument is not of interest for the calculation of simple uncalibrated intervals

Details

This function returns a simple uncalibrated prediction interval

[l, u]m = n∗mπ̂ ± q

√
n∗mπ̂(1 − π̂)[1 + (n∗m − 1)ρ̂] + [

n∗2m π̂(1 − π̂)∑
h nh

+

∑
h nh − 1∑
h nh

n∗2m π̂(1 − π̂)ρ̂]
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with n∗m as the number of experimental units in the m = 1, 2, ...,M future clusters, π̂ as the es-
timate for the binomial proportion obtained from the historical data, ρ̂ as the estimate for the intra
class correlation and nh as the number of experimental units per historical cluster.

The direct application of this uncalibrated prediction interval to real life data is not recommended.
Please use beta_bin_pi() for real life applications.

Value

bb_pi() returns an object of class c("predint", "betaBinomialPI") with prediction intervals or
limits in the first entry ($prediction).

Examples

# Pointwise uncalibrated PI
bb_pred <- bb_pi(newsize=c(50), pi=0.3, rho=0.05, histsize=rep(50, 20), q=qnorm(1-0.05/2))
summary(bb_pred)

beta_bin_pi Prediction intervals for beta-binomial data

Description

beta_bin_pi() calculates bootstrap calibrated prediction intervals for beta-binomial data

Usage

beta_bin_pi(
histdat,
newdat = NULL,
newsize = NULL,
alternative = "both",
alpha = 0.05,
nboot = 10000,
delta_min = 0.01,
delta_max = 10,
tolerance = 0.001,
traceplot = TRUE,
n_bisec = 30,
algorithm = "MS22mod"

)
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Arguments

histdat a data.frame with two columns (number of successes and number of failures)
containing the historical data

newdat a data.frame with two columns (number of successes and number of failures)
containing the future data

newsize a vector containing the future cluster sizes

alternative either "both", "upper" or "lower". alternative specifies if a prediction interval
or an upper or a lower prediction limit should be computed

alpha defines the level of confidence (1-alpha)

nboot number of bootstraps

delta_min lower start value for bisection

delta_max upper start value for bisection

tolerance tolerance for the coverage probability in the bisection

traceplot if TRUE: Plot for visualization of the bisection process

n_bisec maximal number of bisection steps

algorithm either "MS22" or "MS22mod" (see details)

Details

This function returns bootstrap-calibrated prediction intervals as well as lower or upper prediction
limits.

If algorithm is set to "MS22", both limits of the prediction interval are calibrated simultaneously
using the algorithm described in Menssen and Schaarschmidt (2022), section 3.2.4. The calibrated
prediction interval is given as

[l, u]m = n∗mπ̂ ± qcalibŝe(Ym − y∗m)

where

ŝe(Ym − y∗m) =

√
n∗mπ̂(1 − π̂)[1 + (n∗m − 1)ρ̂] + [

n∗2m π̂(1 − π̂)∑
h nh

+

∑
h nh − 1∑
h nh

n∗2m π̂(1 − π̂)ρ̂]

with n∗m as the number of experimental units in the future clusters, π̂ as the estimate for the bino-
mial proportion obtained from the historical data, qcalib as the bootstrap-calibrated coefficient, ρ̂ as
the estimate for the intra class correlation (Lui et al. 2000) and nh as the number of experimental
units per historical cluster.

If algorithm is set to "MS22mod", both limits of the prediction interval are calibrated indepen-
dently from each other. The resulting prediction interval is given by

[l, u]m =
[
n∗mπ̂ − qcalibl ŝe(Ym − y∗m), n∗mπ̂ + qcalibu ŝe(Ym − y∗m)

]
Please note, that this modification does not affect the calibration procedure, if only prediction limits
are of interest.
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Value

beta_bin_pi returns an object of class c("predint", "betaBinomialPI") with prediction inter-
vals or limits in the first entry ($prediction).

References

Lui et al. (2000): Confidence intervals for the risk ratio under cluster sampling based on the beta-
binomial model. Statistics in Medicine.
doi:10.1002/10970258(20001115)19:21<2933::AIDSIM591>3.0.CO;2Q

Menssen and Schaarschmidt (2022): Prediction intervals for all of M future observations based on
linear random effects models. Statistica Neerlandica. doi:10.1111/stan.12260

Examples

# Prediction interval
pred_int <- beta_bin_pi(histdat=mortality_HCD, newsize=40, nboot=100)
summary(pred_int)

# Upper prediction bound
pred_u <- beta_bin_pi(histdat=mortality_HCD, newsize=40, alternative="upper", nboot=100)
summary(pred_u)

# Please note that nboot was set to 100 in order to decrease computing time
# of the example. For a valid analysis set nboot=10000.

bisection Bisection algorithm for bootstrap calibration of prediction intervals

Description

This helper function returns a bootstrap calibrated coefficient for the calculation of prediction inter-
vals (and limits).

Usage

bisection(
y_star_hat,
pred_se,
y_star,
alternative,
quant_min,
quant_max,
n_bisec,
tol,
alpha,

https://doi.org/10.1002/1097-0258%2820001115%2919%3A21%3C2933%3A%3AAID-SIM591%3E3.0.CO%3B2-Q
https://doi.org/10.1111/stan.12260
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traceplot = TRUE
)

Arguments

y_star_hat a list of length B that contains the expected future observations. Each entry in
this list has to be a numeric vector of length M .

pred_se a list of length B that contains the standard errors of the prediction. Each entry
in this list has to be a numeric vector of length M .

y_star a list of lengthB that contains the future observations. Each entry in this list has
to be a numeric vector of length M .

alternative either "both", "upper" or "lower". alternative specifies if a prediction interval
or an upper or a lower prediction limit should be computed

quant_min lower start value for bisection

quant_max upper start value for bisection

n_bisec maximal number of bisection steps

tol tolerance for the coverage probability in the bisection

alpha defines the level of confidence (1 − α)

traceplot if TRUE: Plot for visualization of the bisection process

Details

This function is an implementation of the bisection algorithm of Menssen and Schaarschmidt 2022.
It returns a calibrated coefficient qcalib for the calculation of pointwise and simultaneous prediction
intervals

[l, u] = ŷ∗m ± qcalibŝe(Ym − y∗m),

lower prediction limits
l = ŷ∗m − qcalibŝe(Ym − y∗m)

or upper prediction limits
u = ŷ∗m + qcalibŝe(Ym − y∗m)

that cover all of m = 1, ...,M future observations.

In this notation, ŷ∗m are the expected future observations for each of the m future clusters, qcalib is
the calibrated coefficient and ŝe(Ym − y∗m) are the standard errors of the prediction.

Value

This function returns qcalib in the equation above.

References

Menssen and Schaarschmidt (2022): Prediction intervals for all of M future observations based on
linear random effects models. Statistica Neerlandica.
doi:10.1111/stan.12260

https://doi.org/10.1111/stan.12260
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boot_predint Bootstrap new data from uncalibrated prediction intervals

Description

boot_predint() is a helper function to bootstrap new data from the simple uncalibrated prediction
intervals implemented in predint.

Usage

boot_predint(pred_int, nboot)

Arguments

pred_int object of class c("quasiPoissonPI", "betaBinomialPI","quasiBinomialPI",
negativeBinomialPI)

nboot number of bootstraps

Details

This function only works for binomial and Poisson type data. For the sampling of new data from
random effects models see lmer_bs.

Value

boot_predint returns an object of class c("predint", "bootstrap") which is a list with two
entries: One for bootstrapped historical observations and one for bootstrapped future observations.

Examples

# Simple quasi-Poisson PI
test_pi <- qp_pi(histoffset=c(3,3,3,4,5), newoffset=3, lambda=10, phi=3, q=1.96)

# Draw 5 bootstrap samles
test_boot <- boot_predint(pred_int = test_pi, nboot=50)
str(test_boot)
summary(test_boot)

# Please note that the low number of bootstrap samples was chosen in order to
# decrease computing time. For valid analysis draw at least 10000 bootstrap samples.
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c2_dat1 Cross-classified data (example 1)

Description

c2_dat1 contains data that is sampled from a balanced cross-classified design. This data set is used
in order to demonstrate the functionality of the lmer_pi_...() functions.

Usage

c2_dat1

Format

A data.frame with 27 rows and 3 columns:

y_ijk observations

a treatment a

b treatment b

c2_dat2 Cross-classified data (example 2)

Description

c2_dat2 contains data that was sampled from an unbalanced cross-classified design. This data set is
used in order to demonstrate the functionality of the lmer_pi_...() functions.

Usage

c2_dat2

Format

A data.frame with 21 rows and 3 columns:

y_ijk observations

a treatment a

b treatment b
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c2_dat3 Cross-classified data (example 3)

Description

c2_dat3 contains data that was sampled from a balanced cross-classified design. This data set is
used in order to demonstrate the functionality of the lmer_pi_...() functions.

Usage

c2_dat3

Format

A data.frame with 8 rows and 3 columns:

y_ijk observations

a treatment a

b treatment b

c2_dat4 Cross-classified data (example 4)

Description

c2_dat4 contains data that was sampled from an unbalanced cross-classified design. This data set is
used in order to demonstrate the functionality of the lmer_pi_...() functions.

Usage

c2_dat4

Format

A data.frame with 6 rows and 3 columns:

y_ijk observations

a treatment a

b treatment b
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lmer_bs Sampling of bootstrap data from a given random effects model

Description

lmer_bs() draws bootstrap samples based on the estimates for the mean and the variance compo-
nents drawn from a random effects model fit with lme4::lmer(). Contrary to lme4::bootMer(),
the number of observations for each random factor can vary between the original data set and the
bootstrapped data. Random effects in model have to be specified as (1|random effect).

Usage

lmer_bs(model, newdat = NULL, futmat_list = NULL, nboot)

Arguments

model a random effects model of class lmerMod

newdat a data.frame with the same column names as the historical data on which
model depends

futmat_list a list that contains design matrices for each random factor

nboot number of bootstrap samples

Details

The data sampling is based on a list of design matrices (one for each random factor) that can be
obtained if newdat and the model formula are provided to lme4::lFormula(). Hence, each random
factor that is part of the initial model must have at least two replicates in newdat.
If a random factor in the future data set does not have any replicate, a list that contains design
matrices (one for each random factor) can be provided via futmat_list.

Value

A list of length nboot containing the bootstrapped observations.

Examples

# loading lme4
library(lme4)

# Fitting a random effects model based on c2_dat1

fit <- lmer(y_ijk~(1|a)+(1|b)+(1|a:b), c2_dat1)
summary(fit)

#----------------------------------------------------------------------------

### Using c2_dat2 as newdat
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c2_dat2

lmer_bs(model=fit, newdat=c2_dat2, nboot=100)

#----------------------------------------------------------------------------

### Using futmat_list

# c2_dat4 has no replication for b. Hence the list of design matrices can not be
# generated by lme4::lFormula() and have to be provided by hand via futmat_list.

c2_dat4

# Build a list containing the design matrices

fml <- vector(length=4, "list")

names(fml) <- c("a:b", "b", "a", "Residual")

fml[["a:b"]] <- matrix(nrow=6, ncol=2, data=c(1,1,0,0,0,0, 0,0,1,1,1,1))

fml[["b"]] <- matrix(nrow=6, ncol=1, data=c(1,1,1,1,1,1))

fml[["a"]] <- matrix(nrow=6, ncol=2, data=c(1,1,0,0,0,0, 0,0,1,1,1,1))

fml[["Residual"]] <- diag(6)

fml

lmer_bs(model=fit, futmat_list=fml, nboot=100)

lmer_pi Prediction intervals for future observations based on linear random
effects models (DEPRECATED)

Description

This function is deprecated. Please use lmer_pi_unstruc(), lmer_pi_futvec() or lmer_pi_futmat().

Usage

lmer_pi(
model,
newdat = NULL,
m = NULL,
alternative = "both",
alpha = 0.05,
nboot = 10000,
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lambda_min = 0.01,
lambda_max = 10,
traceplot = TRUE,
n_bisec = 30

)

Arguments

model a random effects model of class "lmerMod"
newdat a data.frame with the same column names as the historical data on which the

model depends
m number of future observations
alternative either "both", "upper" or "lower". alternative specifies if a prediction interval

or an upper or a lower prediction limit should be computed
alpha defines the level of confidence (1-alpha)
nboot number of bootstraps
lambda_min lower start value for bisection
lambda_max upper start value for bisection
traceplot if TRUE: plot for visualization of the bisection process
n_bisec maximal number of bisection steps

Details

This function returns a bootstrap calibrated prediction interval

[l, u] = ŷ ± q
√

ˆvar(ŷ − y)

with ŷ as the predicted future observation, y as the observed future observations,
√

ˆvar(ŷ − y) as
the prediction standard error and q as the bootstrap calibrated coefficient that approximates a quan-
tile of the multivariate t-distribution.
Please note that this function relies on linear random effects models that are fitted with lmer() from
the lme4 package. Random effects have to be specified as (1|random_effect).

Value

If newdat is specified: A data.frame that contains the future data, the historical mean (hist_mean),
the calibrated coefficient (quant_calib), the prediction standard error (pred_se), the prediction in-
terval (lower and upper) and a statement if the prediction interval covers the future observation
(cover).

If m is specified: A data.frame that contains the number of future observations (m) the historical
mean (hist_mean), the calibrated coefficient (quant_calib), the prediction standard error (pred_se)
and the prediction interval (lower and upper).

If alternative is set to "lower": Lower prediction limits are computed instead of a prediction
interval.

If alternative is set to "upper": Upper prediction limits are computed instead of a prediction
interval.

If traceplot=TRUE, a graphical overview about the bisection process is given.
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Examples

# This function is deprecated.
# Please use lmer_pi_unstruc() if you want exactly the same functionality.
# Please use lmer_pi_futmat() or lmer_pi_futvec() if you want to take care
# of the future experimental design

lmer_pi_futmat Prediction intervals for future observations based on linear random
effects models

Description

lmer_pi_futmat() calculates a bootstrap calibrated prediction interval for one or more future ob-
servation(s) based on linear random effects models. With this approach, the experimental design of
the future data is taken into account (see below).

Usage

lmer_pi_futmat(
model,
newdat = NULL,
futmat_list = NULL,
alternative = "both",
alpha = 0.05,
nboot = 10000,
delta_min = 0.01,
delta_max = 10,
tolerance = 0.001,
traceplot = TRUE,
n_bisec = 30,
algorithm = "MS22"

)

Arguments

model a random effects model of class "lmerMod"

newdat either 1 or a data.frame with the same column names as the historical data on
which model depends

futmat_list a list that contains design matrices for each random factor

alternative either "both", "upper" or "lower". alternative specifies if a prediction interval
or an upper or a lower prediction limit should be computed

alpha defines the level of confidence (1-alpha)

nboot number of bootstraps
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delta_min lower start value for bisection

delta_max upper start value for bisection

tolerance tolerance for the coverage probability in the bisection

traceplot if TRUE: Plot for visualization of the bisection process

n_bisec maximal number of bisection steps

algorithm either "MS22" or "MS22mod" (see details)

Details

This function returns bootstrap-calibrated prediction intervals as well as lower or upper prediction
limits.

If algorithm is set to "MS22", both limits of the prediction interval are calibrated simultaneously
using the algorithm described in Menssen and Schaarschmidt (2022), section 3.2.4. The calibrated
prediction interval is given as

[l, u] = µ̂± qcalib

√√√√v̂ar(µ̂) +

C+1∑
c=1

σ̂2
c

with µ̂ as the expected future observation (historical mean) and σ̂2
c as the c = 1, 2, ..., C variance

components and σ̂2
C+1 as the residual variance obtained from the random effects model fitted with

lme4::lmer() and qcalib as the as the bootstrap-calibrated coefficient used for interval calculation.

If algorithm is set to "MS22mod", both limits of the prediction interval are calibrated indepen-
dently from each other. The resulting prediction interval is given by

[l, u] =
[
µ̂− qcalibl

√√√√v̂ar(µ̂) +

C+1∑
c=1

σ̂2
c , µ̂+ qcalibu

√√√√v̂ar(µ̂) +

C+1∑
c=1

σ̂2
c

]
.

Please note, that this modification does not affect the calibration procedure, if only prediction limits
are of interest.

If newdat is defined, the bootstrapped future observations used for the calibration process mimic
the structure of the data set provided via newdat. The data sampling is based on a list of design
matrices (one for each random factor) that can be obtained if newdat and the model formula are
provided to lme4::lFormula(). Hence, each random factor that is part of the initial model must
have at least two replicates in newdat.
If a random factor in the future data set does not have any replicate, a list that contains design
matrices (one for each random factor) can be provided via futmat_list.

This function is an implementation of the PI given in Menssen and Schaarschmidt 2022 section
3.2.4, except, that the bootstrap calibration values are drawn from bootstrap samples that mimic the
future data as described above.
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Value

lmer_pi_futmat() returns an object of class c("predint", "normalPI") with prediction inter-
vals or limits in the first entry ($prediction).

References

Menssen and Schaarschmidt (2022): Prediction intervals for all of M future observations based on
linear random effects models. Statistica Neerlandica, doi:10.1111/stan.12260

Examples

# loading lme4
library(lme4)

# Fitting a random effects model based on c2_dat1
fit <- lmer(y_ijk~(1|a)+(1|b)+(1|a:b), c2_dat1)
summary(fit)

#----------------------------------------------------------------------------
### Using newdat

# Prediction interval using c2_dat2 as future data
pred_int <- lmer_pi_futmat(model=fit, newdat=c2_dat2, alternative="both", nboot=100)
summary(pred_int)

# Upper prediction limit for m=1 future observations
pred_u <- lmer_pi_futmat(model=fit, newdat=1, alternative="upper", nboot=100)
summary(pred_u)

#----------------------------------------------------------------------------

### Using futmat_list

# c2_dat4 has no replication for b. Hence the list of design matrices can not be
# generated by lme4::lFormula() and have to be provided by hand via futmat_list.

c2_dat4

# Build a list containing the design matrices

fml <- vector(length=4, "list")

names(fml) <- c("a:b", "b", "a", "Residual")

fml[["a:b"]] <- matrix(nrow=6, ncol=2, data=c(1,1,0,0,0,0, 0,0,1,1,1,1))

fml[["b"]] <- matrix(nrow=6, ncol=1, data=c(1,1,1,1,1,1))

fml[["a"]] <- matrix(nrow=6, ncol=2, data=c(1,1,0,0,0,0, 0,0,1,1,1,1))

fml[["Residual"]] <- diag(6)

https://doi.org/10.1111/stan.12260
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fml

# Please note, that the design matrix for the interaction term a:b is also
# provided even there is no replication for b, since it is assumed that
# both, the historical and the future data descent from the same data generating
# process.

# Calculate the PI
pred_fml <- lmer_pi_futmat(model=fit, futmat_list=fml, alternative="both", nboot=100)
summary(pred_fml)

#----------------------------------------------------------------------------

# Please note that nboot was set to 100 in order to decrease computing time
# of the example. For a valid analysis set nboot=10000.

lmer_pi_futvec Prediction intervals for future observations based on linear random
effects models

Description

lmer_pi_futvec() calculates a bootstrap calibrated prediction interval for one or more future ob-
servation(s) based on linear random effects models. With this approach, the experimental design of
the future data is taken into account (see below).

Usage

lmer_pi_futvec(
model,
futvec,
newdat = NULL,
alternative = "both",
alpha = 0.05,
nboot = 10000,
delta_min = 0.01,
delta_max = 10,
tolerance = 0.001,
traceplot = TRUE,
n_bisec = 30,
algorithm = "MS22"

)

Arguments

model a random effects model of class lmerMod
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futvec an integer vector that defines the structure of the future data based on the row
numbers of the historical data. If length(futvec) is one, a PI for one future
observation is computed

newdat a data.frame with the same column names as the historical data on which
model depends

alternative either "both", "upper" or "lower". alternative specifies if a prediction interval
or an upper or a lower prediction limit should be computed

alpha defines the level of confidence (1-alpha)

nboot number of bootstraps

delta_min lower start value for bisection

delta_max upper start value for bisection

tolerance tolerance for the coverage probability in the bisection

traceplot if TRUE: Plot for visualization of the bisection process

n_bisec maximal number of bisection steps

algorithm either "MS22" or "MS22mod" (see details)

Details

This function returns bootstrap-calibrated prediction intervals as well as lower or upper prediction
limits.

If algorithm is set to "MS22", both limits of the prediction interval are calibrated simultaneously
using the algorithm described in Menssen and Schaarschmidt (2022), section 3.2.4. The calibrated
prediction interval is given as

[l, u] = µ̂± qcalib

√√√√v̂ar(µ̂) +

C+1∑
c=1

σ̂2
c

with µ̂ as the expected future observation (historical mean) and σ̂2
c as the c = 1, 2, ..., C variance

components and σ̂2
C+1 as the residual variance obtained from the random effects model fitted with

lme4::lmer() and qcalib as the as the bootstrap-calibrated coefficient used for interval calculation.

If algorithm is set to "MS22mod", both limits of the prediction interval are calibrated indepen-
dently from each other. The resulting prediction interval is given by

[l, u] =
[
µ̂− qcalibl

√√√√v̂ar(µ̂) +

C+1∑
c=1

σ̂2
c , µ̂+ qcalibu

√√√√v̂ar(µ̂) +

C+1∑
c=1

σ̂2
c

]
.

Please note, that this modification does not affect the calibration procedure, if only prediction limits
are of interest.

Be aware that the sampling structure of the historical data must contain the structure of the future
data. This means that the observations per random factor must be less or equal in the future data
compared to the historical data.
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This function is an implementation of the PI given in Menssen and Schaarschmidt 2022 section
3.2.4 except that the bootstrap calibration values are drawn from bootstrap samples that mimic the
future data.

Value

lmer_pi_futvec() returns an object of class c("predint", "normalPI") with prediction inter-
vals or limits in the first entry ($prediction).

References

Menssen and Schaarschmidt (2022): Prediction intervals for all of M future observations based on
linear random effects models. Statistica Neerlandica, doi:10.1111/stan.12260

Examples

# loading lme4
library(lme4)

# Fitting a random effects model based on c2_dat1
fit <- lmer(y_ijk~(1|a)+(1|b)+(1|a:b), c2_dat1)
summary(fit)

#----------------------------------------------------------------------------

### Prediction interval using c2_dat3 as future data
# without printing c2_dat3 in the output

# Row numbers of the historical data c2_dat1 that define the structure of
# the future data c2_dat3
futvec <- c(1, 2, 4, 5, 10, 11, 13, 14)

# Calculating the PI
pred_int <- lmer_pi_futvec(model=fit, futvec=futvec, nboot=100)
summary(pred_int)

#----------------------------------------------------------------------------

### Calculating the PI with c2_dat3 printed in the output
pred_int_new <- lmer_pi_futvec(model=fit, futvec=futvec, newdat=c2_dat3, nboot=100)
summary(pred_int_new)

#----------------------------------------------------------------------------

### Upper prediction limit for m=1 future observation
pred_u <- lmer_pi_futvec(model=fit, futvec=1, alternative="upper", nboot=100)
summary(pred_u)

#----------------------------------------------------------------------------

# Please note that nboot was set to 100 in order to decrease computing time

https://doi.org/10.1111/stan.12260
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# of the example. For a valid analysis set nboot=10000.

lmer_pi_unstruc Prediction intervals for future observations based on linear random
effects models

Description

lmer_pi_unstruc() calculates a bootstrap calibrated prediction interval for one or more future
observation(s) based on linear random effects models as described in section 3.2.4. of Menssen
and Schaarschmidt (2022). Please note, that the bootstrap calibration used here does not consider
the sampling structure of the future data, since the calibration values are drawn randomly from
bootstrap data sets that have the same structure as the historical data.

Usage

lmer_pi_unstruc(
model,
newdat = NULL,
m = NULL,
alternative = "both",
alpha = 0.05,
nboot = 10000,
delta_min = 0.01,
delta_max = 10,
tolerance = 0.001,
traceplot = TRUE,
n_bisec = 30,
algorithm = "MS22"

)

Arguments

model a random effects model of class lmerMod

newdat a data.frame with the same column names as the historical data on which the
model depends

m number of future observations

alternative either "both", "upper" or "lower". alternative specifies if a prediction interval
or an upper or a lower prediction limit should be computed

alpha defines the level of confidence (1-alpha)

nboot number of bootstraps

delta_min lower start value for bisection

delta_max upper start value for bisection

tolerance tolerance for the coverage probability in the bisection
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traceplot if TRUE: Plot for visualization of the bisection process

n_bisec maximal number of bisection steps

algorithm either "MS22" or "MS22mod" (see details)

Details

This function returns bootstrap-calibrated prediction intervals as well as lower or upper prediction
limits.

If algorithm is set to "MS22", both limits of the prediction interval are calibrated simultaneously
using the algorithm described in Menssen and Schaarschmidt (2022), section 3.2.4. The calibrated
prediction interval is given as

[l, u] = µ̂± qcalib

√√√√v̂ar(µ̂) +

C+1∑
c=1

σ̂2
c

with µ̂ as the expected future observation (historical mean) and σ̂2
c as the c = 1, 2, ..., C variance

components and σ̂2
C+1 as the residual variance obtained from the random effects model fitted with

lme4::lmer() and qcalib as the as the bootstrap-calibrated coefficient used for interval calculation.

If algorithm is set to "MS22mod", both limits of the prediction interval are calibrated indepen-
dently from each other. The resulting prediction interval is given by

[l, u] =
[
µ̂− qcalibl

√√√√v̂ar(µ̂) +

C+1∑
c=1

σ̂2
c , µ̂+ qcalibu

√√√√v̂ar(µ̂) +

C+1∑
c=1

σ̂2
c

]
.

Please note, that this modification does not affect the calibration procedure, if only prediction limits
are of interest.

This function is an direct implementation of the PI given in Menssen and Schaarschmidt 2022
section 3.2.4.

Value

lmer_pi_futvec() returns an object of class c("predint", "normalPI") with prediction inter-
vals or limits in the first entry ($prediction).

References

Menssen and Schaarschmidt (2022): Prediction intervals for all of M future observations based on
linear random effects models. Statistica Neerlandica, doi:10.1111/stan.12260

https://doi.org/10.1111/stan.12260
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Examples

# loading lme4
library(lme4)

# Fitting a random effects model based on c2_dat1
fit <- lmer(y_ijk~(1|a)+(1|b)+(1|a:b), c2_dat1)
summary(fit)

# Prediction interval using c2_dat2 as future data
pred_int <- lmer_pi_unstruc(model=fit, newdat=c2_dat2, alternative="both", nboot=100)
summary(pred_int)

# Upper prediction limit for m=3 future observations
pred_u <- lmer_pi_unstruc(model=fit, m=3, alternative="upper", nboot=100)
summary(pred_u)

# Please note that nboot was set to 100 in order to decrease computing time
# of the example. For a valid analysis set nboot=10000.

mortality_HCD Historical mortality of male B6C3F1-mice

Description

This data set contains historical control data about the mortality of male B6C3F1-mice obtained in
long term carcinogenicity studies at the National Toxicology Program presented in NTP Historical
Control Reports from 2013 to 2016. It was used in Menssen and Schaarschmidt 2019 as a real life
example.

Usage

mortality_HCD

Format

A data.frame with 2 rows and 10 columns:

dead no. of dead mice

alive no. of living mice

References

Menssen and Schaarschmidt (2019): Prediction intervals for overdispersed binomial data with ap-
plication to historical controls. Statistics in Medicine. doi:10.1002/sim.8124
NTP Historical Control Reports: https://ntp.niehs.nih.gov/data/controls

https://doi.org/10.1002/sim.8124
https://ntp.niehs.nih.gov/data/controls
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nb_pi Simple uncalibrated prediction intervals for negative-binomial data

Description

nb_pi() is a helper function that is internally called by neg_bin_pi(). It calculates simple uncali-
brated prediction intervals for negative-binomial data with offsets.

Usage

nb_pi(
newoffset,
histoffset,
lambda,
kappa,
q = qnorm(1 - 0.05/2),
alternative = "both",
newdat = NULL,
histdat = NULL,
algorithm = NULL

)

Arguments

newoffset number of experimental units in the future clusters

histoffset number of experimental units in the historical clusters

lambda overall Poisson mean

kappa dispersion parameter

q quantile used for interval calculation

alternative either "both", "upper" or "lower". alternative specifies, if a prediction interval
or an upper or a lower prediction limit should be computed

newdat additional argument to specify the current data set

histdat additional argument to specify the historical data set

algorithm used to define the algorithm for calibration if called via quasi_pois_pi(). This
argument is not of interest for the calculation of simple uncalibrated intervals

Details

This function returns a simple uncalibrated prediction interval

[l, u]m = n∗mλ̂± q

√
n∗m

λ̂+ κ̂n̄λ̂

n̄H
+ (n∗mλ̂+ κ̂n∗2m λ̂

2)
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with n∗m as the number of experimental units in m = 1, 2, ...,M future clusters, λ̂ as the estimate
for the Poisson mean obtained from the historical data, κ̂ as the estimate for the dispersion parame-
ter, nh as the number of experimental units per historical cluster and n̄ =

∑nh

h nh/H .

The direct application of this uncalibrated prediction interval to real life data is not recommended.
Please use the neg_bin_pi() function for real life applications.

Value

np_pi returns an object of class c("predint", "negativeBinomialPI").

Examples

# Prediction interval
nb_pred <- nb_pi(newoffset=3, lambda=3, kappa=0.04, histoffset=1:9, q=qnorm(1-0.05/2))
summary(nb_pred)

neg_bin_pi Prediction intervals for negative-binomial data

Description

neg_bin_pi() calculates bootstrap calibrated prediction intervals for negative-binomial data.

Usage

neg_bin_pi(
histdat,
newdat = NULL,
newoffset = NULL,
alternative = "both",
alpha = 0.05,
nboot = 10000,
delta_min = 0.01,
delta_max = 10,
tolerance = 0.001,
traceplot = TRUE,
n_bisec = 30,
algorithm = "MS22mod"

)

Arguments

histdat a data.frame with two columns. The first has to contain the historical obser-
vations. The second has to contain the number of experimental units per study
(offsets).
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newdat data.frame with two columns. The first has to contain the future observations.
The second has to contain the number of experimental units per study (offsets).

newoffset vector with future number of experimental units per historical study.

alternative either "both", "upper" or "lower". alternative specifies if a prediction interval
or an upper or a lower prediction limit should be computed

alpha defines the level of confidence (1 − α)

nboot number of bootstraps

delta_min lower start value for bisection

delta_max upper start value for bisection

tolerance tolerance for the coverage probability in the bisection

traceplot if TRUE: Plot for visualization of the bisection process

n_bisec maximal number of bisection steps

algorithm either "MS22" or "MS22mod" (see details)

Details

This function returns bootstrap-calibrated prediction intervals as well as lower or upper prediction
limits.

If algorithm is set to "MS22", both limits of the prediction interval are calibrated simultaneously
using the algorithm described in Menssen and Schaarschmidt (2022), section 3.2.4. The calibrated
prediction interval is given as

[l, u]m = n∗mλ̂± q

√
n∗m

λ̂+ κ̂n̄λ̂

n̄H
+ (n∗mλ̂+ κ̂n∗2m λ̂

2)

with n∗m as the number of experimental units in the future clusters, λ̂ as the estimate for the Poisson
mean obtained from the historical data, κ̂ as the estimate for the dispersion parameter, nh as the
number of experimental units per historical cluster and n̄ =

∑nh

h nh/H .

If algorithm is set to "MS22mod", both limits of the prediction interval are calibrated indepen-
dently from each other. The resulting prediction interval is given by

[l, u] =
[
n∗mλ̂−qcalibl

√
n∗m

λ̂+ κ̂n̄λ̂

n̄H
+ (n∗mλ̂+ κ̂n∗2m λ̂

2), n∗mλ̂+qcalibu

√
n∗m

λ̂+ κ̂n̄λ̂

n̄H
+ (n∗mλ̂+ κ̂n∗2m λ̂

2)
]

Please note, that this modification does not affect the calibration procedure, if only prediction limits
are of interest.

Value

neg_bin_pi() returns an object of class c("predint", "negativeBinomialPI") with prediction
intervals or limits in the first entry ($prediction).
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References

Menssen and Schaarschmidt (2022): Prediction intervals for all of M future observations based on
linear random effects models. Statistica Neerlandica, doi:10.1111/stan.12260

Examples

# HCD from the Ames test
ames_HCD

# Prediction interval for one future number of revertant colonies
# obtained in three petridishes
pred_int <- neg_bin_pi(histdat=ames_HCD, newoffset=3, nboot=100)
summary(pred_int)

# Please note that nboot was set to 100 in order to decrease computing time
# of the example. For a valid analysis set nboot=10000.

normal_pi Simple uncalibrated prediction intervals for normal distributed data

Description

normal_pi() is a helper function that is internally called by the lmer_pi_...() functions. It
calculates simple uncalibrated prediction intervals for normal distributed observations.

Usage

normal_pi(
mu,
pred_se,
m = 1,
q = qnorm(1 - 0.05/2),
alternative = "both",
futmat_list = NULL,
futvec = NULL,
newdat = NULL,
histdat = NULL,
algorithm = NULL

)

Arguments

mu overall mean

pred_se standard error of the prediction

m number of future observations

q quantile used for interval calculation

https://doi.org/10.1111/stan.12260
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alternative either "both", "upper" or "lower" alternative specifies, if a prediction interval
or an upper or a lower prediction limit should be computed

futmat_list used to add the list of future design matrices to the output if called via lmer_pi_futmat()

futvec used to add the vector of the historical row numbers that define the future exper-
imental design to the output if called via lmer_pi_futmat()

newdat additional argument to specify the current data set

histdat additional argument to specify the historical data set

algorithm used to define the algorithm for calibration if called via lmer_pi_...(). This
argument is not of interest for the calculation of simple uncalibrated intervals

Details

This function returns a simple uncalibrated prediction interval as given in Menssen and Schaarschmidt
2022

[l, u] = µ̂± q

√√√√v̂ar(µ̂) +

C+1∑
c=1

σ̂2
c

with µ̂ as the expected future observation (historical mean) and σ̂2
c as the c = 1, 2, ..., C variance

components and σ̂2
C+1 as the residual variance and q as the quantile used for interval calculation.

The direct application of this uncalibrated prediction interval to real life data is not recommended.
Please use the lmer_pi_...() functions for real life applications.

Value

normal_pi() returns an object of class c("predint", "normalPI") with prediction intervals or
limits in the first entry ($prediction).

References

Menssen and Schaarschmidt (2022): Prediction intervals for all of M future observations based on
linear random effects models. Statistica Neerlandica, doi:10.1111/stan.12260

Examples

# simple PI
norm_pred <- normal_pi(mu=10, pred_se=3, m=1)
summary(norm_pred)

https://doi.org/10.1111/stan.12260
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pi_rho_est Estimation of the binomial proportion and the intra class correlation.

Description

pi_rho_est() estimates the overall binomial proportion π̂ and the intra class correlation ρ̂ of data
that is assumed to follow the beta-binomial distribution. The estimation of π̂ and ρ̂ is done following
the approach of Lui et al. 2000.

Usage

pi_rho_est(dat)

Arguments

dat a data.frame with two columns (successes and failures)

Value

a vector containing estimates for π and ρ

References

Lui, K.-J., Mayer, J.A. and Eckhardt, L: Confidence intervals for the risk ratio under cluster sam-
pling based on the beta-binomial model. Statistics in Medicine.2000;19:2933-2942. doi:10.1002/
10970258(20001115)19:21<2933::AIDSIM591>3.0.CO;2Q

Examples

# Estimates for bb_dat1
pi_rho_est(bb_dat1)

plot.predint Plots of predint objects

Description

This function provides methodology for plotting the prediction intervals or limits that are calculated
using the functionality of the predint package.

Usage

## S3 method for class 'predint'
plot(x, ..., size = 4, width = 0.05, alpha = 0.5)

https://doi.org/10.1002/1097-0258%2820001115%2919%3A21%3C2933%3A%3AAID-SIM591%3E3.0.CO%3B2-Q
https://doi.org/10.1002/1097-0258%2820001115%2919%3A21%3C2933%3A%3AAID-SIM591%3E3.0.CO%3B2-Q
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Arguments

x object of class predint
... arguments handed over to ggplot2::aes()

size size of the dots
width margin of jittering
alpha opacity of dot colors

Value

Since plot.predint() is based on ggplot2::ggplot, it returns an object of class c("gg", "ggplot").

Examples

### PI for quasi-Poisson data
pred_int <- quasi_pois_pi(histdat=ames_HCD,

newoffset=3,
nboot=100,
traceplot = FALSE)

### Plot the PI
plot(pred_int)

### Since plot.predint is based on ggplot, the grafic can be altered using
# the methodology provided via ggplot2
plot(pred_int)+

theme_classic()

print.predint Print objects of class predint

Description

Print objects of class predint

Usage

## S3 method for class 'predint'
print(x, ...)

Arguments

x an object of class predint
... additional arguments passed over to base::cbind() and base::data.frame()

Value

prints output to the console
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qb_dat1 Quasi-binomial data (example 1)

Description

This data set contains sampled quasi-binomial data from 10 clusters each of size 50. The data set
was sampled with rqbinom(n=10, size=50, prob=0.1, phi=3).

Usage

qb_dat1

Format

A data.frame with 3 rows and 2 columns:

succ numbers of success

fail numbers of failures

qb_dat2 Quasi-binomial data (example 2)

Description

This data set contains sampled quasi binomial data from 3 clusters with different size.The data set
was sampled with rqbinom(n=3, size=c(40, 50, 60), prob=0.1, phi=3).

Usage

qb_dat2

Format

A data.frame with 3 rows and 2 columns:

succ numbers of success

fail numbers of failures
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qb_pi Simple uncalibrated prediction intervals for quasi-binomial data

Description

qb_pi() is a helper function that is internally called by quasi_bin_pi(). It calculates simple
uncalibrated prediction intervals for binary data with constant overdispersion (quasi-binomial as-
sumption).

Usage

qb_pi(
newsize,
histsize,
pi,
phi,
q = qnorm(1 - 0.05/2),
alternative = "both",
newdat = NULL,
histdat = NULL,
algorithm = NULL

)

Arguments

newsize number of experimental units in the historical clusters.

histsize number of experimental units in the future clusters.

pi binomial proportion

phi dispersion parameter

q quantile used for interval calculation

alternative either "both", "upper" or "lower" alternative specifies, if a prediction interval
or an upper or a lower prediction limit should be computed

newdat additional argument to specify the current data set

histdat additional argument to specify the historical data set

algorithm used to define the algorithm for calibration if called via quasi_bin_pi. This
argument is not of interest for the calculation of simple uncalibrated intervals

Details

This function returns a simple uncalibrated prediction interval

[l, u]m = n∗mπ̂ ± q

√
φ̂n∗mπ̂(1 − π̂) +

φ̂n∗2m π̂(1 − π̂)∑
h nh
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with n∗m as the number of experimental units in them = 1, 2, ...,M future clusters, π̂ as the estimate
for the binomial proportion obtained from the historical data, φ̂ as the estimate for the dispersion
parameter and nh as the number of experimental units per historical cluster.

The direct application of this uncalibrated prediction interval to real life data is not recommended.
Please use the beta_bin_pi() functions for real life applications.

Value

qb_pi returns an object of class c("predint", "quasiBinomailPI").

Examples

qb_pred <- qb_pi(newsize=50, pi=0.3, phi=3, histsize=c(50, 50, 30), q=qnorm(1-0.05/2))
summary(qb_pred)

qp_dat1 Quasi-Poisson data (example 1)

Description

This data set contains sampled quasi-Poisson data for 10 clusters. The data set was sampled with
rqpois(n=10, lambda=50, phi=3).

Usage

qp_dat1

Format

A data.frame with two columns

y numbers of eventzs

offset size of experimental units
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qp_dat2 Quasi-Poisson data (example 2)

Description

This data set contains sampled quasi-Poisson data for 3 clusters. The data set was sampled with
rqpois(n=3, lambda=50, phi=3).

Usage

qp_dat2

Format

A data.frame with two columns

y numbers of eventzs

offset size of experimental units

qp_pi Simple uncalibrated prediction intervals for quasi-Poisson data

Description

qp_pi() is a helper function that is internally called by quasi_pois_pi(). It calculates simple
uncalibrated prediction intervals for Poisson data with constant overdispersion (quasi-Poisson as-
sumption).

Usage

qp_pi(
newoffset,
histoffset,
lambda,
phi,
q = qnorm(1 - 0.05/2),
alternative = "both",
newdat = NULL,
histdat = NULL,
algorithm = NULL

)
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Arguments

newoffset number of experimental units in the future clusters

histoffset number of experimental units in the historical clusters

lambda overall Poisson mean

phi dispersion parameter

q quantile used for interval calculation

alternative either "both", "upper" or "lower" alternative specifies, if a prediction interval
or an upper or a lower prediction limit should be computed

newdat additional argument to specify the current data set

histdat additional argument to specify the historical data set

algorithm used to define the algorithm for calibration if called via quasi_pois_pi(). This
argument is not of interest for the calculation of simple uncalibrated intervals

Details

This function returns a simple uncalibrated prediction interval

[l, u]m = n∗mλ̂± q

√
n∗mφ̂λ̂+

n∗2m φ̂λ̂∑
h nh

with n∗m as the number of experimental units in the m = 1, 2, ...,M future clusters, λ̂ as the es-
timate for the Poisson mean obtained from the historical data, φ̂ as the estimate for the dispersion
parameter and nh as the number of experimental units per historical cluster.

The direct application of this uncalibrated prediction interval to real life data is not recommended.
Please use the quasi_pois_pi_pi() functions for real life applications.

Value

qp_pi returns an object of class c("predint", "quasiPoissonPI").

Examples

# Prediction interval
qp_pred <- qp_pi(newoffset=3, lambda=3, phi=3, histoffset=1:9, q=qnorm(1-0.05/2))
summary(qp_pred)



quasi_bin_pi 37

quasi_bin_pi Prediction intervals for quasi-binomial data

Description

quasi_bin_pi() calculates bootstrap calibrated prediction intervals for binomial data with constant
overdispersion (quasi-binomial assumption).

Usage

quasi_bin_pi(
histdat,
newdat = NULL,
newsize = NULL,
alternative = "both",
alpha = 0.05,
nboot = 10000,
delta_min = 0.01,
delta_max = 10,
tolerance = 0.001,
traceplot = TRUE,
n_bisec = 30,
algorithm = "MS22mod"

)

Arguments

histdat a data.frame with two columns (success and failures) containing the historical
data

newdat a data.frame with two columns (success and failures) containing the future
data

newsize a vector containing the future cluster sizes

alternative either "both", "upper" or "lower". alternative specifies if a prediction interval
or an upper or a lower prediction limit should be computed

alpha defines the level of confidence (1-alpha)

nboot number of bootstraps

delta_min lower start value for bisection

delta_max upper start value for bisection

tolerance tolerance for the coverage probability in the bisection

traceplot if TRUE: Plot for visualization of the bisection process

n_bisec maximal number of bisection steps

algorithm either "MS22" or "MS22mod" (see details)
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Details

This function returns bootstrap-calibrated prediction intervals as well as lower or upper prediction
limits.

If algorithm is set to "MS22", both limits of the prediction interval are calibrated simultaneously
using the algorithm described in Menssen and Schaarschmidt (2022), section 3.2.4. The calibrated
prediction interval is given as

[l, u]m = n∗mπ̂ ± qcalibŝe(Ym − y∗m)

where

ŝe(Ym − y∗m) =

√
φ̂n∗mπ̂(1 − π̂) +

φ̂n∗2m π̂(1 − π̂)∑
h nh

with n∗m as the number of experimental units in the future clusters, π̂ as the estimate for the bino-
mial proportion obtained from the historical data, qcalib as the bootstrap-calibrated coefficient, φ̂ as
the estimate for the dispersion parameter and nh as the number of experimental units per historical
cluster.

If algorithm is set to "MS22mod", both limits of the prediction interval are calibrated indepen-
dently from each other. The resulting prediction interval is given by

[l, u] =
[
n∗mπ̂ − qcalibl ŝe(Ym − y∗m), n∗mπ̂ + qcalibu ŝe(Ym − y∗m)

]
Please note, that this modification does not affect the calibration procedure, if only prediction limits
are of interest.

Value

quasi_bin_pi returns an object of class c("predint", "quasiBinomialPI") with prediction in-
tervals or limits in the first entry ($prediction).

References

Menssen and Schaarschmidt (2019): Prediction intervals for overdispersed binomial data with ap-
plication to historical controls. Statistics in Medicine. doi:10.1002/sim.8124
Menssen and Schaarschmidt (2022): Prediction intervals for all of M future observations based on
linear random effects models. Statistica Neerlandica, doi:10.1111/stan.12260

Examples

# Pointwise prediction interval
pred_int <- quasi_bin_pi(histdat=mortality_HCD, newsize=40, nboot=100)
summary(pred_int)

# Pointwise upper prediction limit
pred_u <- quasi_bin_pi(histdat=mortality_HCD, newsize=40, alternative="upper", nboot=100)
summary(pred_u)

https://doi.org/10.1002/sim.8124
https://doi.org/10.1111/stan.12260
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# Please note that nboot was set to 100 in order to decrease computing time
# of the example. For a valid analysis set nboot=10000.

quasi_pois_pi Prediction intervals for quasi-Poisson data

Description

quasi_pois_pi() calculates bootstrap calibrated prediction intervals for Poisson data with con-
stant overdispersion (quasi-Poisson).

Usage

quasi_pois_pi(
histdat,
newdat = NULL,
newoffset = NULL,
alternative = "both",
alpha = 0.05,
nboot = 10000,
delta_min = 0.01,
delta_max = 10,
tolerance = 0.001,
traceplot = TRUE,
n_bisec = 30,
algorithm = "MS22mod"

)

Arguments

histdat a data.frame with two columns. The first has to contain the historical obser-
vations. The second has to contain the number of experimental units per study
(offsets).

newdat a data.frame with two columns. The first has to contain the future observations.
The second has to contain the number of experimental units per study (offsets).

newoffset vector with future number of experimental units per historical study.
alternative either "both", "upper" or "lower". alternative specifies if a prediction interval

or an upper or a lower prediction limit should be computed
alpha defines the level of confidence (1 − α)
nboot number of bootstraps
delta_min lower start value for bisection
delta_max upper start value for bisection
tolerance tolerance for the coverage probability in the bisection
traceplot if TRUE: Plot for visualization of the bisection process
n_bisec maximal number of bisection steps
algorithm either "MS22" or "MS22mod" (see details)
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Details

This function returns bootstrap-calibrated prediction intervals as well as lower or upper prediction
limits.

If algorithm is set to "MS22", both limits of the prediction interval are calibrated simultaneously
using the algorithm described in Menssen and Schaarschmidt (2022), section 3.2.4. The calibrated
prediction interval is given as

[l, u]m = n∗mλ̂± qcalib

√
n∗mφ̂λ̂+

n∗2m φ̂λ̂∑
h nh

with n∗m as the number of experimental units in the future clusters, λ̂ as the estimate for the Poisson
mean obtained from the historical data, qcalib as the bootstrap-calibrated coefficient, φ̂ as the es-
timate for the dispersion parameter and nh as the number of experimental units per historical cluster.

If algorithm is set to "MS22mod", both limits of the prediction interval are calibrated indepen-
dently from each other. The resulting prediction interval is given by

[l, u] =
[
n∗mλ̂− qcalibl

√
n∗mφ̂λ̂+

n∗2m φ̂λ̂∑
h nh

, n∗mλ̂+ qcalibu

√
n∗mφ̂λ̂+

n∗2m φ̂λ̂∑
h nh

]
Please note, that this modification does not affect the calibration procedure, if only prediction limits
are of interest.

Value

quasi_pois_pi returns an object of class c("predint", "quasiPoissonPI") with prediction in-
tervals or limits in the first entry ($prediction).

References

Menssen and Schaarschmidt (2022): Prediction intervals for all of M future observations based on
linear random effects models. Statistica Neerlandica, doi:10.1111/stan.12260

Examples

#' # Historical data
qp_dat1

# Future data
qp_dat2

# Pointwise prediction interval
pred_int <- quasi_pois_pi(histdat=ames_HCD, newoffset=3, nboot=100)
summary(pred_int)

# Pointwise upper prediction
pred_u <- quasi_pois_pi(histdat=ames_HCD, newoffset=3, alternative="upper", nboot=100)
summary(pred_u)

https://doi.org/10.1111/stan.12260
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# Please note that nboot was set to 100 in order to decrease computing time
# of the example. For a valid analysis set nboot=10000.

rbbinom Sampling of beta-binomial data

Description

rbbinom() samples beta-binomial data according to Menssen and Schaarschmidt (2019).

Usage

rbbinom(n, size, prob, rho)

Arguments

n defines the number of clusters (i)

size integer vector defining the number of trials per cluster (ni)

prob probability of success on each trial (π)

rho intra class correlation (ρ)

Details

For beta binomial data with i = 1, ...I clusters, the variance is

var(yi) = niπ(1 − π)[1 + (ni − 1)ρ]

with ρ as the intra class correlation coefficient

ρ = 1/(1 + a+ b).

For the sampling (a+ b) is defined as

(a+ b) = (1 − ρ)/ρ

where a = π(a + b) and b = (a + b) − a. Then, the binomial proportions for each cluster are
sampled from the beta distribution

πi ∼ Beta(a, b)

and the number of successes for each cluster are sampled to be

yi ∼ Bin(ni, πi).

In this parametrization E(πi) = π = a/(a+ b) and E(yi) = niπ. Please note, that 1 + (ni − 1)ρ
is a constant if all cluster sizes are the same and hence, in this special case, also the quasi-binomial
assumption is fulfilled.
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Value

a data.frame with two columns (succ, fail)

References

Menssen M, Schaarschmidt F.: Prediction intervals for overdispersed binomial data with application
to historical controls. Statistics in Medicine. 2019;38:2652-2663. doi:10.1002/sim.8124

Examples

# Sampling of example data
set.seed(234)
bb_dat1 <- rbbinom(n=10, size=50, prob=0.1, rho=0.06)
bb_dat1

set.seed(234)
bb_dat2 <- rbbinom(n=3, size=c(40, 50, 60), prob=0.1, rho=0.06)
bb_dat2

rnbinom Sampling of negative binomial data

Description

rnbinom() samples negative-binomial data. The following description of the sampling process is
based on the parametrization used by Gsteiger et al. 2013.

Usage

rnbinom(n, lambda, kappa, offset = NULL)

Arguments

n defines the number of clusters (I)

lambda defines the overall Poisson mean (λ)

kappa dispersion parameter (κ)

offset defines the number of experimental units per cluster (ni)

https://doi.org/10.1002/sim.8124
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Details

The variance of the negative-binomial distribution is

var(Yi) = niλ(1 + κniλ).

Negative-biomial observations can be sampled based on predefined values of κ, λ and ni:
Define the parameters of the gamma distribution as a = 1

κ and bi = 1
κniλ

. Then, sample the Poisson
means for each cluster

λi ∼ Gamma(a, bi).

Finally, the observations yi are sampled from the Poisson distribution

yi ∼ Pois(λi)

Value

rnbinom() returns a data.frame with two columns: y as the observations and offset as the
number of offsets per observation.

References

Gsteiger, S., Neuenschwander, B., Mercier, F. and Schmidli, H. (2013): Using historical control
information for the design and analysis of clinical trials with overdispersed count data. Statistics in
Medicine, 32: 3609-3622. doi:10.1002/sim.5851

Examples

# Sampling of negative-binomial observations
# with different offsets
set.seed(123)
rnbinom(n=5, lambda=5, kappa=0.13, offset=c(3,3,2,3,2))

rqbinom Sampling of overdispersed binomial data with constant overdispersion

Description

rqbinom samples overdispersed binomial data with constant overdispersion from the beta-binomial
distribution such that the quasi-binomial assumption is fulfilled.

Usage

rqbinom(n, size, prob, phi)

https://doi.org/10.1002/sim.5851
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Arguments

n defines the number of clusters (i)

size integer vector defining the number of trials per cluster (ni)

prob probability of success on each trial (π)

phi dispersion parameter (Φ)

Details

It is assumed that the dispersion parameter (Φ) is constant for all i = 1, ...I clusters, such that the
variance becomes

var(yi) = Φniπ(1 − π).

For the sampling (a+ b)i is defined as

(a+ b)i = (Φ − ni)/(1 − Φ)

where ai = π(a + b)i and bi = (a + b)i − ai. Then, the binomial proportions for each cluster are
sampled from the beta distribution

πi ∼ Beta(ai, bi)

and the numbers of success for each cluster are sampled to be

yi ∼ Bin(ni, πi).

In this parametrization E(πi) = π and E(yi) = niπ. Please note, the quasi-binomial assumption
is not in contradiction with the beta-binomial distribution if all cluster sizes are the same.

Value

a data.frame with two columns (succ, fail)

Examples

# Sampling of example data
set.seed(456)
qb_dat1 <- rqbinom(n=10, size=50, prob=0.1, phi=3)
qb_dat1

set.seed(456)
qb_dat2 <- rqbinom(n=3, size=c(40, 50, 60), prob=0.1, phi=3)
qb_dat2
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rqpois Sampling of overdispersed Poisson data with constant overdispersion

Description

rqpois() samples overdispersed Poisson data with constant overdispersion from the negative-
binomial distribution such that the quasi-Poisson assumption is fulfilled. The following description
of the sampling process is based on the parametrization used by Gsteiger et al. 2013.

Usage

rqpois(n, lambda, phi, offset = NULL)

Arguments

n defines the number of clusters (I)

lambda defines the overall Poisson mean (λ)

phi dispersion parameter (Φ)

offset defines the number of experimental units per cluster (ni)

Details

It is assumed that the dispersion parameter (Φ) is constant for all i = 1, ...I clusters, such that the
variance becomes

var(yi) = Φniλ

For the sampling κi is defined as
κi = (Φ − 1)/(niλ)

where ai = 1/κi and bi = 1/(κiniλ). Then, the Poisson means for each cluster are sampled from
the gamma distribution

λi ∼ Gamma(ai, bi)

and the observations per cluster are sampled to be

yi ∼ Pois(λi).

Please note, that the quasi-Poisson assumption is not in contradiction with the negative-binomial
distribution, if the data structure is defined by the number of clusters only (which is the case here)
and the offsets are all the same nh = nh = n.

Value

a data.frame containing the sampled observations and the offsets

References

Gsteiger, S., Neuenschwander, B., Mercier, F. and Schmidli, H. (2013): Using historical control
information for the design and analysis of clinical trials with overdispersed count data. Statistics in
Medicine, 32: 3609-3622. doi:10.1002/sim.5851

https://doi.org/10.1002/sim.5851
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Examples

# set.seed(123)
qp_dat1 <- rqpois(n=10, lambda=50, phi=3)
qp_dat1

# set.seed(123)
qp_dat2 <- rqpois(n=3, lambda=50, phi=3)
qp_dat2

summary.predint Summarizing objects of class predint

Description

This function gives a summary about the prediction intervals (and limits) computed with predint.

Usage

## S3 method for class 'predint'
summary(object, ...)

Arguments

object object of class predint

... further arguments passed over to base::cbind() and base::data.frame()

Value

A data.frame containing the current data (if provided via newdat), the prediction interval (or
limit), the expected value for the future observation, the bootstrap calibrated coefficient(s), the
prediction standard error and a statement about the coverage for each future observation, if new
observations were provided via newdat.

Examples

# Fitting a random effects model based on c2_dat1
fit <- lme4::lmer(y_ijk~(1|a)+(1|b)+(1|a:b), c2_dat1)

# Prediction interval using c2_dat2 as future data
pred_int <- lmer_pi_futmat(model=fit, newdat=c2_dat2, alternative="both", nboot=100)
summary(pred_int)

#----------------------------------------------------------------------------
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# Please note that nboot was set to 100 in order to decrease computing time
# of the example. For a valid analysis set nboot=10000.
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