
Trading with the portfolio package

by Je� Enos, Daniel Gerlanc, and David Kane

August 23, 2024

Abstract

Given a set of current holdings and a target portfolio, that is, a set of

desirable holdings to which we would be willing to switch if trading were

free, and that our reasons for trading can be captured with one or more

rank orderings, the portfolio package provides a way to use multiple

measures of desirability to determine which trades or portions of trades

to do.

1 Introduction

What should we trade now? This question is much more di�cult than it might
�rst appear, and yet thousands of individuals and �rms controlling trillions of
dollars must answer it each day. Consider a simple example.

Imagine that the investment universe is restricted to 10 securities and that
our portfolio must hold 5 equal-weighted long positions. At any given point in
time, we will hold one of those portfolios. The simplest possible �trade� is to
do nothing, keeping the same portfolio in the next period that we hold in the
current one. A period can be 5 minutes or 5 months or any length of time.
The next simplest trade is a single position swap. Trade one of our 5 current
holdings for one of the 5 securities not in the portfolio. There are 25 such trades.
Continuing up the complexity scale, there are 100 trades in which we replace
2 securities in the portfolio with 2 securities not in the portfolio. Considering
all sets of possible trades, there are 252 options (including the option of no
trading), which is equal to the total number of possible portfolios,

(
10
5

)
.

In a world of perfect information, we would know the future returns for
each of the 10 securities in the universe. Given this information, and some
preferences with regard to risk and return, we could examine all 252 options
and determine which was best. Unfortunately, in a real world example with
thousands of securities in the universe and possibly hundreds in the portfolio,
there is no way to consider every possible portfolio.

2 Complications

The problem of choosing the set of trades to perform, or to which target portfolio
to trade, is di�cult because of the sheer number of possible solutions. As

1

3 KEY SIMPLIFYING ASSUMPTIONS 2

a result, it is impossible to look at every set of possible trades, or each target
portfolio that results from these trades. Even then, suppose we could arrive at a
single, desirable target portfolio. There are still complications when determining
exactly which portions of the resulting trades should be done.

� Liquidity: Even if it were simple to determine the target portfolio, it
may be di�cult to get there. Imagine that moving to the target portfolio
requires that we trade one million shares of IBM; however, suppose IBM
typically trades 100,000 shares per day. How are we going to buy all the
necessary shares in one day? Even if we bought the entire day's volume
(an impossibility) it would take us ten days to get the entire position.

� Price Impact: Although commission and spread may be linear in trade
volume, price impact is not. We are a participant in the market, and every
time we trade we impact the price. Price impact is generally small if we
trade a modest portion, say 10%, of volume. But if we trade more, then
the price will move against us. Over some range, price impact increases
more than linearly.

� Trade Costs: Trading is not free so we will want to do less of it in
the real world than we might care to do in theory. Basic trading costs
(including commissions and spread) tend to enter the calculation linearly.
Trade twice as much and we pay twice the costs.

� Turnover: Turnover is the �ip-side of holding period. In an ideal world,
holding period would be endogenous. We would select the holding period
which maximised the risk-adjusted return of the portfolio. But, in the
real world, almost all portfolios have targeted holding periods to which we
much adhere. We are only allowed a certain amount of turnover.

� Ranking Trades: We may have multiple criteria for ranking trades.
Some criteria may be more appropriate for ranking certain types of trades
under speci�c circumstances. In the case where we have a large number of
criteria, how do we choose the most appropriate criterion for each trade?

None of these problems is impossible to overcome, but all of them conspire to
make a general solution to the trading problem extremely di�cult. Therefore,
we simplify.

3 Key Simplifying Assumptions

The portfolio package makes three major simplifying assumptions. The �rst
is that we have created a �target� or �ideal� portfolio, a set of positions that is
desirable and to which we would be willing to switch if trading were free. This
assumption is implausible but it does serve to make the problem tractable. If
we only consider trades which move us closer to the target portfolio, it is much
easier to handle the other di�culties associated with turnover, liquidity and

4 IMPLEMENTATION 3

the like. Instead of looking at all possible buys, for example, we only need to
analyse buys for securities in which the target portfolio has more shares than the
current portfolio. The second simplifying assumption is that di�erent criteria
for trading can be captured with a rank ordering. We discard the information
used to create the ranks. The third simplifying assumption is that no one type
of trade is intrinsically better than another type of trade. All things equal, buys,
sells, covers, and shorts are equally preferable.

4 Implementation

Our simplifying assumptions allow us to solve the trading problem much more
easily, but implementing the solution still requires many steps. Consider a
simple example where we already have a small portfolio consisting of positions
in various equities. We have been given an additional $1,000 to invest in the
portfolio, and we must invest this $1,000 over the course of one trading day.
This is not a realistic scenario, but having a set amount of time in which to
trade will simplify our example. Throughout the document, we will refer to our
present holdings as the �current� portfolio. The �target portfolio� is an ideal set
of holdings to which we would immediately switch if trading were free as per the
�rst simplifying assumption. Note that in this simple example the only trades
we will be considering are buys.

4.1 Current and target holdings

Our current portfolio consists of shares of 3 companies, IBM (International
Business Machines), GM (General Motors) and EBAY (EBay).

shares price

IBM 100 10

GM 100 30

EBAY 75 120

The shares column expresses how many shares of each stock are in the
portfolio, and the price column expresses the most recent price of that equity.1

The market value of the current portfolio can be calculated by summing the
products of the shares and prices.

As per the simplifying assumption, we provide a target portfolio.

shares price

GOOG 50 20

EBAY 75 120

IBM 100 10

GM 200 30

SCHW 100 50

MSFT 100 60

1For simplicity, we use US dollars.

4 IMPLEMENTATION 4

We would like to buy more shares of GM and take positions in SCHW
(Charles Schwab Inc.), MSFT (Microsoft), and GOOG (Google). The market
value of the target portfolio is $28,000.

4.2 Portfolio di�erence

The portfolio di�erence may be understood as the trades that would change our
current holdings into our target holdings. If trading were free and instantaneous,
we would immediately complete all these trades and reach our target portfolio.
Alas, trading is not free, and we will most likely not complete all the orders
in one day. Some of them probably require that we purchase a large portion
of the daily trading volume (over 10%), at which point the trade may become
signi�cantly less desirable.

From the portfolio di�erence, we determine our candidate trades.

candidate trades: The complete set of trades we would have to make to
trade from our current portfolio to the target portfolio. If trading were
free, we would make all of these trades right now.

Below, we list the candidate trades.

side shares mv

GM B 100 3000

GOOG B 50 1000

MSFT B 100 6000

SCHW B 100 5000

The side column expresses what type of trade we will be making.2 All
the candidate trades are buys so the side column only contains B. The shares
column expresses the number of shares of each stock we must buy to reach the
target portfolio. The mv column expresses the e�ect that the candidate trade
will have on the value of the portfolio. Buys, which increase the value of our
portfolio, have a positive value. Sells, which decrease the value of the portfolio,
have a negative value.

As the market value of the target portfolio ($28,000) is greater than the
market value of the original portfolio ($13,000), we would have to invest an
additional $15,000 to trade from our current portfolio to our target portfolio.
However, we only have $1,000 with which we may buy additional shares. There-
fore, we have to decide which subset of the candidate trades we will make.

One of our simplifying assumptions is that we would instantly switch to
the target portfolio if trading were free. This implies that all of the candidate
trades are desirable. However, they are not all equally desirable. Some trades
are better than others. We want to determine which candidate trades or subsets
of the candidate trades yield the most utility on the margins.

2In later examples, S will represent a sell, X will represent a short and C will represent a

cover.

4 IMPLEMENTATION 5

If we had unlimited funds or could freely trade between our current and
target portfolios, we would not have to express preferences amongst trades.
However, in the real world, we must decide, given a set of possible trades, which
trades we should make �rst. One way to do this involves assigning each trade a
value of overall desirability. For example, one could use the values of a signal,
calculated for each stock, as the measure of desirability for each trade.

signal: a value, most likely generated by some sort of quantitative model,
which expresses the relative quality of the candidate trades.

In our example, we assign to trades values of a signal called alpha. When we
associate trades with the values of alpha we say that we �sort by alpha� or �use
alpha as a sort.� Like portfolio construction, signal generation is beyond the
scope of this document. In this example, the alpha signal is already calculated
and provided for use in a sort. In the table below, the candidate at the top of the
data frame has the highest value for alpha and is therefore the most desirable
trade with respect to this signal.

side alpha

MSFT B 1.5

SCHW B 1.2

GOOG B 1.1

GM B 1.0

Based on the above signal values, MSFT is the best trade, SCHW is the
second best trade, and GM is the worst trade with an alpha value of 1.

4.3 Preliminary ranks

We determine which trades are most desirable by generating an overall measure
of desirability for each trade. The �rst step in generating this value involves
creating a rank ordering of the trades for each sort we have created. A de�nition
of this term follows:

rank ordering: a linear, relational ordering of the candidates, where each
candidate is assigned a rank from the set 1, 2, 3 . . . n where n is the number
of candidate trades. Trade 1 provides the greatest utility and trade n
provides the least utility. In creating a rank ordering we discard cardinal
information such as a signal and replace it with a whole number ranking.

We rank and order the candidates by the signal called alpha below:

rank side alpha shares mv

MSFT 1 B 1.5 100 6000

SCHW 2 B 1.2 100 5000

GOOG 3 B 1.1 50 1000

GM 4 B 1.0 100 3000

4 IMPLEMENTATION 6

While the alpha column provides an absolute measure of desirability, rank
expresses the relative desirability amongst trades. We say that we lose cardinal

information when we use ranks.

cardinal information: The values used to create a rank ordering. The cre-
ation of ranks abstracts these values and replaces them with an ordering
that re�ects the value of an element relative to other elements in the rank
ordering.

In some cases we may want to use more than one measure of desirability.
We may have more than one source of cardinal information. Imagine that we
want to use both alpha and one-day return as the cardinal information in our
sorts. If we believe in one day reversal, we would assign higher ranks to both
orders to sell stocks with positive one-day returns and to orders to buy stocks
with negative one-day returns. However, we associate more desirable buys with
greater sort values. To account for this, the inverse of one-day return is used as
the cardinal information for a one-day reversal sort. Therefore, if the one-day
return for GM is −0.10, the value used in the one-day reversal sort is 0.10.
Below, the table on the left shows the di�erent stocks' one-day return. The
table on the right shows the ranks and input values in the one-day reversal sort
ret.1.d.

side one.day.ret side rank ret.1.d (sort)

GM B -0.10 GM B 1 0.10

GOOG B -0.01 GOOG B 2 0.01

MSFT B 0.01 MSFT B 3 -0.01

SCHW B 0.02 SCHW B 4 -0.02

GM has the highest rank according to one-day reversal because it has the
most negative return of all the buys.

4.3.1 The problem of multiple sorting criteria

When we combine the sorts in a single data frame, it is not clear which sort
values we should use. If we order by alpha we get the following set of ranks:

rank alpha ret.1.d

MSFT 1 1.5 -0.02

SCHW 2 1.2 -0.01

GOOG 3 1.1 0.01

GM 4 1.0 0.10

Ranking by the inverse of one-day return yields another ordering:

rank alpha ret.1.d

GM 1 1.0 0.10

4 IMPLEMENTATION 7

GOOG 2 1.1 0.01

SCHW 3 1.2 -0.01

MSFT 4 1.5 -0.02

When we use multiple sorts, there is no obvious way in which we would order
the trades by desirability. When sorting by alpha, MSFT is the most desirable
trade, and when sorting by the inverse of one-day return, GM is the most
desirable trade. We cannot easily compare or combine the two sorts because we
do not know what the exact relationship is between one-day reversal and alpha,
and because the sorts are on di�erent numeric scales.

4.4 Weighting sorts

At this point we face two problems. First, we have measures of desirability that
are on totally di�erent numeric scales. Inverse of return is in percent return,
and alpha is in some other units. In order to work with both variables at the
same time, we transform each measure into a series of ranks.

The second problem we face is that the two variables we're using may not
be equally important. As sorts express preferences amongst trades, weights
express preferences amongst sorts. By assigning each sort a weight, we express
how important that sort is relative to other sorts. To illustrate some weighting
examples, let's consider the scenario in which we have assigned a weight of 1
to both the alpha and one-day reversal sorts. By assigning the same weight
to both sorts we assert that they are equally important. Assigning a weight
directly a�ects the sort rankings by causing them to be divided by the weight.
However, we have assigned both of the sorts a weight of 1 so the ranks remain
the same.

rank side alpha shares mv

MSFT 1 B 1.5 100 6000

SCHW 2 B 1.2 100 5000

GOOG 3 B 1.1 50 1000

GM 4 B 1.0 100 3000

The ranks for one-day return remain the same because one-day reversal has
a weight of 1.

rank side ret.1.d shares mv

GM 1 B 0.10 100 3000

GOOG 2 B 0.01 50 1000

SCHW 3 B -0.01 100 5000

MSFT 4 B -0.02 100 6000

Having divided the original raw ranks by weight, we now have weighted ranks.

raw ranks: the original, linearly spaced ranks, built on the scale 1, 2, 3 . . . n

weighted ranks: the raw ranks divided by sort weight.

4 IMPLEMENTATION 8

We now have two ranks associated with each candidate, one from the alpha
sort and another from the one-day reversal sort. To illustrate that we have
duplicate ranks for each sort, we combine the equally-weighted alpha and one-
day reversal sorts to form a single data frame.

rank sort side shares mv

MSFT.alpha 1 alpha B 100 6000

GM.ret.1.d 1 ret.1.d B 100 3000

SCHW.alpha 2 alpha B 100 5000

GOOG.ret.1.d 2 ret.1.d B 50 1000

GOOG.alpha 3 alpha B 50 1000

SCHW.ret.1.d 3 ret.1.d B 100 5000

GM.alpha 4 alpha B 100 3000

MSFT.ret.1.d 4 ret.1.d B 100 6000

The row names contain the equity ticker symbols and the name of the sort
that generated the rank. For each rank there are two candidates, one of which
has been associated with a rank from alpha and the other which has been
associated with a rank from one-day reversal. In cases such as this where we
have equally weighted sorts there will be a candidate trade from each sort at
every rank.

If we use n sorts, we will have n ranks associated with each candidate. We
only want one rank associated with each candidate. So that each candidate only
has one rank associated with it, we assign each rank the best rank generated
for it by any sort. We have done this in the data frame below.

rank shares mv

GM 1 100 3000

MSFT 1 100 6000

GOOG 2 50 1000

SCHW 2 100 5000

Both GM and MSFT have been assigned a rank of one. This occurs because
MSFT has been ranked 1 by the alpha sort and GM has been ranked 1 by the
one-day reversal sort. SCHW has been ranked 2 by the alpha sort and GOOG
has been ranked 3 by the alpha sort.

When we equally weight the sorts we are equally likely to use ranks from
either sort. This behaviour is logical because assigning sorts equal weights
suggests that they are equally important. However, the sorts may not always
be equally important. In the next example we use a weighting scheme that
causes us to use one sort to the exclusion of the other.

Let's say that we do not want to consider one-day reversal. To ignore all
of the one-day reversal values, we make alpha 10 times more important than
one-day reversal. Therefore, we will consider 10 ranks from alpha for every one
rank from one-day reversal. As there are only 4 candidate trades, we will choose
the rankings in alpha over all ranks in the one-day reversal sort.

rank side shares mv

MSFT.alpha 0.1 B 100 6000

4 IMPLEMENTATION 9

SCHW.alpha 0.2 B 100 5000

GOOG.alpha 0.3 B 50 1000

GM.alpha 0.4 B 100 3000

GM.ret.1.d 1.0 B 100 3000

GOOG.ret.1.d 2.0 B 50 1000

SCHW.ret.1.d 3.0 B 100 5000

MSFT.ret.1.d 4.0 B 100 6000

Creating this unbalanced weighting causes us to stack the alpha ranks on
top of the one-day reversal ranks. Since we always assign the lowest rank from
all trades to a sort, we will consider the alpha ranks before any of the one-day
reversal ranks.

rank sort shares mv

MSFT 0.1 alpha 100 6000

SCHW 0.2 alpha 100 5000

GOOG 0.3 alpha 50 1000

GM 0.4 alpha 100 3000

Making the alpha sort 10 times as important as the one-day reversal sort
causes us to only use ranks from the alpha sort. We do not even consider the
number 1 ranked one-day reversal trade until we examine all the alpha values
ranked in the top ten. As we only have 4 candidate trades, we do not consider
any trades from one-day reversal.

The last weighting we will consider falls somewhere in between the previous
two. We weight the alpha sort by an additional 50%, and as a result divide all
of the ranks in the alpha sort by 1.5.

rank side shares mv

MSFT.alpha 0.67 B 100 6000

GM.ret.1.d 1.00 B 100 3000

SCHW.alpha 1.33 B 100 5000

GOOG.alpha 2.00 B 50 1000

GOOG.ret.1.d 2.00 B 50 1000

GM.alpha 2.67 B 100 3000

SCHW.ret.1.d 3.00 B 100 5000

MSFT.ret.1.d 4.00 B 100 6000

This causes us to consider 3 ranks from the alpha sort for every 2 ranks from
the one-day reversal sort.

rank sort shares mv

MSFT 0.67 alpha 100 6000

GM 1.00 ret.1.d 100 3000

SCHW 1.33 alpha 100 5000

GOOG 2.00 alpha 50 1000

We use three of the ranks from the alpha sort and one rank from the one-day
reversal sort. This is the weighting scheme that we will use in the rest of the
example.

4 IMPLEMENTATION 10

To review, the ranking process has four steps. First, we ranked each trade
according to both alpha and one-day reversal to generate raw ranks. Second,
we weighted these ranks. Third, we combined the alpha and one-day reversal
ranks. Fourth, we eliminated duplicates by associating each trade with the
lowest rank assigned to it by either alpha or one-day reversal. We call these
ranks preliminary ranks because they are not the �nal values we use to determine
the desirability of each trade. Nonetheless, we must generate preliminary ranks
before we can arrive at �nal ranks, the calculation of which we describe in the
next section.

4.5 Generating synthetic ranks

Consider a scenario with 100 candidate trades. If trade 1 is X better than trade
2, is trade 99 X better than trade 100? Most portfolio managers would argue
that the di�erence in utility between trade 1 and trade 2 is greater than the
di�erence in utility between trade 99 and trade 100. However, with raw ranks,
we make no assertion of how much better one trade is than another trade. To
express the tendency for us to derive more utility from the most highly ranked
trades, we synthesise yet another set of values from the weighted ranks. We call
these values synthetic ranks.3

synthetic ranks: values generated by mapping the weighted ranks to a trun-
cated normal distribution (> 85th percentile on N(0, 1)).

First, we re-rank the weighted ranks:

rank shares mv

MSFT 1 100 6000

GM 2 100 3000

SCHW 3 100 5000

GOOG 4 50 1000

Next, we evenly distribute the ranks on the interval [0.85, 1) such that the
best ranked trades are closest to 1 and the worst ranked trades are closest to
0.85:

rank shares mv rank.s

MSFT 1 100 6000 0.97

GM 2 100 3000 0.94

SCHW 3 100 5000 0.91

GOOG 4 50 1000 0.88

We list the scaled ranks in rank.s. Next, we map to a truncated normal
distribution.4

3We are abusing the term �ranks� by using it in several di�erent contexts.
4> 85th percentile of N(0, 1)

4 IMPLEMENTATION 11

rank shares mv rank.s rank.t

MSFT 1 100 6000 0.97 1.9

GM 2 100 3000 0.94 1.6

SCHW 3 100 5000 0.91 1.3

GOOG 4 50 1000 0.88 1.2

The rank.t column lists the ranks mapped to a truncated normal distribu-
tion. MSFT has the best rank and GOOG has the worst rank. We might expect
to see a rank.t of approximately 3.5 for the best ranked trade, but because we
only have 4 candidates and the scaled values are evenly spaced on the interval
[0.85, 1), the normalised value of the best ranked trade is not as great as it would
be if we had 100 trades.

Recall that synthetic ranks express the tendency for there to be greater dif-
ferences in desirability between adjacent, highly ranked trades (1, 2, 3 . . .) than
between adjacent, poorly ranked trades:

rank ∆ N(0, 1) ∆ > 85th of N(0, 1) ∆
1 1 3.50 1.17 3.50 0.53
2 1 2.32 0.27 2.96 0.21
3 1 2.05 0.17 2.74 0.13
4 1 1.88 0.13 2.61 0.10
5 1 1.75 0.11 2.51 0.08
.
.

48 1 0.05 0.03 1.46 0.01
49 1 0.02 0.02 1.45 0.01
50 1 0.00 0.02 1.44 0.01
51 1 -0.02 0.02 1.43 0.01
52 1 -0.05 0.03 1.42 0.01
.
.

96 1 -1.64 0.11 1.06 0.00
97 1 -1.75 0.13 1.06 0.00
98 1 -1.88 0.17 1.06 0.00
99 1 -2.05 0.27 1.06 0.00
100 - -2.32 - 1.06 -

Table 1: Creating synthetic ranks using a linear distribution, a normal distribu-
tion, and a truncated normal distribution. Delta columns express the di�erence
in desirability between adjacent trades.

Table 1 expresses the di�erences amongst distributions we might use to rank
100 trades. The rank column contains the raw ranks for the 5 best trades, the
5 middle-ranked trades, and the 5 worst trades. In this example the ranks on
[1, 100] are spaced on intervals of one. The rank di�erence between every trade

4 IMPLEMENTATION 12

is the same. The di�erence between trade 1 and trade 2 is the same as the
di�erence between trade 99 and trade 100.

The normal distribution column (N(0, 1)) expresses what happens when we
normalise the raw ranks. The normal distribution correctly expresses our belief
that there is a large di�erence in desirability between the best ranked trades.
However, use of the normal distribution would incorrectly suggest that there are
similarly large desirability di�erences between the worst trades. We get these
results when using the normal distribution because the best and worst ranked
trades lie in the tails of the distribution. We do not want large di�erences
in desirability amongst the worst ranked trades. The desirability di�erences
decrease until we reach trade 50, then increase again as we move towards the
other tail of the distribution. We want desirability to remain the same on the
margin past the 50th trade.

To address the problems associated with normalising to N(0, 1), we nor-
malise to a normal distribution truncated below the 85th percentile. In the
rightmost delta (∆) column, the synthetic rank di�erences between the best
ranked trades are over 50 times greater than the synthetic rank di�erences be-
tween the middle ranked trades. Every trade ranked worse than 50 has a similar
synthetic rank di�erence. Although the subset [0.85, 1) is slightly arbitrary, (we
could have set the lower extreme to be 0.84, 0.86, or another similar value) it
serves our purpose of expressing large di�erences in desirability where we �nd
the best buys, on one tail, and small di�erences in desirability amongst the
worst buys, on the other.

Recall the steps we have taken towards generating our �nal synthetic rank.
First, we converted the sort values to raw ranks. Second, we converted the
raw ranks to weighted ranks. Third, we scaled the weighted ranks to [0.85, 1)
to generate scaled weights. Lastly, we mapped the scaled weights to a trun-
cated normal distribution for our �nal synthetic rank. By only using the 85th

percentile and above, we express our belief that the di�erences in desirability be-
tween the best ranked trades is much greater than the di�erences in desirability
between the worst ranked trades.

If the costs associated with trading any stock, all things being equal, were
the same, we would not care about the di�erence in utility between trades. We
would move down the trade list from best to worst until we reached our allotted
turnover. However, our trading in�uences prices and may reduce the desirability
of a trade.

4.6 Chunks, synthetic rank, and trade-cost adjustment

We want to know at what point the cost of trading an equity exceeds the utility
of trading that equity. In the portfolio package, we use synthetic rank to
represent utility. Determining the cost of purchasing an additional share is
impossible if our smallest trading unit is an entire order so we break each order
into chunks.

chunk: A portion of a candidate trade.

4 IMPLEMENTATION 13

We break candidate trades into chunks by market value. Each chunk has a
market value of approximately $2000:

side shares mv alpha ret.1.d rank.t chunk.shares chunk.mv

MSFT.1 B 100 6000 1.5 -0.02 1.9 33 1980

MSFT.2 B 100 6000 1.5 -0.02 1.9 33 1980

MSFT.3 B 100 6000 1.5 -0.02 1.9 33 1980

MSFT.4 B 100 6000 1.5 -0.02 1.9 1 60

GM.1 B 100 3000 1.0 0.10 1.6 67 2010

GM.2 B 100 3000 1.0 0.10 1.6 33 990

SCHW.1 B 100 5000 1.2 -0.01 1.3 40 2000

SCHW.2 B 100 5000 1.2 -0.01 1.3 40 2000

SCHW.3 B 100 5000 1.2 -0.01 1.3 20 1000

GOOG.1 B 50 1000 1.1 0.01 1.2 50 1000

The candidate trades are broken into 10 chunks. The number following
the ticker in the row name expresses the chunk number for that particular
equity. The chunks.mv column expresses the market value of each chunk. The
chunk.shares column expresses how many shares are in each chunk.

4.6.1 Trade-cost adjustment of individual chunks

As we trade a greater percentage of the average daily volume, the price of the
trades will increase. To re�ect this phenomenon, we penalise the synthetic ranks
of the chunk as we trade greater percentages of the daily volume. We call this
penalty trade-cost adjustment.

trade-cost adjustment: Lowering a chunk's rank because of trading volume.

To �x this idea, let's �rst examine the daily volumes of our candidate trades.5

rank.t volume shares

MSFT 1.9 2600 100

GM 1.6 100 100

SCHW 1.3 2500 100

GOOG 1.2 2200 50

The trades we want to make for MSFT, SCHW, and GOOG involve less
than 3% of the daily trading volume. However, we want to trade 100% of the
daily trading volume of GM. We would probably not be able to purchase all of
these shares in one day, and even if we could, we would a�ect prices signi�cantly.
Moving into the position over several days would be better.

We use a trade-cost adjustment function to express how increasing trade
costs reduce the desirability of candidate trades. To better approximate utility,
we penalise synthetic ranks at the chunk level. Doing this allows us to better

5The volume column represents some measure of past trading volume such as the average

trading volume over the last 30 days. A daily measure of volume is not required; we would

use whatever measure is natural for the frequency with which we trade.

4 IMPLEMENTATION 14

determine at which point the cost of trading an additional chunk is greater
than the utility derived by trading an additional chunk. We perform trade-
cost adjustment on the chunks by keeping track of what percentage of the daily
volume we have traded with each additional chunk. In the trade-cost adjustment
function used in this example, the �rst chunk to cross the threshold of 15% of
the daily trading volume is penalised by a �xed amount. All subsequent chunks
are penalised by that amount, and any further chunks that pass 30% or 45%
percent of the daily trading volume receive further penalties. The function used
in this example also prevents any adjustment on the �rst chunk of a candidate
trade. Below, we can see that the second chunk of the trade for GM has been
trade-cost adjusted:

side mv alpha ret.1.d rank.t chunk.shares chunk.mv tca.rank

MSFT.1 B 6000 1.5 -0.02 1.9 33 1980 1.9

MSFT.2 B 6000 1.5 -0.02 1.9 33 1980 1.9

MSFT.3 B 6000 1.5 -0.02 1.9 33 1980 1.9

MSFT.4 B 6000 1.5 -0.02 1.9 1 60 1.9

GM.1 B 3000 1.0 0.10 1.6 67 2010 1.6

GM.2 B 3000 1.0 0.10 1.6 33 990 -4.4

SCHW.1 B 5000 1.2 -0.01 1.3 40 2000 1.3

SCHW.2 B 5000 1.2 -0.01 1.3 40 2000 1.3

SCHW.3 B 5000 1.2 -0.01 1.3 20 1000 1.3

GOOG.1 B 1000 1.1 0.01 1.2 50 1000 1.2

The tca.rank column expresses the synthetic rank adjusted for trade costs.
Since GM is the only candidate for which we want to purchase more than 15%
of the daily trading volume, it is the only candidate for which we trade-cost
adjust the chunks. Every chunk of GM beyond the �rst has been trade-cost
adjusted. This will cause us to consider the chunks of other candidate trades
before we trade additional chunks of GM:

side mv alpha ret.1.d rank.t chunk.shares chunk.mv tca.rank

MSFT.1 B 6000 1.5 -0.02 1.9 33 1980 1.9

MSFT.2 B 6000 1.5 -0.02 1.9 33 1980 1.9

MSFT.3 B 6000 1.5 -0.02 1.9 33 1980 1.9

MSFT.4 B 6000 1.5 -0.02 1.9 1 60 1.9

GM.1 B 3000 1.0 0.10 1.6 67 2010 1.6

SCHW.1 B 5000 1.2 -0.01 1.3 40 2000 1.3

SCHW.2 B 5000 1.2 -0.01 1.3 40 2000 1.3

SCHW.3 B 5000 1.2 -0.01 1.3 20 1000 1.3

GOOG.1 B 1000 1.1 0.01 1.2 50 1000 1.2

GM.2 B 3000 1.0 0.10 1.6 33 990 -4.4

As MSFT is the best ranked candidate and does not receive a trade-cost
penalty, we would trade all the shares of MSFT before considering the other
candidates.6 Having completed all the chunks of MSFT, we would consider the

6Assuming that derived turnover is greater than the market value of all the candidate

trades.

4 IMPLEMENTATION 15

�rst chunk of GM, the only chunk which has not been trade-cost adjusted. Sub-
sequently, we would trade all the chunks of SCHW and GOOG, the candidate
trades ranked 3 and 4. Lastly, we trade the penalised chunk of GM.

4.6.2 Synthetic rank and trade-cost adjustment of small portfolios

In this example, trade-cost adjustment decreases the desirability of the second
chunk of GM in a non-trivial way. Although GM is ranked second as a candidate
trade, every other candidate trade would be made before we completed all the
chunks of GM. When we consider such a small number of trades, we assume
that all of the trades are of approximately equal quality; the di�erence in utility
between candidate trades is fairly small. This occurs because the scaled ranks
are evenly distributed on [0.85, 1):

rank shares mv rank.s

MSFT 1 100 6000 0.97

GM 2 100 3000 0.94

SCHW 3 100 5000 0.91

GOOG 4 50 1000 0.88

When we only have 4 candidates, none of the scaled ranks will be very close
to 1, and consequently, none of the synthetic ranks will fall at the extreme tail
of the normal distribution:

rank shares mv rank.s rank.t

MSFT 1 100 6000 0.97 1.9

GM 2 100 3000 0.94 1.6

SCHW 3 100 5000 0.91 1.3

GOOG 4 50 1000 0.88 1.2

Consequently, the di�erence in utility between candidate trades will be small
when there are few candidate trades. Heuristically, this seems correct because
if we are making very few trades, we would most likely derive similar utility
from any of them. Therefore, it makes sense for us to trade the other three
candidates if the costs associated with trading GM are large.

4.6.3 Synthetic rank and trade-cost adjustment of large portfolios

Moving away from our example for a moment, imagine that we have a large
current and target portfolio, the trade list for which contains 100 candidate
trades. When we evenly distribute the scaled ranks on the interval [0.85, 1), we
have more synthetic ranks at the extreme tail:

rank rank.s rank.t

IBM 1 1.00 3.0

GOOG 2 1.00 2.8

GM 3 1.00 2.6

MS 4 0.99 2.5

SCHW 5 0.99 2.4

4 IMPLEMENTATION 16

MSFT 48 0.92 1.4

T 49 0.92 1.4

CVX 50 0.92 1.4

AET 96 0.86 1.1

AMD 97 0.86 1.1

DELL 98 0.85 1.1

EBAY 99 0.85 1.0

HPQ 100 0.85 1.0

The row names express the equity ticker symbols. rank is the raw rank.
rank.s is the scaled rank, and rank.t is the synthetic rank. The best ranked
trade, IBM, has a scaled rank value very close to one and a synthetic rank
close to three. This indicates that the best rank falls at the tail of the normal
distribution. The worst ranked candidates not only have low synthetic ranks,
but they also have very small di�erences in synthetic rank. If we trade-cost
adjust one of the poorly ranked candidates we will most likely not trade it until
we have traded all other candidates not penalised by trade cost adjustment. On
the other hand, we would still trade IBM, GOOG, or GM, even if some of the
chunks had been trade-cost adjusted.

Let's quickly review how we generate the �nal, synthetic ranks. The pre-
liminary values from which we draw the raw ranks are the sorts we de�ne. In
this example, we de�ned sorts for alpha and one-day reversal. In creating raw
ranks, we ignore the underlying values used by the sorts. At this point, we still
have a di�erent set of raw ranks for each sort. To express preferences amongst
the sorts, we apply weights to the sorts. This step yields weighted ranks. From
the sets of weighted ranks, we associate with each candidate the best weighted
rank from any sort. Next, we scale the buys to the interval [0.85, 1). This step
yields scaled ranks. From scaled ranks, we generate synthetic ranks by mapping
the scaled ranks to a truncated normal distribution. Next, we break the candi-
dates into chunks and perform trade-cost adjustment as necessary. This yields
trade-cost adjusted ranks which are the �nal measure of chunks' desirability.

4.7 Sorting theory

Chooing the best candidate when we have multiple measures of desirability is
di�cult. Consider the situation where we must choose ten stocks to trade.

In our example, assuming that we use some type of formula to generate
alpha, we might be able to incorporate our other sorts into the formula for
alpha. Instead of having alpha and one-day reversal as distinct sorts, we would
only have one sort, alpha, which would also take one-day reversal into account.
For this to work, however, we would have to write a function that accounted
for the the ordering of every trade by every sort. Furthermore, this function
would have to take into account our preference for certain sorts over other sorts.
To elaborate on how di�cult it is to create such a function, let us consider the
situation where we must choose our ten favourite trades, in no particular order,
using the data in the table below.

4 IMPLEMENTATION 17

symbol raw rank alpha symbol raw rank one-day return
IBM 1 1.57 HPQ 1 -0.063
MS 2 1.26 SUNW 2 -0.056

EBAY 3 1.24 AET 3 -0.041
CBBO 4 1.21 YHOO 4 -0.036
SCHW 5 1.15 T 5 -0.014
PAYX 6 1.12 CVX 6 -0.011
HAL 7 1.12 GOOG 7 -0.011
AMD 8 1.10 PAYX 8 -0.002
MSFT 9 0.99 CBBO 9 0.003
CVX 10 0.96 HAL 10 0.009
AET 11 0.92 QCOM 11 0.011
HPQ 12 0.81 EBAY 12 0.014

QCOM 13 0.77 SCHW 13 0.029
GOOG 14 0.65 AAPL 14 0.036
YHOO 15 0.64 MS 15 0.041

Table 2: The alpha and one-day returns of candidates suggest di�erent rank
orderings. All of the candidates are buys.

Table 2 has a row for each of 15 candidates, their alpha and one-day reversal
values, and the raw ranks we would generate from these values. All of the
candidates are buys so greater alpha values are better and lesser one-day reversal
values are better.

One portfolio manager might decide that she wants to make trades based
only on alpha. She chooses the top ten trades according to alpha. A second
portfolio manager may want to make trades based only on one-day return. She
chooses the top ten trades according to one-day return. The third portfolio
manager considers both alpha and one-day return and choose her favorite trades
by examining both.

Portfolio manager three believes in buying equities which have had price
decreases of greater than 4% during the previous trading day. Consequently,
she would buy HPQ, SUNW, and AET. She would �ll her remaining orders
using the top 7 trades according to alpha.

How would the third portfolio manager write a function that expresses her
trading preferences? What if some days she acted like the �rst portfolio manager
and on other days like the second portfolio manager? How would she account
for a change in preference for one of the sorts?

Our solution allows any of these portfolio managers to express her trading
preferences without having to write a function that relates the di�erent measures
of desirability. Instead, she would use the weighting function that the portfolio
package provides. She would examine the trade list created using di�erent
weighting schemes and adjust the weights until the utility derived from the last
candidate traded was greater than the cost of the �rst trade not made.

For example, the portfolio manager may decide that YHOO is a better re-

4 IMPLEMENTATION 18

versal trade than the last alpha trade and revise the weighting scheme so that
she makes one less alpha trade and one more reversal trade.

symbol raw rank alpha symbol raw rank ret.1.d
IBM 1 1.57 HPQ 1 -0.063
MS 2 1.26 SUNW 2 -0.056

EBAY 3 1.24 AET 3 -0.041
CBBO 4 1.21 YHOO 4 -0.036
SCHW 5 1.15 T 5 -0.014
PAYX 6 1.12 CVX 6 -0.011
HAL 7 1.12 GOOG 7 -0.011
AMD 8 1.10 PAYX 8 -0.002
MSFT 9 0.99 CBBO 9 0.003
CVX 10 0.96 HAL 10 0.009
AET 11 0.92 QCOM 11 0.011
HPQ 12 0.81 EBAY 12 0.014

QCOM 13 0.77 SCHW 13 0.029
GOOG 14 0.65 AAPL 14 0.036
YHOO 15 0.64 MS 15 0.041

Table 3: Portfolio manager 3 revises her trading preferences.

What ultimately matters is the last candidate we decide to trade and the �rst
candidate we decide not to trade. By using rank orders instead of underlying
values, we do not have to combine the di�erent sorts. Instead, we can express
our preferences for di�erent, possibly unrelated criteria through the use of a
weighting scheme we provide in portfolio.

4.8 Pairing trades

Let us return to discussing trade list construction. In practise, most equity
portfolios must be maintained at a speci�c market value. One logical way to
achieve this result would be to pair desirable buys and sells of equal market
value, which is what we do in the portfolio package. We call these pairings of
buys and sells a swap:

swap: A pairing of a buy and sell or short and cover of similar market market
value and desirability.

We have already created the framework to create swaps; we break the can-
didates into chunks of similar market value and then rank these chunks individ-
ually. If our candidate trades included buys and sells, we would simply match
the most desirable buys with the most desirable sells. However, our candidate
trades are all buys, and we want to increase the market value of our portfolio
by $1,000.

4 IMPLEMENTATION 19

4.8.1 Dummy chunks

If we want to increase the market value of the portfolio, we must buy more than
we sell. Therefore, we do not want to pair a buy with a sell. We just want buys.
The situation where we just want buys or sells is a special case. The portfolio
package is structured so that we must also trade in pairs. To work within the
package framework we introduce the concept of dummy chunks:

dummy chunk: A fake buy or sell chunk that we pair with a real buy or
sell chunk in situations where we want to increase or decrease the market
value of the portfolio.

As our example only contains buys, we have paired every buy with a dummy
sell.7

tca.rank.enter tca.rank.exit rank.gain

MSFT.1,NA.0 1.9 10000 -9998

MSFT.2,NA.0 1.9 10000 -9998

MSFT.3,NA.0 1.9 10000 -9998

MSFT.4,NA.0 1.9 10000 -9998

GM.1,NA.0 1.6 10000 -9998

SCHW.1,NA.0 1.3 10000 -9999

In the table above, the row names express the chunk ticker symbols that
form the swap. To the left of the comma is an enter chunk, and to the right of
the comma is an exit chunk.8 The exit chunks all have a symbol NA.0 because
they are dummy sells. The tca.rank.enter column expresses the trade-cost
adjusted rank of the enter chunk, the buy, and the tca.rank.exit column
expresses the trade-cost adjusted rank of the exit chunk, the dummy sell. The
rank.gain column expresses the di�erence in trade-cost adjusted rank between
the enter and the exit, the buy and dummy sell.

We have spent considerable time discussing the generation of all types of
ranks for buys, but we have not yet discussed ranking sells. For sells, better
ranks are more negative. Therefore, a great sell might have a synthetic rank of
-3.5.

Recall that our goal is to make the trades which yield the most utility.
In spending our $1,000, we want to trade the best chunks. So that we make
the best buys when increasing the market value of the portfolio, we assign the
dummy sells an arbitrarily high rank. In the table above, the dummy sells have
a trade-cost adjusted rank of -10,000. We match the best the buys and sells by
calculating rank gain. As no real sells will yield the same rank gain that the
pairing of buy and a dummy sell yields, we create pairs with all the dummy sells
before even considering other sells. As there are no sells in this example, all the
swaps consist of a buy and a dummy sell.

7We only show the head of the swaps table.
8Enter chunks are either a buy or short. A buy allows us to take a long position and a

short allows us to take a short position. Exit chunks are either sells or covers. A sell allows

us to exit a long position and a cover allows us to exit a short position.

4 IMPLEMENTATION 20

Let's quickly review why we create swaps. We want to maximise utility
by making the candidate trades or portions of candidate trades that yield the
greatest utility. Generally, we want to maintain the portfolio equity at a constant
level. A logical way to do this involves pairing buys and sells of similar market
value. To maximise utility, we should pair the most best ranked buys and
sells. In special cases, we want to increase or decrease the market value of our
portfolio. In order to do this, we must make more of one type of trade. However,
this would require that we have swaps that contain only a buy or sell. Since we
cannot have a swap of only one trade, we introduce dummy trades. As dummy
trades have an arbitrarily high synthetic rank they pair with the best buys and
sells to ensure that we choose the most useful candidates in changing the market
value of the portfolio.

4.9 Accounting for turnover

Note: this and subsequent sections need to account for change in turnover appli-

cation. Now all swaps are done such that the total market value of trades goes

up to but doesn't exceed the turnover amount. In the meantime I have adjusted

the example's turnover to $2,000 so that at least one chunk is done, although

now Sweave chunks will be inconsistent with the text.

As we stated earlier, holding period would be endogenous if we could always
set it to maximise risk-adjusted return. However, most real world portfolios
have a set holding period and consequently, a set turnover. There is no real
concept of turnover or holding period in this example. We have $1,000 to
invest in our portfolio over the course of a single day. Although this additional
investment does not represent turnover, we can view our $1,000 as representing
a daily turnover of $1,000. We want to make the best ranked trades until the
cumulative market value of these trades exceeds the money we have to invest.
Analogously, we would say that we want to make the best ranked trades until
we exceed turnover.

As our turnover in this example is $2000, all of our trades will not have a
market value greater than $2000:

tca.rank.enter tca.rank.exit rank.gain

MSFT.1,NA.0 1.9 10000 -9998

MSFT is the the best ranked trade. Consequently, we choose swaps of MSFT
before choosing other swaps. We make 1 because each swap has a value of
approximately $2000, and our turnover is $2000.

4.10 Actual orders

We do not want to submit two orders for 8 shares of MSFT. Before submitting
the trade list, we must roll-up the swaps into larger orders. We �rst remove the
dummy chunks:

5 CREATING A LONG-ONLY TRADELIST IN R 21

side mv alpha ret.1.d rank.t chunk.shares chunk.mv tca.rank

MSFT.1 B 6000 1.5 -0.02 1.9 33 1980 1.9

Then we combine the chunks to form a single order per candidate:

side shares mv alpha ret.1.d rank.t

MSFT B 33 1980 1.5 -0.02 1.9

We now have an order for 33 shares of MSFT, which is the sum of the
chunks of MSFT. Having discussed in words the process of trade list creation,
we describe, step-by-step, the process of building a tradelist object in R.

5 Creating a long-only tradelist in R

To create a tradelist, we need four main pieces. The �rst two pieces necessary
to create a tradelist are portfolio objects. One of these portfolios is our
current portfolio.

Our current portfolio is a superset of the previous holdings. The major
di�erence between the two portfolios is that the current portfolio in this example
includes positions that we sell. This portfolio, named p.current, consists of
6 positions and has a market value of $47,750.

> p.current.shares

shares price

IBM 100 10

GM 100 30

EBAY 75 120

DELL 50 110

QCOM 75 190

AMD 150 100

The target portfolio is a superset of the previous target portfolio. It contains
6 positions and has a market value of $47,500.

> p.target.shares

shares price

GOOG 50 20

EBAY 75 120

IBM 100 10

GM 200 30

SCHW 100 50

MSFT 100 60

AMD 100 100

QCOM 50 190

We calculate the portfolio di�erence to determine the candidate trades.9

9The data frame is a subset of the candidates data frame. We often take subsets of data

frames so that they �t better on the page. If we do so we indicate this by prepending the

name of the data frame with sub.

5 CREATING A LONG-ONLY TRADELIST IN R 22

> sub.candidates

orig target side shares mv

AMD 150 100 S 50 -5000

DELL 50 0 S 50 -5500

GM 100 200 B 100 3000

GOOG 0 50 B 50 1000

MSFT 0 100 B 100 6000

QCOM 75 50 S 25 -4750

SCHW 0 100 B 100 5000

The candidate buys are the same as before and we have 3 candidate sells.
The market value is signed and expresses the net e�ect a candidate has on the
dollar value of a portfolio.

5.1 Assigning weights

We assign weights to the sorts by creating a list.

> sorts <- list(alpha = 1, ret.1.d = 1.1)

We assign a weight of 1 to alpha and a weight of 1.1 to one-day return.

5.2 Passing additional information to tradelist

The fourth item is a data frame. The portfolio package requires that this data
frame contain columns for id, volume, price.usd, and the sorts:

> sub.data

id volume price.usd alpha ret.1.d

IBM IBM 2100 10 -0.76 -0.003

GOOG GOOG 2200 20 1.10 0.010

GM GM 100 30 1.00 0.100

SCHW SCHW 2500 50 1.20 -0.010

MSFT MSFT 2600 60 1.50 -0.020

AMD AMD 3000 100 -0.94 0.010

DELL DELL 3100 110 -0.15 0.070

EBAY EBAY 3200 120 -0.32 0.001

QCOM QCOM 3900 190 -0.36 -0.005

volume expresses some measure of average trading volume. price.usd is
the most recent price of the security in US dollars. We must also include the
sorts we de�ne in sorts, alpha and ret.1.d.

5.3 Calling new

We use p.current, p.target, the sorts, and data as arguments to new.

6 THE TRADELIST ALGORITHM 23

> tl <- new("tradelist", orig = p.current, target = p.target, chunk.usd

+ = 2000, sorts = sorts, turnover = 30250, data = data)

>

In this call, the new method for tradelist accepts 8 parameters:10 The �rst
argument, "tradelist", speci�es the name of the object that we want to create.
The argument to the orig parameter, p.current, is the current portfolio. The
argument to the target parameter, p.current, is the target portfolio. The
sorts parameter accepts the sorts list we created earlier. We create chunks
with a granularity of of $2,000. The data parameter accepts the data frame we
created earlier with columns for id, volume, price.usd, and the sorts.

The turnover parameter accepts an integer argument which expresses the
maximum market value all orders made in one session. In the previous example
we only had $1,000 with which we could buy stocks. In this example, we can
both buy and sell equities. We might sell an equity and use the proceeds to buy
another equity. However, the turnover restriction applies to sells just as much
as buys. If we have a turnover of $1,000, we may make $1,000 worth of buys,
$1,000 worth of sells, or something in between. For this example, we have set the
turnover equal to the unsigned market value of all the candidate trades. This
means that we take the absolute value of all market values, which is $30,250.
Having set turnover to this value, we complete every candidate trade.

We have demonstrated how to create a simple tradelist in R. In the next
section we examine the tradelist that we have constructed. In doing so, we
learn how the tradelist generation algorithm works.

6 The tradelist algorithm

The tradelist code provides an algorithm, divisible into seven smaller steps,
that generates a set of trades that will move the current, original portfolio to-
wards an ideal, target portfolio. The seven steps in the algorithm correspond
to the following methods of the tradelist class: calcCandidates, calcRanks,
calcChunks, calcSwaps, calcSwapsActual, calcChunksActual, and calcActual.

The user never needs to directly call any of these methods when using the
portfolio package. A call to the new method of the tradelist class invokes
the initialize method of tradelist. The initialize method then calls
the seven methods serially. The �rst step of the tradelist algorithm involves
determining which types of orders we must make in order to trade towards the
target portfolio.

6.1 The calcCandidates method

As stated in our simplifying assumption, we only consider trades that bring us
closer to the target portfolio. To determine candidate trades we calculate which
positions have changed. If a position has changed, we determine what type of

10The new method of tradelist can accept more parameters, but they are optional.

6 THE TRADELIST ALGORITHM 24

trade the candidate is (buy or sell) by taking the portfolio di�erence to generate
a list of candidate trades.

> tl@candidates

id orig target side shares mv

AMD AMD 150 100 S 50 -5000

DELL DELL 50 0 S 50 -5500

GM GM 100 200 B 100 3000

GOOG GOOG 0 50 B 50 1000

MSFT MSFT 0 100 B 100 6000

QCOM QCOM 75 50 S 25 -4750

SCHW SCHW 0 100 B 100 5000

Given the data stored in the candidates data frame and the data data
frame, the portfolio package can generate the trade list.

6.2 The calcRanks Method

Ranking the trades is possibly the most complicated task delegated to the
tradelist class. When the rank-generating algorithm returns, the ranks data
frame tradelist will contain the synthetic rank, rank.t, for each trade.

6.2.1 Interpretation of sort values

When we de�ne a sort, we express our preference for purchasing di�erent stocks.
Lesser values express a preference for selling or shorting a position and greater
values express a preference for buying or covering a position. In the previous
example we only saw positive alpha values because all the candidates were buys.
If the values were not positive, we might question why the trade was even a
candidate. Recall our �rst simplifying assumption that all of the candidates are
desirable and the portfolio package only helps us to determine which are the
most desirable.

In real life, we want to create a sort using meaningful values that express
our trading preferences. One such value is one-day return.

6.2.2 Creating raw ranks for a long-only portfolio

The �rst step in creating ranks is generating raw ranks. We break the trades
into separate data frames by side and rank the trades within each side because
one type of trade is no than another type of trade.

$B

id orig target side shares mv ret.1.d rank

GM GM 100 200 B 100 3000 0.10 1

GOOG GOOG 0 50 B 50 1000 0.01 2

SCHW SCHW 0 100 B 100 5000 -0.01 3

MSFT MSFT 0 100 B 100 6000 -0.02 4

6 THE TRADELIST ALGORITHM 25

$S

id orig target side shares mv ret.1.d rank

QCOM QCOM 75 50 S 25 -4750 -0.005 1

AMD AMD 150 100 S 50 -5000 0.010 2

DELL DELL 50 0 S 50 -5500 0.070 3

The $B data frame shows the buys ranked with other buys and the $S data
frame shows the sells ranked with other sells. The most desirable buys are
those associated with the greatest values in ret.1.d. The most desirable sells
are those associated with the least value in ret.1.d. Therefore, GM ranked 1
amongst buys, is the most desirable buy, and QCOM, ranked 1 amongst sells,
is the most desirable sell.11

6.2.3 Interleaving

We now have two tables of ranks and there are still multiple trades at each rank:
a buy and sell ranked number one, number two and so on. Combining the two
tables of ranks by type leaves us with duplicates:

orig target side shares mv ret.1.d rank

GM 100 200 B 100 3000 0.100 1

QCOM 75 50 S 25 -4750 -0.005 1

GOOG 0 50 B 50 1000 0.010 2

AMD 150 100 S 50 -5000 0.010 2

SCHW 0 100 B 100 5000 -0.010 3

DELL 50 0 S 50 -5500 0.070 3

MSFT 0 100 B 100 6000 -0.020 4

We argue that there is no natural way to choose between the best buy and
best sell. To deal with this ambiguity, we always break ties in rank between a
buy and sell by assigning the buy the higher rank. In the following table, we
create new raw ranks to eliminate the duplicates.

orig target side shares mv alpha rank

MSFT 0 100 B 100 6000 1.50 1

AMD 150 100 S 50 -5000 -0.94 2

SCHW 0 100 B 100 5000 1.20 3

QCOM 75 50 S 25 -4750 -0.36 4

GOOG 0 50 B 50 1000 1.10 5

DELL 50 0 S 50 -5500 -0.15 6

GM 100 200 B 100 3000 1.00 7

Notice that each candidate has a unique rank and that the rows alternate
between buy and sell candidates. The best ranked candidate trade is a buy

11We have taken the inverse of all the one-day return values so that the portfolio package

interprets them correctly. If we believe one-day reversal, the best buys have negative one-day

returns and the best sells have positive one-day returns. Buy low, sell high. However, the

portfolio package interprets greater values as indicative of the best buys and lesser values as

indicate of the best sells.

6 THE TRADELIST ALGORITHM 26

because we broke the tie for �rst between the best ranked buy and sell by
assigning the buy the higher rank. This pattern repeats throughout the data
frame because we have ties at every rank except the last. We call this process
of alternating between the best ranked buys and sells interleaving.

interleaving: The process of breaking the trades up by side and ranking
them with other trades of the same type, thereby yielding multiple trades
at each rank. We always break ties in rank with the following ordering:
Buys, Sells, Covers, Shorts (B, S, C, X).

6.2.4 Weighted ranks

Having interleaved the candidates, we divide the new raw ranks by the weight
assigned to one-day return, 1.1.

id orig target side shares mv ret.1.d rank

GM GM 100 200 B 100 3000 0.100 0.83

QCOM QCOM 75 50 S 25 -4750 -0.005 1.65

GOOG GOOG 0 50 B 50 1000 0.010 2.48

AMD AMD 150 100 S 50 -5000 0.010 3.31

SCHW SCHW 0 100 B 100 5000 -0.010 4.13

DELL DELL 50 0 S 50 -5500 0.070 4.96

MSFT MSFT 0 100 B 100 6000 -0.020 5.79

We assigned alpha a weight of 1 so the ranks remain the same.

> tl@rank.sorts[["alpha"]]

id orig target side shares mv alpha rank

MSFT MSFT 0 100 B 100 6000 1.50 1

AMD AMD 150 100 S 50 -5000 -0.94 2

SCHW SCHW 0 100 B 100 5000 1.20 3

QCOM QCOM 75 50 S 25 -4750 -0.36 4

GOOG GOOG 0 50 B 50 1000 1.10 5

DELL DELL 50 0 S 50 -5500 -0.15 6

GM GM 100 200 B 100 3000 1.00 7

We combine the alpha and one-day return ranks into a single data frame.

id orig target side shares mv rank

1 AMD 150 100 S 50 -5000 2.00

2 AMD 150 100 S 50 -5000 3.64

3 DELL 50 0 S 50 -5500 6.00

4 DELL 50 0 S 50 -5500 5.45

5 GM 100 200 B 100 3000 7.00

6 GM 100 200 B 100 3000 0.91

7 GOOG 0 50 B 50 1000 5.00

8 GOOG 0 50 B 50 1000 2.73

9 MSFT 0 100 B 100 6000 1.00

10 MSFT 0 100 B 100 6000 6.36

6 THE TRADELIST ALGORITHM 27

11 QCOM 75 50 S 25 -4750 4.00

12 QCOM 75 50 S 25 -4750 1.82

13 SCHW 0 100 B 100 5000 3.00

14 SCHW 0 100 B 100 5000 4.55

To remove duplicates, we assign each candidate the best weighted rank as-
sociated with it by any sort.

orig target side shares mv

GM 100 200 B 100 3000

MSFT 0 100 B 100 6000

QCOM 75 50 S 25 -4750

AMD 150 100 S 50 -5000

GOOG 0 50 B 50 1000

SCHW 0 100 B 100 5000

DELL 50 0 S 50 -5500

And we re-rank the candidates.

target side shares mv rank.t

GM 200 B 100 3000 1.9

MSFT 100 B 100 6000 1.6

QCOM 50 S 25 -4750 -1.8

AMD 100 S 50 -5000 -1.4

GOOG 50 B 50 1000 1.3

SCHW 100 B 100 5000 1.2

DELL 0 S 50 -5500 -1.2

6.2.5 Mapping to the truncated normal distribution

Having weighted the ranks we create synthetic ranks from a truncated normal
distribution. When we only have buys, we scale the weighted ranks to [0.85, 1).
This gives us the positive tail of the normal distribution. We associate more
negative values with better sells so we want to map sells to the negative tail of
the normal distribution. To do this, we scale sells to the interval (0, 0.15].

side alpha ret.1.d rank rank.ws

QCOM S -0.36 -0.005 1.82 0.037

AMD S -0.94 0.010 2.00 0.075

DELL S -0.15 0.070 5.45 0.112

SCHW B 1.20 -0.010 3.00 0.880

GOOG B 1.10 0.010 2.73 0.910

MSFT B 1.50 -0.020 1.00 0.940

GM B 1.00 0.100 0.91 0.970

We map the scaled ranks to the normal distribution.

> tl.ranks

6 THE TRADELIST ALGORITHM 28

id orig target side shares mv alpha ret.1.d rank.t

QCOM QCOM 75 50 S 25 -4750 -0.36 -0.005 -1.8

AMD AMD 150 100 S 50 -5000 -0.94 0.010 -1.4

DELL DELL 50 0 S 50 -5500 -0.15 0.070 -1.2

SCHW SCHW 0 100 B 100 5000 1.20 -0.010 1.2

GOOG GOOG 0 50 B 50 1000 1.10 0.010 1.3

MSFT MSFT 0 100 B 100 6000 1.50 -0.020 1.6

GM GM 100 200 B 100 3000 1.00 0.100 1.9

rank.t expresses the synthetic rank. All of the sells have a negative rank.t
because they have been mapped to the negative tail of the normal distribution,
while all of the buys have a positive rank.t because they have been mapped to
the other tail. As described in section 4.6.3, the synthetic ranks do not fall at
the extreme tail of the normal distribution.

6.3 The calcChunks Method

Having calculated synthetic ranks, the portfolio package creates the chunks
table. We de�ned the market value of each chunk by specifying the chunk.usd
parameter in the call to new. The addition of sells does not have a dramatic
e�ect on the manner in which we generate the chunk table besides contributing
negative trade-cost adjusted ranks.

> sub.chunks

side rank.t chunk.shares chunk.mv tca.rank

AMD.1 S -1.4 20 -2000 -1.4

AMD.2 S -1.4 20 -2000 -1.4

AMD.3 S -1.4 10 -1000 -1.4

DELL.1 S -1.2 18 -1980 -1.2

DELL.2 S -1.2 18 -1980 -1.2

DELL.3 S -1.2 14 -1540 -1.2

GM.1 B 1.9 67 2010 1.9

GM.2 B 1.9 33 990 -4.1

GOOG.1 B 1.3 50 1000 1.3

MSFT.1 B 1.6 33 1980 1.6

MSFT.2 B 1.6 33 1980 1.6

MSFT.3 B 1.6 33 1980 1.6

MSFT.4 B 1.6 1 60 1.6

QCOM.1 S -1.8 11 -2090 -1.8

QCOM.2 S -1.8 11 -2090 -1.8

QCOM.3 S -1.8 3 -570 -1.8

SCHW.1 B 1.2 40 2000 1.2

SCHW.2 B 1.2 40 2000 1.2

SCHW.3 B 1.2 20 1000 1.2

Most chunks have an unsigned market value of approximately $2,000. The
only chunks of market value signi�cantly less than $2,000 are the �nal chunks
of a candidate. These chunks are the remainders left after dividing the rest of
the order into $2,000 chunks.

6 THE TRADELIST ALGORITHM 29

If we order the chunks by tca.rank, the second chunk of GM has been
severely penalised for trade costs.

> head(sub.chunks[order(sub.chunks[["tca.rank"]]),])

side rank.t chunk.shares chunk.mv tca.rank

GM.2 B 1.9 33 990 -4.1

QCOM.1 S -1.8 11 -2090 -1.8

QCOM.2 S -1.8 11 -2090 -1.8

QCOM.3 S -1.8 3 -570 -1.8

AMD.1 S -1.4 20 -2000 -1.4

AMD.2 S -1.4 20 -2000 -1.4

GM has a more negative tca.rank than any of the buys or sells, indicating
that this is the last chunk we would trade.

6.4 The calcSwaps Method

The calcSwaps works in as it did in the previous example, the main di�erence
being that we pair real buy chunks with real sell chunks. We determine which
trades to pair for a swap by calculating rank gain.

rank gain: The di�erence in tca.rank between a buy and a sell. As the
most desirable buys have a very positive tca.rank and the most desirable
sells have a very negative tca.rank, the best swaps have great rank.gain
values.

Buys with high tca.rank have been matched with sells with low tca.rank.

> swaps.sub

side.enter tca.rank.enter side.exit tca.rank.exit rank.gain

GM.1,QCOM.1 B 1.9 S -1.8 3.7

MSFT.1,QCOM.2 B 1.6 S -1.8 3.3

MSFT.2,QCOM.3 B 1.6 S -1.8 3.3

MSFT.3,AMD.1 B 1.6 S -1.4 3.0

MSFT.4,AMD.2 B 1.6 S -1.4 3.0

GOOG.1,AMD.3 B 1.3 S -1.4 2.8

SCHW.1,DELL.1 B 1.2 S -1.2 2.4

SCHW.2,DELL.2 B 1.2 S -1.2 2.4

SCHW.3,DELL.3 B 1.2 S -1.2 2.4

GM.2,NA.0 B -4.1 S 10000.0 -10004.1

We have paired almost all of the buy chunks with real sell chunks. The only
buy we have not paired with a real sell chunk is the second chunk of GM. As
the target portfolio ($47,500) has approximately the same market value as the
current portfolio ($47,750), we will not introduce any dummy chunks to account
for over or under-investment. We pair GM with a dummy chunk only because
we have run out of real sell chunks to match it with. As we would rather make
swaps which contain a real buy and sell chunk, we assign the dummy sell chunk
a poor tca.rank which yields a low rank.gain value. Consequently, we will
not consider this trade until we have considered all of the other trades.

6 THE TRADELIST ALGORITHM 30

6.5 The calcSwapsActual Method

The remaining steps of the tradelist algorithm clean up the tradelist for
�nal use. In the calcSwapsActual method we remove the most poorly ranked
swaps that exceed turnover. When we created the tradelist, we set turnover
to be $30,250, the unsigned market value of all the candidate trades. A turnover

of $30,250 will allow us to complete every trade.

> sub.swaps.actual

side.enter tca.rank.enter side.exit tca.rank.exit rank.gain

GM.1,QCOM.1 B 1.9 S -1.8 3.7

MSFT.1,QCOM.2 B 1.6 S -1.8 3.3

MSFT.2,QCOM.3 B 1.6 S -1.8 3.3

MSFT.3,AMD.1 B 1.6 S -1.4 3.0

MSFT.4,AMD.2 B 1.6 S -1.4 3.0

GOOG.1,AMD.3 B 1.3 S -1.4 2.8

SCHW.1,DELL.1 B 1.2 S -1.2 2.4

SCHW.2,DELL.2 B 1.2 S -1.2 2.4

SCHW.3,DELL.3 B 1.2 S -1.2 2.4

Right now, turnover does not cause any swaps to be dropped because it is
greater than the unsigned market value of all the candidate trades, which is
$30,250.

We can cause some swaps to be dropped by setting turnover to a value less
than $30,250.

> tl@turnover <- 30250 - tl@chunk.usd

When we set turnover to a value equal to one chunk less (2000 than the di�er-
ence in market value between the original and target portfolios, the calcSwapsActual
method excises the swap with the lowest tca.rank.

> sub.swaps.actual

side.enter tca.rank.enter side.exit tca.rank.exit rank.gain

GM.1,QCOM.1 B 1.9 S -1.8 3.7

MSFT.1,QCOM.2 B 1.6 S -1.8 3.3

MSFT.2,QCOM.3 B 1.6 S -1.8 3.3

MSFT.3,AMD.1 B 1.6 S -1.4 3.0

MSFT.4,AMD.2 B 1.6 S -1.4 3.0

GOOG.1,AMD.3 B 1.3 S -1.4 2.8

SCHW.1,DELL.1 B 1.2 S -1.2 2.4

SCHW.2,DELL.2 B 1.2 S -1.2 2.4

We have removed the third chunk of GM from the list.

6 THE TRADELIST ALGORITHM 31

6.6 The calcChunksActual Method

Our tradelist is almost complete, but �rst we must change the swaps back
into chunks. In addition, we do not want to include any orders for dummy
chunks, so we will remove those when we turn the swaps back into chunks.

> sub.chunks.actual

side alpha ret.1.d rank.t tca.rank chunk.shares chunk.mv chunk

GM.1 B 1.00 0.100 1.9 1.9 67 2010 1

MSFT.1 B 1.50 -0.020 1.6 1.6 33 1980 1

MSFT.2 B 1.50 -0.020 1.6 1.6 33 1980 2

MSFT.3 B 1.50 -0.020 1.6 1.6 33 1980 3

MSFT.4 B 1.50 -0.020 1.6 1.6 1 60 4

GOOG.1 B 1.10 0.010 1.3 1.3 50 1000 1

SCHW.1 B 1.20 -0.010 1.2 1.2 40 2000 1

SCHW.2 B 1.20 -0.010 1.2 1.2 40 2000 2

SCHW.3 B 1.20 -0.010 1.2 1.2 20 1000 3

QCOM.1 S -0.36 -0.005 -1.8 -1.8 11 -2090 1

QCOM.2 S -0.36 -0.005 -1.8 -1.8 11 -2090 2

QCOM.3 S -0.36 -0.005 -1.8 -1.8 3 -570 3

AMD.1 S -0.94 0.010 -1.4 -1.4 20 -2000 1

AMD.2 S -0.94 0.010 -1.4 -1.4 20 -2000 2

AMD.3 S -0.94 0.010 -1.4 -1.4 10 -1000 3

DELL.1 S -0.15 0.070 -1.2 -1.2 18 -1980 1

DELL.2 S -0.15 0.070 -1.2 -1.2 18 -1980 2

DELL.3 S -0.15 0.070 -1.2 -1.2 14 -1540 3

dummy.quality

GM.1 <NA>

MSFT.1 <NA>

MSFT.2 <NA>

MSFT.3 <NA>

MSFT.4 <NA>

GOOG.1 <NA>

SCHW.1 <NA>

SCHW.2 <NA>

SCHW.3 <NA>

QCOM.1 <NA>

QCOM.2 <NA>

QCOM.3 <NA>

AMD.1 <NA>

AMD.2 <NA>

AMD.3 <NA>

DELL.1 <NA>

DELL.2 <NA>

DELL.3 <NA>

All of the dummy chunks have been removed.

7 A LONG-SHORT EXAMPLE 32

6.7 The Final Step: Actual Orders

In the last step of tradelist generation, we �roll-up� the actual chunks for each
security to form one order per security.

> tl.actual

side shares mv alpha ret.1.d rank.t

AMD S 50 -5000 -0.94 0.010 -1.4

DELL S 50 -5500 -0.15 0.070 -1.2

GM B 67 2010 1.00 0.100 1.9

GOOG B 50 1000 1.10 0.010 1.3

MSFT B 100 6000 1.50 -0.020 1.6

QCOM S 25 -4750 -0.36 -0.005 -1.8

SCHW B 100 5000 1.20 -0.010 1.2

No rows for chunks remain in the actual data frame.

7 A Long-Short Example

For the most part, the portfolio package treats one-sided and long-short port-
folios similarly. The major di�erence is that we now have to take four types of
trades into consideration, buys, sells, shorts, and covers.

7.1 Current and target portfolios

Our current portfolio is a superset of the holdings in the previous example. This
example's current portfolio includes positions that we will short and cover. The
current portfolio, p.current, consists of 11 positions and has a market value of
$16,780.

> p.current.shares

shares price

IBM 100 10

GM 100 30

AMD 150 100

DELL 50 110

EBAY 75 120

QCOM 75 190

HPQ -50 15

HAL -75 20

PAYX -100 25

TXN -25 25

YHOO -10 20

The target portfolio is a superset of the target portfolio we used in the two
previous examples. It contains all the positions in the previous target portfolio
plus positions that we short or cover.

7 A LONG-SHORT EXAMPLE 33

> p.target.shares

shares price

IBM 100 10

GOOG 50 20

GM 200 30

SCHW 100 50

MSFT 100 60

AMD 100 100

EBAY 75 120

QCOM 50 190

HPQ -100 15

HAL 200 20

PAYX -50 25

APPL -75 30

TXN -50 25

YHOO 25 20

The target portfolio, p.target, contains 14 positions and has a market value
of $44,900. We assume that we have the additional funds necessary to increase
the market value of the portfolio.

7.2 Candidate trades

We calculate the portfolio di�erence to determine what the candidate trades
will be:

> sub.candidates

orig target side shares mv

AMD 150 100 S 50 -5000

APPL 0 -75 X 75 -2250

DELL 50 0 S 50 -5500

GM 100 200 B 100 3000

GOOG 0 50 B 50 1000

HAL -75 0 C 75 1500

HPQ -50 -100 X 50 -750

MSFT 0 100 B 100 6000

PAYX -100 -50 C 50 1250

QCOM 75 50 S 25 -4750

SCHW 0 100 B 100 5000

TXN -25 -50 X 25 -625

YHOO -10 0 C 10 200

We now have buy, sell, cover, and short candidates (B, S, C, X). Buys
and covers have positive market values because they increase the value of the
portfolio, and sells and shorts have negative market values because they decrease
the value of the portfolio. Notice that all the candidate trades necessary to reach
the target positions for HAL and YHOO are not on the candidate list. We do
not include all the candidate trades to reach these positions because they involve
side changes.

7 A LONG-SHORT EXAMPLE 34

7.2.1 Side changes and restrictions

A side change occurs when a position changes from long to short or short to
long. The portfolio package does not allow a side change to occur during a
single trading session.12 For a side change to occur, we must make two types of
trades. We must either sell �rst, then short, or cover �rst, then buy. We only
allow the �rst of one of these trades to occur during a single trading session. The
second trade is added to the restricted list so that it may be performed during
a later session. The two trades that involve side changes have been added to
the restricted list.

> tl@restricted

id orig target side shares mv reason

1 HAL 0 200 B 200 4000 Side change enter

2 YHOO 0 25 B 25 500 Side change enter

We have added the buy candidates for HAL and YHOO to the restricted
data frame so that we do not accidentally enter a box position. The reason

column explains why these candidates have been added to restricted. During
this trading session we will attempt to exit the short positions for HAL and
YHOO by covering these positions. In a subsequent trading session we will
attempt to enter a long position by buying these equities.

7.3 Creating sorts and assigning them weights

Like in the previous example, we name the sorts and assign them weights by
creating a list.

> sorts <- list(alpha = 1, ret.1.d = 1/2)

We assigned a weight of 1 to alpha and a weight of 0.5 to one-day return.

7.4 Passing additional information to tradelist

We must pass a data frame with columns for id, price.usd, volume, alpha,
and ret.1.d in the call to new:

> sub.data

id volume price.usd alpha ret.1.d

IBM IBM 2100 10 -0.76 -0.003

GOOG GOOG 2200 20 1.10 0.010

GM GM 100 30 1.00 0.100

SCHW SCHW 2500 50 1.20 -0.010

MSFT MSFT 2600 60 1.50 -0.020

AMD AMD 3000 100 -0.94 -0.040

12Writing code so that we make a side change without creating a box position is hard. We

will address this in future versions of the portfolio package

8 THE TRADELIST ALGORITHM, LONG-SHORT 35

DELL DELL 3100 110 -0.15 -0.020

EBAY EBAY 3200 120 -0.32 -0.070

QCOM QCOM 3900 190 -0.36 -0.005

HPQ HPQ 4000 15 -1.30 -0.002

HAL HAL 4000 20 1.70 0.001

PAYX PAYX 4000 25 0.53 -0.001

APPL APPL 4000 30 -0.30 -0.090

TXN TXN 4000 25 -0.50 -0.010

YHOO YHOO 4000 20 1.20 -0.002

Aside from having information about additional equities, this data frame
does not di�er greatly from the one we passed to new in section 5.3.

7.5 Calling new

Having gathered the components necessary to build a tradelist tradelist, we
make a call to new:

> tl <- new("tradelist", orig = p.current, target = p.target, chunk.usd

+ = 2000, sorts = sorts, turnover = 36825, data = data)

>

We pass 8 arguments as parameters to the new method. The parameters are
similar to those in section 5.3 with the exception of turnover which we have set
to $36,825. The value of the candidate trades in this example is greater than the
value of the candidate trades in the previous example so we must set turnover
higher if we want to complete all of the candidate trades.

8 The tradelist algorithm, long-short

The way the portfolio package builds a long-short tradelist is similar to
the way it builds a long-only tradelist. We will walk through the process
of creating a long-short tradelist with portfolio and discuss the di�erences
between creating long-only and long-short trade list.

8.1 Calculating ranks

We calculate the ranks for a long-short portfolio in much the same way we do
so for a long-only portfolio. The main di�erence we must take into is the need
to rank four types of trades with other trades of the same type. In previous
examples we ranked buys and sells separately. Now we rank buys, sells, covers,
and shorts separately.

8.1.1 Raw ranks with a long-short tradelist

As per our third simplifying assumption, we do not favour one type of trade
over another type of trade. As a consequence, we split and rank the trades
separately.

8 THE TRADELIST ALGORITHM, LONG-SHORT 36

$B

id orig target side shares mv alpha rank

MSFT MSFT 0 100 B 100 6000 1.5 1

SCHW SCHW 0 100 B 100 5000 1.2 2

GOOG GOOG 0 50 B 50 1000 1.1 3

GM GM 100 200 B 100 3000 1.0 4

$C

id orig target side shares mv alpha rank

HAL HAL -75 0 C 75 1500 1.70 3

YHOO YHOO -10 0 C 10 200 1.20 7

PAYX PAYX -100 -50 C 50 1250 0.53 11

$S

id orig target side shares mv alpha rank

AMD AMD 150 100 S 50 -5000 -0.94 1

QCOM QCOM 75 50 S 25 -4750 -0.36 2

DELL DELL 50 0 S 50 -5500 -0.15 3

$X

id orig target side shares mv alpha rank

HPQ HPQ -50 -100 X 50 -750 -1.3 1

TXN TXN -25 -50 X 25 -625 -0.5 2

APPL APPL 0 -75 X 75 -2250 -0.3 3

Like on page 24, the $B data frame shows the buys ranked with other buys
and the $S data frame shows the sells ranked with other sells. The $C and $X

data frames show covers and shorts ranked with other shorts.

8.1.2 Interleaving

The last step left us with 4 sets of ranks, one for each type of trade. Up to four
trades will share each rank when we combine these data frames to form a list of
overall rankings and the trades will be interleaved using groups of up to four.13

orig target side shares mv alpha rank

B.MSFT 0 100 B 100 6000 1.50 1

S.AMD 150 100 S 50 -5000 -0.94 1

X.HPQ -50 -100 X 50 -750 -1.30 1

B.SCHW 0 100 B 100 5000 1.20 2

S.QCOM 75 50 S 25 -4750 -0.36 2

X.TXN -25 -50 X 25 -625 -0.50 2

B.GOOG 0 50 B 50 1000 1.10 3

C.HAL -75 0 C 75 1500 1.70 3

S.DELL 50 0 S 50 -5500 -0.15 3

X.APPL 0 -75 X 75 -2250 -0.30 3

B.GM 100 200 B 100 3000 1.00 4

C.YHOO -10 0 C 10 200 1.20 7

C.PAYX -100 -50 C 50 1250 0.53 11

13Some of the groups may not include one trade of every type.

8 THE TRADELIST ALGORITHM, LONG-SHORT 37

As per the third simplifying assumption, there is no natural way to choose
between the best buy, sell, cover, or short. To deal with this ambiguity, we
always break ties in rank between a buy, sell, cover, and short by assigning
the buy the highest rank, the sell the second highest rank, the cover the third
highest rank, and the short the worst rank:

orig target side shares mv alpha rank

MSFT 0 100 B 100 6000 1.50 1

AMD 150 100 S 50 -5000 -0.94 2

HAL -75 0 C 75 1500 1.70 3

HPQ -50 -100 X 50 -750 -1.30 4

SCHW 0 100 B 100 5000 1.20 5

QCOM 75 50 S 25 -4750 -0.36 6

YHOO -10 0 C 10 200 1.20 7

TXN -25 -50 X 25 -625 -0.50 8

GOOG 0 50 B 50 1000 1.10 9

DELL 50 0 S 50 -5500 -0.15 10

PAYX -100 -50 C 50 1250 0.53 11

APPL 0 -75 X 75 -2250 -0.30 12

GM 100 200 B 100 3000 1.00 13

Once again, each candidate has a unique rank and the rows appear in groups
of buys, sells, covers, and shorts. The pattern repeats throughout he data frame
because we have ties at every rank except for the last. There is no tie at the
last rank because we have an odd number of candidates.

8.1.3 Weighted ranks

Having interleaved the separate rankings by type, we calculate weighted ranks.

id orig target side shares mv alpha rank

MSFT MSFT 0 100 B 100 6000 1.50 1

AMD AMD 150 100 S 50 -5000 -0.94 2

HAL HAL -75 0 C 75 1500 1.70 3

HPQ HPQ -50 -100 X 50 -750 -1.30 4

SCHW SCHW 0 100 B 100 5000 1.20 5

QCOM QCOM 75 50 S 25 -4750 -0.36 6

YHOO YHOO -10 0 C 10 200 1.20 7

TXN TXN -25 -50 X 25 -625 -0.50 8

GOOG GOOG 0 50 B 50 1000 1.10 9

DELL DELL 50 0 S 50 -5500 -0.15 10

PAYX PAYX -100 -50 C 50 1250 0.53 11

APPL APPL 0 -75 X 75 -2250 -0.30 12

GM GM 100 200 B 100 3000 1.00 13

We double the one-day return ranks to re�ect that one-day return is less
important than alpha. (Recall that lesser ranks are better.)

> tl@rank.sorts[["ret.1.d"]]

8 THE TRADELIST ALGORITHM, LONG-SHORT 38

id orig target side shares mv ret.1.d rank

GM GM 100 200 B 100 3000 0.100 2

AMD AMD 150 100 S 50 -5000 -0.040 4

HAL HAL -75 0 C 75 1500 0.001 6

APPL APPL 0 -75 X 75 -2250 -0.090 8

GOOG GOOG 0 50 B 50 1000 0.010 10

DELL DELL 50 0 S 50 -5500 -0.020 12

PAYX PAYX -100 -50 C 50 1250 -0.001 14

TXN TXN -25 -50 X 25 -625 -0.010 16

SCHW SCHW 0 100 B 100 5000 -0.010 18

QCOM QCOM 75 50 S 25 -4750 -0.005 20

YHOO YHOO -10 0 C 10 200 -0.002 22

HPQ HPQ -50 -100 X 50 -750 -0.002 24

MSFT MSFT 0 100 B 100 6000 -0.020 26

We assign each candidate the best weighted rank from either sort. We com-
bine the data frame of the candidates ranked by alpha with the data frame of
the candidates ranked by one-day return:

id orig target side shares mv rank

1 AMD 150 100 S 50 -5000 2

2 AMD 150 100 S 50 -5000 4

3 APPL 0 -75 X 75 -2250 12

4 APPL 0 -75 X 75 -2250 8

5 DELL 50 0 S 50 -5500 10

6 DELL 50 0 S 50 -5500 12

7 GM 100 200 B 100 3000 13

8 GM 100 200 B 100 3000 2

9 GOOG 0 50 B 50 1000 9

10 GOOG 0 50 B 50 1000 10

11 HAL -75 0 C 75 1500 3

12 HAL -75 0 C 75 1500 6

13 HPQ -50 -100 X 50 -750 4

14 HPQ -50 -100 X 50 -750 24

15 MSFT 0 100 B 100 6000 1

16 MSFT 0 100 B 100 6000 26

17 PAYX -100 -50 C 50 1250 11

18 PAYX -100 -50 C 50 1250 14

19 QCOM 75 50 S 25 -4750 6

20 QCOM 75 50 S 25 -4750 20

21 SCHW 0 100 B 100 5000 5

22 SCHW 0 100 B 100 5000 18

23 TXN -25 -50 X 25 -625 8

24 TXN -25 -50 X 25 -625 16

25 YHOO -10 0 C 10 200 7

26 YHOO -10 0 C 10 200 22

To remove duplicates, we assign each candidate the best weighted rank as-
sociated with it by any sort.

8 THE TRADELIST ALGORITHM, LONG-SHORT 39

orig target side shares mv

MSFT 0 100 B 100 6000

AMD 150 100 S 50 -5000

GM 100 200 B 100 3000

HAL -75 0 C 75 1500

HPQ -50 -100 X 50 -750

SCHW 0 100 B 100 5000

QCOM 75 50 S 25 -4750

YHOO -10 0 C 10 200

APPL 0 -75 X 75 -2250

TXN -25 -50 X 25 -625

GOOG 0 50 B 50 1000

DELL 50 0 S 50 -5500

PAYX -100 -50 C 50 1250

Once again we generate raw ranks:

orig target side shares mv rank

MSFT 0 100 B 100 6000 1.0

AMD 150 100 S 50 -5000 2.5

GM 100 200 B 100 3000 2.5

HAL -75 0 C 75 1500 4.0

HPQ -50 -100 X 50 -750 5.0

SCHW 0 100 B 100 5000 6.0

QCOM 75 50 S 25 -4750 7.0

YHOO -10 0 C 10 200 8.0

APPL 0 -75 X 75 -2250 9.5

TXN -25 -50 X 25 -625 9.5

GOOG 0 50 B 50 1000 11.0

DELL 50 0 S 50 -5500 12.0

PAYX -100 -50 C 50 1250 13.0

Having created weighted ranks, we prepare for the creation of synthetic
ranks.

8.1.4 Mapping to the truncated normal distribution

We create synthetic ranks from by mapping the ranks to a truncated normal
distribution. We scale buys and covers to the the 85th percentile and above and
sells and shorts to the 15th percentile and below ((0, 0.15] ∪ [0.85, 1)).

side alpha ret.1.d rank rank.ws

AMD S -0.94 -0.040 2 0.037

HPQ X -1.30 -0.002 4 0.043

QCOM S -0.36 -0.005 6 0.075

APPL X -0.30 -0.090 8 0.107

TXN X -0.50 -0.010 8 0.107

DELL S -0.15 -0.020 10 0.112

GOOG B 1.10 0.010 9 0.880

PAYX C 0.53 -0.001 11 0.887

8 THE TRADELIST ALGORITHM, LONG-SHORT 40

SCHW B 1.20 -0.010 5 0.910

YHOO C 1.20 -0.002 7 0.925

GM B 1.00 0.100 2 0.940

HAL C 1.70 0.001 3 0.962

MSFT B 1.50 -0.020 1 0.970

Finally, we map the values to the truncated normal distribution:

> tl.ranks

id orig target side shares mv alpha ret.1.d rank.t

AMD AMD 150 100 S 50 -5000 -0.94 -0.040 -1.8

HPQ HPQ -50 -100 X 50 -750 -1.30 -0.002 -1.7

QCOM QCOM 75 50 S 25 -4750 -0.36 -0.005 -1.4

APPL APPL 0 -75 X 75 -2250 -0.30 -0.090 -1.2

TXN TXN -25 -50 X 25 -625 -0.50 -0.010 -1.2

DELL DELL 50 0 S 50 -5500 -0.15 -0.020 -1.2

GOOG GOOG 0 50 B 50 1000 1.10 0.010 1.2

PAYX PAYX -100 -50 C 50 1250 0.53 -0.001 1.2

SCHW SCHW 0 100 B 100 5000 1.20 -0.010 1.3

YHOO YHOO -10 0 C 10 200 1.20 -0.002 1.4

GM GM 100 200 B 100 3000 1.00 0.100 1.6

HAL HAL -75 0 C 75 1500 1.70 0.001 1.8

MSFT MSFT 0 100 B 100 6000 1.50 -0.020 1.9

8.2 Calculating chunks

Calculating chunks for a long-short portfolio functions in almost the same man-
ner as it would for a long-only portfolio. We set the market value of each chunk
to be 2,000 in the call to new.

> sub.chunks

side rank.t chunk.shares chunk.mv tca.rank

AMD.1 S -1.8 20 -2000 -1.8

AMD.2 S -1.8 20 -2000 -1.8

AMD.3 S -1.8 10 -1000 -1.8

APPL.1 X -1.2 67 -2010 -1.2

APPL.2 X -1.2 8 -240 -1.2

DELL.1 S -1.2 18 -1980 -1.2

DELL.2 S -1.2 18 -1980 -1.2

DELL.3 S -1.2 14 -1540 -1.2

GM.1 B 1.6 67 2010 1.6

GM.2 B 1.6 33 990 -4.4

GOOG.1 B 1.2 50 1000 1.2

HAL.1 C 1.8 75 1500 1.8

HPQ.1 X -1.7 50 -750 -1.7

MSFT.1 B 1.9 33 1980 1.9

MSFT.2 B 1.9 33 1980 1.9

MSFT.3 B 1.9 33 1980 1.9

8 THE TRADELIST ALGORITHM, LONG-SHORT 41

MSFT.4 B 1.9 1 60 1.9

PAYX.1 C 1.2 50 1250 1.2

QCOM.1 S -1.4 11 -2090 -1.4

QCOM.2 S -1.4 11 -2090 -1.4

QCOM.3 S -1.4 3 -570 -1.4

SCHW.1 B 1.3 40 2000 1.3

SCHW.2 B 1.3 40 2000 1.3

SCHW.3 B 1.3 20 1000 1.3

TXN.1 X -1.2 25 -625 -1.2

YHOO.1 C 1.4 10 200 1.4

Aside from the addition of cover and short chunks, the chunk table should
appear exactly as it does in section 6.3.

8.3 Calculating Swaps

Swaps work slightly di�erently with a long-short tradelist than with a long-
only tradelist. In a long-only tradelist we only have to pair buys and sells, but
in a long-short tradelist we have to pair buys, sells, shorts, and covers. The
calcSwaps method accounts for this by matching trades within a side. We pair
shorts with covers and buys with sells:

> swaps.sub

side.enter tca.rank.enter side.exit tca.rank.exit rank.gain

MSFT.1,NA.0 B 1.9 S -10000.0 10001.9

MSFT.2,NA.0 B 1.9 S -10000.0 10001.9

MSFT.3,NA.0 B 1.9 S -10000.0 10001.9

MSFT.4,NA.0 B 1.9 S -10000.0 10001.9

HPQ.1,NA.0 X -1.7 C 10000.0 10001.7

GM.1,NA.0 B 1.6 S -10000.0 10001.6

SCHW.1,NA.0 B 1.3 S -10000.0 10001.3

APPL.1,NA.0 X -1.2 C 10000.0 10001.2

APPL.2,NA.0 X -1.2 C 10000.0 10001.2

TXN.1,NA.0 X -1.2 C 10000.0 10001.2

SCHW.2,AMD.1 B 1.3 S -1.8 3.1

SCHW.3,AMD.2 B 1.3 S -1.8 3.1

GOOG.1,AMD.3 B 1.2 S -1.8 3.0

GM.2,QCOM.1 B -4.4 S -1.4 -3.0

NA.0,HAL.1 X 10000.0 C 1.8 -9998.2

NA.0,QCOM.2 B -10000.0 S -1.4 -9998.6

NA.0,QCOM.3 B -10000.0 S -1.4 -9998.6

NA.0,YHOO.1 X 10000.0 C 1.4 -9998.6

NA.0,DELL.1 B -10000.0 S -1.2 -9998.8

NA.0,DELL.2 B -10000.0 S -1.2 -9998.8

NA.0,DELL.3 B -10000.0 S -1.2 -9998.8

NA.0,PAYX.1 X 10000.0 C 1.2 -9998.8

In the side.enter column we list buys (B) and shorts (X) because the only
way to enter a side is by initially buying or shorting a stock. Sells and covers

8 THE TRADELIST ALGORITHM, LONG-SHORT 42

move us closer to exiting the position which is why we put these trades in the
side.exit column. Like in previous examples, the labels describe the swaps.
The value to the left of the comma is the name of buy or short and the name
to the right of the comma is the name of a sell or cover. The number following
the period is the chunk number of the stock involved in the trade.

Dummy chunks work similarly for long-short portfolios as they do for long-
only portfolios. The main di�erence is that we must create dummy shorts and
covers to pair with real covers and shorts. We create 18 dummy chunks. The
dummy chunks at the head of the swaps table exist because the current portfolio
has a lesser market value than the target portfolio. To increase the market value
of the current portfolio we want to make more buys and covers than sells. The
dummy chunks at the tail of the table were created because we ran out of shorts
and buys to match with real covers and sells. We assign this type of dummy
trade a poor trade-cost adjusted rank.

8.4 The calcSwapsActual Method

The calcSwapsActual method works in almost exactly the same way as it does
for a long-only tradelist.

> sub.swaps.actual <- tl@swaps.actual[, c("side.enter", "tca.rank.enter", "side.exit",

+ "tca.rank.exit", "rank.gain")]

> sub.swaps.actual

side.enter tca.rank.enter side.exit tca.rank.exit rank.gain

MSFT.1,NA.0 B 1.9 S -10000.0 10001.9

MSFT.2,NA.0 B 1.9 S -10000.0 10001.9

MSFT.3,NA.0 B 1.9 S -10000.0 10001.9

MSFT.4,NA.0 B 1.9 S -10000.0 10001.9

HPQ.1,NA.0 X -1.7 C 10000.0 10001.7

GM.1,NA.0 B 1.6 S -10000.0 10001.6

SCHW.1,NA.0 B 1.3 S -10000.0 10001.3

APPL.1,NA.0 X -1.2 C 10000.0 10001.2

APPL.2,NA.0 X -1.2 C 10000.0 10001.2

TXN.1,NA.0 X -1.2 C 10000.0 10001.2

SCHW.2,AMD.1 B 1.3 S -1.8 3.1

SCHW.3,AMD.2 B 1.3 S -1.8 3.1

GOOG.1,AMD.3 B 1.2 S -1.8 3.0

GM.2,QCOM.1 B -4.4 S -1.4 -3.0

We do not remove any swaps because we set the turnover equal to the
unsigned market value of the candidate trades. If we decrease turnover, some
of the swaps will be excised.

> tl@turnover <- nt - tl@chunk.usd

We set turnover to equal the turnover necessary to complete all of the can-
didate trades (nt), minus the maximum size of a chunk. This guarantees that

8 THE TRADELIST ALGORITHM, LONG-SHORT 43

we do not make trade the worst swap, in this case NA.0,PAYX.1. By lowering
turnover we caused the worst ranked swap to be removed.

> sub.swaps.actual

side.enter tca.rank.enter side.exit tca.rank.exit rank.gain

MSFT.1,NA.0 B 1.9 S -10000.0 10001.9

MSFT.2,NA.0 B 1.9 S -10000.0 10001.9

MSFT.3,NA.0 B 1.9 S -10000.0 10001.9

MSFT.4,NA.0 B 1.9 S -10000.0 10001.9

HPQ.1,NA.0 X -1.7 C 10000.0 10001.7

GM.1,NA.0 B 1.6 S -10000.0 10001.6

SCHW.1,NA.0 B 1.3 S -10000.0 10001.3

APPL.1,NA.0 X -1.2 C 10000.0 10001.2

APPL.2,NA.0 X -1.2 C 10000.0 10001.2

TXN.1,NA.0 X -1.2 C 10000.0 10001.2

SCHW.2,AMD.1 B 1.3 S -1.8 3.1

SCHW.3,AMD.2 B 1.3 S -1.8 3.1

GOOG.1,AMD.3 B 1.2 S -1.8 3.0

GM.2,QCOM.1 B -4.4 S -1.4 -3.0

8.5 Calculating actual chunks

The calcchunksActual method works similarly to the way it does for a long-
only tradelist:

> sub.chunks.actual

side alpha ret.1.d rank.t tca.rank chunk.shares chunk.mv chunk

MSFT.1 B 1.50 -0.020 1.9 1.9 33 1980 1

MSFT.2 B 1.50 -0.020 1.9 1.9 33 1980 2

MSFT.3 B 1.50 -0.020 1.9 1.9 33 1980 3

MSFT.4 B 1.50 -0.020 1.9 1.9 1 60 4

HPQ.1 X -1.30 -0.002 -1.7 -1.7 50 -750 1

GM.1 B 1.00 0.100 1.6 1.6 67 2010 1

SCHW.1 B 1.20 -0.010 1.3 1.3 40 2000 1

APPL.1 X -0.30 -0.090 -1.2 -1.2 67 -2010 1

APPL.2 X -0.30 -0.090 -1.2 -1.2 8 -240 2

TXN.1 X -0.50 -0.010 -1.2 -1.2 25 -625 1

SCHW.2 B 1.20 -0.010 1.3 1.3 40 2000 2

SCHW.3 B 1.20 -0.010 1.3 1.3 20 1000 3

GOOG.1 B 1.10 0.010 1.2 1.2 50 1000 1

GM.2 B 1.00 0.100 1.6 -4.4 33 990 2

AMD.1 S -0.94 -0.040 -1.8 -1.8 20 -2000 1

AMD.2 S -0.94 -0.040 -1.8 -1.8 20 -2000 2

AMD.3 S -0.94 -0.040 -1.8 -1.8 10 -1000 3

QCOM.1 S -0.36 -0.005 -1.4 -1.4 11 -2090 1

dummy.quality

MSFT.1 <NA>

MSFT.2 <NA>

9 CONCLUSION 44

MSFT.3 <NA>

MSFT.4 <NA>

HPQ.1 <NA>

GM.1 <NA>

SCHW.1 <NA>

APPL.1 <NA>

APPL.2 <NA>

TXN.1 <NA>

SCHW.2 <NA>

SCHW.3 <NA>

GOOG.1 <NA>

GM.2 <NA>

AMD.1 <NA>

AMD.2 <NA>

AMD.3 <NA>

QCOM.1 <NA>

We have changed the swaps back into chunks. The additional work for
a long-short portfolio involves converting buy/sell and short/cover swaps into
chunks instead of just dealing with buy/sell chunks.

8.6 The calcActual Method

The calcActual method works almost exactly the same way it does for a long-
only tradelist:

> tl@actual

id side shares mv alpha ret.1.d rank.t

AMD AMD S 50 -5000 -0.94 -0.040 -1.8

APPL APPL X 75 -2250 -0.30 -0.090 -1.2

GM GM B 100 3000 1.00 0.100 1.6

GOOG GOOG B 50 1000 1.10 0.010 1.2

HPQ HPQ X 50 -750 -1.30 -0.002 -1.7

MSFT MSFT B 100 6000 1.50 -0.020 1.9

QCOM QCOM S 11 -2090 -0.36 -0.005 -1.4

SCHW SCHW B 100 5000 1.20 -0.010 1.3

TXN TXN X 25 -625 -0.50 -0.010 -1.2

>

We �roll-up� all the chunks into single orders.

9 Conclusion

With intelligently de�ned sorts, the portfolio package is a powerful tool for
managing equity portfolios. Nonetheless, the tradelist code could stand for
improvement in certain areas, particularly the area of trade-cost adjustment.
The current method of using discrete and static boundaries for determining

9 CONCLUSION 45

trade-adjusted rank should be replaced by a trade-cost adjustment function.
Nonetheless, we believe that our package makes the di�cult problem of trading
a little bit easier.

