
Package ‘poputils’
March 27, 2025

Type Package

Title Demographic Analysis and Data Manipulation

Version 0.4.1

Description Perform tasks commonly encountered when
preparing and analysing demographic data.
Some functions are intended for end users, and
others for developers. Includes functions for
working with life tables.

License MIT + file LICENSE

Encoding UTF-8

LazyData true

RoxygenNote 7.3.2

Depends R (>= 4.3.0)

LinkingTo cpp11

Imports cli, rlang, rvec, tibble, tidyselect, utils, vctrs

Suggests bookdown, covr, dplyr, ggplot2, knitr, rmarkdown, testthat
(>= 3.0.0)

Config/testthat/edition 3

VignetteBuilder knitr

URL https://bayesiandemography.github.io/poputils/,

https://github.com/bayesiandemography/poputils

BugReports https://github.com/bayesiandemography/poputils/issues

NeedsCompilation yes

Author John Bryant [aut, cre],
Bayesian Demography Limited [cph]

Maintainer John Bryant <john@bayesiandemography.com>

Repository CRAN

Date/Publication 2025-03-27 12:00:02 UTC

1

https://bayesiandemography.github.io/poputils/
https://github.com/bayesiandemography/poputils
https://github.com/bayesiandemography/poputils/issues

2 age_group_type

Contents
age_group_type . 2
age_labels . 3
age_lower . 4
check_age . 5
check_equal_length . 7
check_n . 8
check_no_overlap_colnums . 8
combine_age . 9
ex_to_lifetab_brass . 10
find_label_female . 12
find_label_male . 13
find_var_age . 14
find_var_sexgender . 14
find_var_time . 15
groups_colnums . 16
iran_fertility . 16
lifetab . 17
logit . 22
matrix_to_list_of_cols . 23
nzmort . 24
nzmort_rvec . 24
q0_to_m0 . 25
reformat_age . 26
reformat_sex . 27
rr3 . 28
set_age_open . 29
tfr . 30
to_matrix . 31
trim_01 . 32
west_lifetab . 33

Index 35

age_group_type Infer Age Label Type

Description

Determine whether a set of age labels refer to one-year, five-year, or life-table age groups.

Usage

age_group_type(x)

Arguments

x A vector of age labels

age_labels 3

Details

The valid types of age labels are:

• "single". One-year age groups, eg "0" or "55", and possibly an open age group, eg "90+".

• "five". Five-year age groups, eg "0-4" or "55-59", and possibly an open age group, eg
"100+".

• "lt". Life table age groups, eg "0", "1-4", "5-9", "55-59", or "80+".

If x does not fit any of these descriptions, then age_group_type() throws an error.

If x could belong to more than one type, then age_group_type() prefers "single" to "five" and
"lt", and prefers "five" to "lt".

Value

"single", "five", or "lt".

Examples

age_group_type(c("5-9", "0-4", "100+"))
age_group_type(c("2", "5", "1"))
age_group_type(c("0", "1-4"))

could be any "single" or "lt"
age_group_type("0")

could be "five" or "lt"
age_group_type("80-84")

age_labels Create Age Labels

Description

Create labels for age groups. The labels depend on the type argument:

• "single". One-year age groups, eg "0" or "55", and possibly an open age group, eg "90+".

• "five". Five-year age groups, eg "0-4" or "55-59", and possibly an open age group, eg
"100+".

• "lt". Life table age groups, eg "0", "1-4", "5-9", "55-59", or "80+".

Usage

age_labels(type, min = 0, max = 100, open = NULL)

4 age_lower

Arguments

type Type of age group labels: "single", "five", or "lt".

min Minimum age. Defaults to 0.

max Maximum age for closed age groups. Defaults to 100.

open Whether the last age group is "open", ie has no upper limit.

Details

The first age group starts at the age specified by min. If open is TRUE, then the final age group starts
at the age specified by max. Otherwise, the final age group ends at the age specified by max.

open defaults to TRUE when min equals zero, and to FALSE otherwise.

Value

A character vector.

See Also

reformat_age()

Examples

age_labels(type = "single", min = 15, max = 40)
age_labels(type = "five")
age_labels(type = "lt", max = 80)

age_lower Lower Limits, Midpoints, and Upper Limits of Age Groups

Description

Given a vector x of age group labels, return a numeric vector.

• age_lower() returns the lower limits of each age group,

• age_mid() returns the midpoints, and

• age_upper() returns the upper limits.

Vector x must describe 1-year, 5-year or life-table age groups: see age_labels() for examples. x
can format these age groups in any way understood by reformat_age().

Usage

age_lower(x)

age_mid(x)

age_upper(x)

check_age 5

Arguments

x A vector of age group labels.

Details

These functions can make age groups easier to work with. Lower and upper limits can be used for
selecting on age. Replacing age group with midpoints can improve graphs.

Value

A numeric vector, the same length as x.

See Also

reformat_age() age_labels()

Examples

x <- c("15-19", "5-9", "50+")
age_lower(x)
age_mid(x)
age_upper(x)

non-standard formats are OK
age_lower(c("infants", "100 and over"))

df <- data.frame(age = c("1-4", "10-14", "5-9", "0"),
rate = c(0.023, 0.015, 0.007, 0.068))

df
subset(df, age_lower(age) >= 5)

check_age Validity Checks for Age Labels

Description

Check that age labels can be parsed and, optionally, whether the labels are complete, unique, start
at zero, and end with an open age group.

Usage

check_age(
x,
complete = FALSE,
unique = FALSE,
zero = FALSE,
open = FALSE,
closed = FALSE

)

6 check_age

Arguments

x A vector of age labels.

complete If TRUE, test whether x has gaps.

unique If TRUE, test whether x has duplicates.

zero If TRUE, test whether youngest age group in x starts at 0.

open If TRUE, test whether oldest age group in x is open.

closed If TRUE, test whether oldest age group in x is closed.

Details

By default, check_age() only tests whether a set of labels can be parsed as single-year, five-year, or
life table age groups. (See age_group_type() for more on the three types of age group.) However,
it can also apply the following tests:

• complete. Whether x includes all intermediate age groups, with no gaps. For instance, the
labels c("10-14", "15-19", "5-9") are complete, while the labelsc("15-19", "5-9") are
not (because they are missing "10-14".)

• unique. Whether x has duplicated labels.

• zero. Whether the youngest age group in x starts at age 0, ie whether it includes "0" or "0-4".

• open. Whether the oldest age group in x is "open", with no upper limit, eg "100+" or "65+".

• closed. Whether the oldest age group in x is "closed", with an upper limit, eg "100-104+" or
"65".

Value

TRUE, invisibly, or raises an error if a test fails.

See Also

• reformat_age() to convert age labels to the format used by poputils.

Examples

try(
check_age(c("10-14", "0-4", "15+"),

complete = TRUE)
)

try(
check_age(c("10-14", "5-9", "0-4", "5-9", "15+"),

unique = TRUE)
)

try(
check_age(c("10-14", "5-9", "15+"),

zero = TRUE)
)

check_equal_length 7

try(
check_age(c("10-14", "0-4", "5-9"),

open = TRUE)
)

try(
check_age(c("10+", "0-4", "5-9"),

closed = TRUE)
)

check_equal_length Check that Arguments have Same Length

Description

Check that x and y have the same length.

Usage

check_equal_length(x, y, nm_x, nm_y)

Arguments

x, y Arguments to compare

nm_x, nm_y Names to use in error message

Value

’TRUE’, invisibly.

Examples

x <- 1:3
y <- 3:1
check_equal_length(x = x,

y = y,
nm_x = "x",
nm_y = "y")

8 check_no_overlap_colnums

check_n Check Whole Number

Description

Check that n is finite, non-NA scalar that is an integer or integerish (ie is equal to round(n)), and
optionally within a specified range and divisible by a specified number.

Usage

check_n(n, nm_n, min, max, divisible_by)

Arguments

n A whole number

nm_n Name for ’n’ to be used in error messages

min Minimum value ’n’ can take. Can be NULL.

max Maximum values ’n’ can take. Can be NULL.

divisible_by ’n’ must be divisible by this. Can be NULL.

Value

If all tests pass, check_n() returns TRUE invisibly. Otherwise it throws an error.

Examples

check_n(10, nm_n = "count", min = 0, max = NULL, divisible_by = 1)
check_n(10, nm_n = "count", min = NULL, max = NULL, divisible_by = NULL)
check_n(10, nm_n = "n", min = 5, max = 10, divisible_by = 2)

check_no_overlap_colnums

Check that Colnum Vectors do not Overlap

Description

Given a named list of colnum vectors, like those produced by tidyselect::eval_select(), throw
an error if there is an overlap.

Usage

check_no_overlap_colnums(x)

Arguments

x A named list of integer vectors.

combine_age 9

Value

TRUE, invisibly

See Also

tidyselect::eval_select()

Examples

x <- list(arg1 = c(age = 1L),
arg2 = c(gender = 4L, region = 5L))

check_no_overlap_colnums(x)

combine_age Aggregate Age Group Labels

Description

Convert age group labels to a less detailed classification. The three classifications recognized by
combine_age() are "single", "five", and "lt", as defined on age_labels(). The following
conversions are permitted:

• "single" —> "lt"

• "single" —> "five"

• "lt" —> "five"

Usage

combine_age(x, to = c("five", "lt"))

Arguments

x A vector of age labels

to Type of age classification to convert to: "five" or "lt". Defaults to "five".

Value

If x is a factor, then combine_age() returns a factor; otherwise it returns a character vector.

See Also

• age_labels() to create age group labels

• reformat_age() to convert existing age group labels to a standard format

• set_age_open() to set the lower limit of the open age group

10 ex_to_lifetab_brass

Examples

x <- c("0", "5", "3", "12")
combine_age(x)
combine_age(x, to = "lt")

ex_to_lifetab_brass Derive Life Tables that Match Life Expectancies, using a Brass Logit
Model

Description

Turn life expectancies at birth into full life tables, using the Brass logit model. The method is
simple and is designed for simulations or for settings with little or no data on age-specific mortality
rates. In settings where data on age-specific mortality is available, other methods might be more
appropriate.

Usage

ex_to_lifetab_brass(
target,
standard,
infant = c("constant", "linear", "CD", "AK"),
child = c("constant", "linear", "CD"),
closed = c("constant", "linear"),
open = "constant",
radix = 1e+05,
suffix = NULL

)

Arguments

target A data frame containing a variable called "ex", and possibly others. See Details.

standard A data frame containing variables called age and lx, and possibly others. See
details.

infant, child, closed, open
Methods used to calculate life expectancy. See lifetab() for details.

radix Initial population for the lx column in the derived life table(s). Default is
100000.

suffix Optional suffix added to life table columns.

Value

A data frame containing one or more life tables.

ex_to_lifetab_brass 11

Method

The method implemented by ex_to_lifetab_brass() is based on the observation that, if popula-
tions A and B are demographically similar, then, in many cases,

logit(lBx) ≈ α+ βlogit(lAx)

where lx is the "survivorship probability" quantity from a life table. When populations are similar,
beta is often close to 1.

Given (i) target life expectancy, (ii) a set of lAx), (referred to as a "standard"), and (iii) a value
for β, ex_to_lifetab_brass() finds a value for α that yields a set of lBx) with the required life
expectancy.

target argument

target is a data frame specifying life expectancies for each population being modelled, and, pos-
sibly, inputs to the calculations, and index variables. Values in target are not age-specific.

• A variable called "ex", with life expectancy at birth must be included in target.
• A variable called "beta" with values for beta can be included in target. This variable can be

an rvec. If no "beta" variable is included in target, then ex_to_lifetab_brass() assumes
that beta ≡ 1.

• A variable called "sex". If the infant argument to ex_to_lifetab_brass() is is "CD" or
"AK", or if the child argument is "CD", target must include a "sex" variable, and the labels for this variable must be interpretable by function [format_sex()]. Otherwise, the "sex"‘
variable is optional, and there is no restriction on labels.

• Other variables used to distinguish between life expectancies, such as time, region, or model
variant.

standard argument

standard is a data frame specifying the lx to be used with each life expectancy in ex, and, option-
ally, values the average age person-years lived by people who die in each group, nax. Values in
standard are age-specific.

• A variable called "age", with labels that can be parsed by reformat_age().
• A variable called "lx". Internally each set of lx is are standardized so that the value for age 0

equals 1. Within each set, values must be non-increasing. Cannot be an rvec.
• Additional variables used to match rows in standard to rows in target.

Internally, standard is merged with target using a left join from target, on any variables that
target and standard have in common.

References

Brass W, Coale AJ. 1968. “Methods of analysis and estimation,” in Brass, W, Coale AJ, Demeny
P, Heisel DF, et al. (eds). The Demography of Tropical Africa. Princeton NJ: Princeton University
Press, pp. 88–139.

Moultrie TA, Timæus IM. 2013. Introduction to Model Life Tables. In Moultrie T, Dorrington R,
Hill A, Hill K, Timæus I, Zaba B. (eds). Tools for Demographic Estimation. Paris: International
Union for the Scientific Study of Population. online version.

https://demographicestimation.iussp.org/content/using-models-derive-life-tables-incomplete-data

12 find_label_female

See Also

• logit(), invlogit() Logit function

• lifeexp() Calculate life expectancy from detailed inputs

Examples

create new life tables based on level-1
'West' model life tables, but with lower
life expectancy

library(dplyr, warn.conflicts = FALSE)

target <- data.frame(sex = c("Female", "Male"),
ex = c(17.5, 15.6))

standard <- west_lifetab |>
filter(level == 1) |>
select(sex, age, lx)

ex_to_lifetab_brass(target = target,
standard = standard,
infant = "CD",
child = "CD")

find_label_female Identify Sex or Gender Labels Referring to Females

Description

Given labels for sex or gender, try to infer which (if any) refer to females. If no elements look like
a label for females, or if two or more elements do, then return NULL.

Usage

find_label_female(nms)

Arguments

nms A character vector

Value

An element of nms or NULL.

See Also

find_label_male(), find_var_sexgender()

find_label_male 13

Examples

find_label_female(c("Female", "Male")) ## one valid
find_label_female(c("0-4", "5-9")) ## none valid
find_label_female(c("F", "Fem")) ## two valid

find_label_male Identify Sex or Gender Labels Referring to Males

Description

Given labels for sex or gender, try to infer which (if any) refer to males. If no elements look like a
label for males, or if two or more elements do, then return NULL.

Usage

find_label_male(nms)

Arguments

nms A character vector

Value

An element of nms or NULL.

See Also

find_label_female(), find_var_sexgender()

Examples

find_label_male(c("Female", "Male")) ## one valid
find_label_male(c("0-4", "5-9")) ## none valid
find_label_male(c("male", "m")) ## two valid

14 find_var_sexgender

find_var_age Identify an Age Variable

Description

Find the element of nms that looks like an age variable. If no elements look like an age variable, or
if two or more elements do, then return NULL.

Usage

find_var_age(nms)

Arguments

nms A character vector

Value

An element of nms, or NULL.

See Also

find_var_time(), find_var_sexgender()

Examples

find_var_age(c("Sex", "Year", "AgeGroup", NA)) ## one valid
find_var_age(c("Sex", "Year")) ## none valid
find_var_age(c("age", "age.years")) ## two valid

find_var_sexgender Identify a Sex or Gender Variable

Description

Find the element of nms that looks like a sex or gender variable. If no elements look like a sex or
gender variable, or if two or more elements do, then return NULL.

Usage

find_var_sexgender(nms)

Arguments

nms A character vector

find_var_time 15

Value

An element of nms, or NULL.

See Also

find_var_age(), find_var_time(), find_label_female(), find_label_male()

Examples

find_var_sexgender(c("Sex", "Year", "AgeGroup", NA)) ## one valid
find_var_sexgender(c("Age", "Region")) ## none valid
find_var_sexgender(c("sexgender", "sexes")) ## two valid

find_var_time Identify a Time Variable

Description

Find the element of nms that looks like an time variable. If no elements look like a time variable, or
if two or more elements do, then return NULL.

Usage

find_var_time(nms)

Arguments

nms A character vector

Value

An element of nms, or NULL.

See Also

find_var_age(), find_var_sexgender()

Examples

find_var_time(c("Sex", "Year", "AgeGroup", NA)) ## one valid
find_var_time(c("Sex", "Region")) ## none valid
find_var_time(c("time", "year")) ## two valid

16 iran_fertility

groups_colnums Get a named vector of column indices for the grouping variables in a
grouped data frame

Description

Constructed a named vector of indices equivalent to the vectors produced by tidyselect::eval_select,
but for the grouping variables in an object of class "grouped_df".

Usage

groups_colnums(data)

Arguments

data A data frame.

Details

If data is not grouped, then groups_colnums returns a zero-length vector.

Value

A named integer vector.

Examples

library(dplyr)
df <- data.frame(x = 1:4,

g = c(1, 1, 2, 2))
groups_colnums(df)
df <- group_by(df, g)
groups_colnums(df)

iran_fertility Age-Specific Fertility Rates in Iran

Description

Estimates of age-specific fertility rates, (births per 1000 person-years lived) for rural and urban
areas, in Iran, 1986-2000. Calculated by Mohammad Jalal Abbasi-Shavazi and Peter McDonald
from data from the 2000 Iran Demographic and Health Survey.

Usage

iran_fertility

lifetab 17

Format

A tibble with 2010 rows and the following columns:

• time Calendar year

• age Five-year age group from "15-19" to "45-49"

• area "Rural" or "Urban"‘

• rate Age-specific fertility rate

Source

Tables 4.1 and 4.2 of Abbasi-Shavazi, M J, McDonald, P (2005). National and provincial level
fertility trends in Iran, 1972–2006. Australian National University. Working Papers in Demography
no. 94.

lifetab Calculate Life Tables or Life Expectancies

Description

Calculate life table quantities. Function lifetab() returns an entire life table. Function lifeexp()
returns life expectancy at birth. The inputs can be mortality rates (mx) or probabilities of dying (qx),
though not both.

Usage

lifetab(
data,
mx = NULL,
qx = NULL,
age = age,
sex = NULL,
ax = NULL,
by = NULL,
infant = c("constant", "linear", "CD", "AK"),
child = c("constant", "linear", "CD"),
closed = c("constant", "linear"),
open = "constant",
radix = 1e+05,
suffix = NULL,
n_core = 1

)

lifeexp(
data,
mx = NULL,
qx = NULL,

18 lifetab

at = 0,
age = age,
sex = NULL,
ax = NULL,
by = NULL,
infant = c("constant", "linear", "CD", "AK"),
child = c("constant", "linear", "CD"),
closed = c("constant", "linear"),
open = "constant",
suffix = NULL,
n_core = 1

)

Arguments

data Data frame with mortality data.

mx <tidyselect> Mortality rates, expressed as deaths per person-year lived. Pos-
sibly an rvec.

qx <tidyselect> Probability of dying within age interval. An alternative to mx.
Possibly an rvec.

age <tidyselect> Age group labels. The labels must be interpretable by functions
such as reformat_age() and age_group_type(). The first age group must
start at age 0, and the last age group must be "open", with no upper limit.

sex <tidyselect> Biological sex, with labels that can be interpreted by reformat_sex().
Needed only when infant is "CD" or "AK", or child is "CD".

ax <tidyselect> Average age at death within age group. Optional. See Details.

by <tidyselect> Separate life tables, or life expectancies, calculated for each
combination the by variables. If a sex variable was specified, then that vari-
able is automatically included among the by variables. If data is a grouped data
frame, then the grouping variables take precedence over by.

infant Method used to calculate life table values in age group "0". Ignored if age does
not include age group "0". Default is "constant".

child Method used to calculate life table values in age group "1-4". Ignored if age
does not include age group "0". Default is "constant".

closed Method used to calculate life table values in closed age intervals other than "0"
and "1-4" (ie intervals such as "10-14" or "12"). Default is "constant".

open Method used to calculate life table values in the final, open age group (eg "80+"
or "110+"). Currently the only option is ‘"constant".

radix Initial population for the lx column. Default is 100000.

suffix Optional suffix added to new columns in result.

n_core Number of cores to use for parallel processing. If n_core is 1 (the default), no
parallel processing is done.

at Age at which life expectancy is calculated (lifeexp() only). Default is 0‘.
Can be a vector with length > 1.

https://dplyr.tidyverse.org/reference/group_data.html

lifetab 19

Value

A tibble.

Definitions of life table quantities

• mx Deaths per person-year lived.

• qx Probability of surviving from the start of age group ’x’ to the end.

• lx Number of people alive at the start of age group x.

• dx Number of deaths in age group x

• Lx Expected number of person years lived in age group x.

• ex Life expectancy, calculated at the start of age group x.

Mortality rates mx are sometimes expressed as deaths per 1000 person-years lived, or per 100,000
person-years lived. lifetab() and lifeexp() assumed that they are expressed as deaths per
person-year lived.

Calculation methods

lifetab() and lifeexp() implement several methods for calculating life table quantities from
mortality rates. Each method makes different assumptions about the way that mortality rates vary
within age intervals:

• "constant" Mortality rates are constant within each interval.

• "linear". Life table quantity lx is a straight line within each interval. Equivalently, deaths
are distributed uniformly within each interval.

• "CD". Used only with age groups "0" and "1-4". Mortality rates decline over the age inter-
val, with the slope depending on the absolute level of infant mortality. The formulas were
developed by Coale and Demeny (1983), and used in Preston et al (2001).

• "AK". Used only with age group "0". Mortality rates decline over the age interval, with
the slope depending on the absolute level of infant mortality. The formulas were formulas
developed by Andreev and Kingkade (2015), and are used in the Human Mortality Database
methods protocol.

For a detailed description of the methods, see the vignette for poputils.

ax

ax is the average number of years lived in an age interval by people who die in that interval. De-
mographers sometimes refer to it as the ’separation factor’. If a non-NA value of ax is supplied for
an age group, then the results for that age group are based on the formula

mx = dx/(nxlx + axdx)

,

(where n_x is the width of the age interval), over-riding any methods specified via the infant,
child, closed and open arguments.

https://www.mortality.org/File/GetDocument/Public/Docs/MethodsProtocolV6.pdf

20 lifetab

Open age group when inputs are qx

The probability of dying, qx, is always 1 in the final (open) age group. qx therefore provides no
direct information on mortality conditions within the final age group. lifetab() and lifeexp()
use conditions in the second-to-final age group as a proxy for conditions in the final age group.
When open is "constant" (which is currently the only option), and no value for ax in the final age
group is provided, lifetab() and lifeexp() assume that mA = mA−1, and set LA = lA/mA.

In practice, mortality is likely to be higher in the final age group than in the second-to-final age
group, so the default procedure is likely to lead to inaccuracies. When the size of the final age group
is very small, these inaccuracies will be inconsequential. But in other cases, it may be necessary to
supply an explicit value for ax for the final age group, or to use mx rather than qx as inputs.

Using rvecs to represent uncertainty

An rvec is a ’random vector’, holding multiple draws from a distribution. Using an rvec for the
mx argument to lifetab() or lifeexp() is a way of representing uncertainty. This uncertainty is
propagated through to the life table values, which will also be rvecs.

Parallel processing

Calculations can be slow when working with rvecs and many combinations of ’by’ variables. In
these cases, setting n_core to a number greater than 1, which triggers parallel processing, may help.

References

• Preston SH, Heuveline P, and Guillot M. 2001. Demography: Measuring and Modeling Pop-
ulation Processes Oxford: Blackwell.

• Coale AJ, Demeny P, and Vaughn B. 1983. Regional model life tables and stable populations
New York: Academic Press.

• Andreev, E.M. and Kingkade, W.W., 2015. Average age at death in infancy and infant mor-
tality level: Reconsidering the Coale-Demeny formulas at current levels of low mortality.
Demographic Research, 33, pp.363-390.

• Human Mortality Database Methods Protocol.

• Tools for Demographic Estimation.

See Also

• ex_to_lifetab_brass() Calculate life table from minimal inputs

• q0_to_m0() Convert between infant mortality measures

• tfr() Calculate total fertility rate

Examples

library(dplyr)

life table for females based on 'level 1'
mortality rates "West" model life table
west_lifetab |>

https://www.mortality.org/File/GetDocument/Public/Docs/MethodsProtocolV6.pdf
https://demographicestimation.iussp.org

lifetab 21

filter(sex == "Female",
level == 1) |>

lifetab(mx = mx)

change method for infant and children from
default ("constant") to "CD"
west_lifetab |>

filter(sex == "Female",
level == 1) |>

lifetab(mx = mx,
sex = sex,
infant = "CD",
child = "CD")

calculate life expectancies
for all levels, using the 'by'
argument to distinguish levels
west_lifetab |>

lifeexp(mx = mx,
sex = sex,
infant = "CD",
child = "CD",
by = level)

obtain the same result using
'group_by'
west_lifetab |>

group_by(level) |>
lifeexp(mx = mx,

sex = sex,
infant = "CD",
child = "CD")

calculations based on 'qx'
west_lifetab |>

lifeexp(qx = qx,
sex = sex,
by = level)

life expectancy at age 60
west_lifetab |>

filter(level == 10) |>
lifeexp(mx = mx,

at = 60,
sex = sex)

life expectancy at ages 0 and 60
west_lifetab |>

filter(level == 10) |>
lifeexp(mx = mx,

at = c(0, 60),
sex = sex)

22 logit

logit Logit and Inverse-Logit Functions

Description

Transform values to and from the logit scale. logit() calculates

Usage

logit(p)

invlogit(x)

Arguments

p Values in the interval [0, 1]. Can be an atomic vector, a matrix, or an rvec.

x Values in the interval (-Inf, Inf). Can be an atomic vector, a matrix, or an
rvec.

Details

x = log

(
p

1− p

)
and invlogit() calculates

p =
ex

1 + ex

To avoid overflow, invlogit() uses p = 1
1+e−x internally for x where x > 0.

In some of the demographic literature, the logit function is defined as

x =
1

2
log

(
p

1− p

)
.

logit() and invlogit() follow the conventions in statistics and machine learning, and omit the
1
2 .

Value

• A vector of doubles, if p or x is a vector.

• A matrix of doubles, if p or x is a matrix.

• An object of class rvec_dbl, if p or x is an rvec.

matrix_to_list_of_cols 23

Examples

p <- c(0.5, 1, 0.2)
logit(p)
invlogit(logit(p))

matrix_to_list_of_cols

Turn a Matrix Into a List of Columns or Rows

Description

Given a matrix, create a list, each element of which contains a column or row from the matrix.

Usage

matrix_to_list_of_cols(m)

matrix_to_list_of_rows(m)

Arguments

m A matrix

Details

matrix_to_list_of_cols() and ‘matrix_to_list_of_rows() are internal functions, for use by de-
velopers, and would not normally be called directly by end users.

Value

• matrix_to_list_of_cols() A list of vectors, each of which is a column from x.

• matrix_to_list_of_rows(), A list of vectors, each of which is a row from x.

Examples

m <- matrix(1:12, nrow = 3)
matrix_to_list_of_cols(m)
matrix_to_list_of_rows(m)

24 nzmort_rvec

nzmort Mortality Data for New Zealand

Description

Counts of deaths and population, by age, sex, and calendar year, plus mortality rates, for New
Zealand, 2021-2022.

Usage

nzmort

Format

A data frame with 84 rows and the following variables:

• year: Calendar year.

• gender: "Female", and "Male".

• age: Age, in life table age groups, with an open age group of 95+.

• deaths: Counts of deaths, randomly rounded to base 3.

• popn: Estimates of average annual population.

• mx: Mortality rates (deaths / popn).

Source

Modified from data in tables "Deaths by age and sex (Annual-Dec)" and "Estimated Resident Pop-
ulation by Age and Sex (1991+) (Annual-Dec)" from Stats NZ online database Infoshare, down-
loaded on 24 September 2023.

nzmort_rvec Mortality Data and Probabilistic Rates for New Zealand

Description

A modified version of link{nzmort} where mx columns is an rvec, rather than an ordinary R
vector. The rvec holds the random draws from the posterior distribution obtained from by a Bayesian
statistical model.

Usage

nzmort_rvec

Format

An object of class tbl_df (inherits from tbl, data.frame) with 84 rows and 4 columns.

q0_to_m0 25

q0_to_m0 Convert q0 to m0

Description

Convert the probability of dying during infancy (q0) to the mortality rate for infancy (m0).

Usage

q0_to_m0(
q0,
sex = NULL,
a0 = NULL,
infant = c("constant", "linear", "CD", "AK")

)

Arguments

q0 Probability of dying in first year of life. A numeric vector or an rvec.

sex Biological sex. A vector the same length as q0, with labels that can be inter-
preted by reformat_sex(). Needed only when infant is "CD" or "AK".

a0 Average age at death for infants who die. Optional. See help for lifetab().

infant Calculation method. See help for lifetab(). Default is "constant".

Value

A numeric vector or rvec.

Warning

The term "infant mortality rate" is ambiguous. Demographers sometimes use it to refer to m0
(which is an actual rate) and sometimes use it to refer to q0 (which is a probability.)

See Also

• lifetab() Calculate a full life table.

Examples

library(dplyr, warn.conflicts = FALSE)
west_lifetab |>
filter(age == 0, level <= 5) |>
select(level, sex, age, mx, qx) |>
mutate(m0 = q0_to_m0(q0 = qx, sex = sex, infant = "CD"))

26 reformat_age

reformat_age Reformat Age Group Labels

Description

Convert age group labels to one of three formats:

• Single-year age groups, eg "0", "1", ..., "99", "100+".

• Life table age groups, eg "0", "1-4", "5-9", ..., "95-99", "100+"‘.

• Five-year age groups, eg "0-4", "5-9", ..., "95-99", "100+".

By default reformat_age() returns a factor that includes all intermediate age groups. See below
for examples.

Usage

reformat_age(x, factor = TRUE)

Arguments

x A vector.

factor Whether the return value should be a factor.

Details

reformat_age() applies the following algorithm:

1. Tidy and translate text, eg convert "20 to 24 years" to "20-24", convert "infant" to "0", or
convert "100 or more" to "100+".

2. Check whether the resulting labels could have been produced by age_labels(). If not, throw
an error.

3. If factor is TRUE (the default), then return a factor. The levels of this factor include all
intermediate age groups. Otherwise return a character vector.

When x consists entirely of numbers, reformat_age() also checks for two special cases:

• If every element of x is a multiple of 5, and if max(x) >= 50, then x is assumed to describe
5-year age groups

• If every element of x is 0, 1, or a multiple of 5, with max(x) >= 50, then x is assumed to
describe life table age groups.

Value

If factor is TRUE, then reformat_age() returns a factor; otherwise it returns a character vector.

See Also

age_labels(), reformat_sex()

reformat_sex 27

Examples

reformat_age(c("80 to 84", "90 or more", "85 to 89"))

factor contains intermediate level missing from 'x'
reformat_age(c("80 to 84", "90 or more"))

non-factor
reformat_age(c("80 to 84", "90 or more"),

factor = FALSE)

single
reformat_age(c("80", "90plus"))

life table
reformat_age(c("0",

"30-34",
"10--14",
"1-4 years"))

reformat_sex Reformat a Binary Sex Variable

Description

Reformat a binary sex variable so that it consists entirely of values "Female", "Male", and possibly
NA and any values included in except.

Usage

reformat_sex(x, except = NULL, factor = TRUE)

Arguments

x A vector.

except Values to exclude when reformatting.

factor Whether the return value should be a factor.

Details

When parsing labels, reformat_sex() ignores case: "FEMALE" and "fEmAlE" are equivalent.

White space is removed from the beginning and end of labels.

reformat_sex() does not try to interpreting numeric codes (eg 1, 2).

Value

If factor is TRUE, then reformat_age() returns a factor; otherwise it returns a character vector.

28 rr3

See Also

age_labels(), reformat_age()

Examples

reformat_sex(c("F", "female", NA, "MALES"))

values supplied for 'except'
reformat_sex(c("Fem", "Other", "Male", "M"),

except = c("Other", "Diverse"))

return an ordinary character vector
reformat_sex(c("F", "female", NA, "MALES"),

factor = FALSE)

rr3 Randomly Round A Vector of Integers to Base 3

Description

Apply the ’Random Round to Base 3’ (RR3) algorithm to a vector of integers (or doubles where
round(x) == x.

Usage

rr3(x)

Arguments

x A vector of integers (in the sense that round(x) == x.) Can be an rvec.

Details

The RR3 algorithm is used by statistical agencies to confidentialize data. Under the RR3 algorithm,
an integer n is randomly rounded as follows:

• If n is divisible by 3, leave it unchanged

• If dividing n by 3 leaves a remainder of 1, then round down (subtract 1) with probability 2/3,
and round up (add 2) with probability 1/3.

• If dividing n by 3 leaves a remainder of 1, then round down (subtract 2) with probability 1/3,
and round up (add 1) with probability 2/3.

RR3 has some nice properties:

• The randomly-rounded version of n has expected value n.

• If n non-negative, then the randomly rounded version of n is non-negative.

• If n is non-positive, then the randomly rounded version of n is non-positive.

set_age_open 29

Value

A randomly-rounded version of x.

Examples

x <- c(1, 5, 2, 0, -1, 3, NA)
rr3(x)

set_age_open Specify Open Age Group

Description

Set the lower limit of the open age group. Given a vector of age group labels, recode all age groups
with a lower limit greater than or equal to <lower> to <lower>+.

Usage

set_age_open(x, lower)

Arguments

x A vector of age labels.

lower An integer. The lower limit for the open age group.

Details

set_age_open() requires that x and the return value have a a five-year, single-year, or life table
format, as described in age_labels().

Value

A modified version of x.

See Also

• set_age_open() uses age_lower() to identify lower limits

• age_labels() for creating age labels from scratch

Examples

x <- c("100+", "80-84", "95-99", "20-24")
set_age_open(x, 90)
set_age_open(x, 25)

30 tfr

tfr Calculate Total Fertility Rates

Description

Calculate the total fertility rate (TFR) from age-specific fertility rates.

Usage

tfr(
data,
asfr = NULL,
age = age,
sex = NULL,
by = NULL,
denominator = 1,
suffix = NULL

)

Arguments

data Data frame with age-specific fertility rates and age

asfr Age-specific fertility rates. Possibly an rvec.

age <tidyselect> Age group labels. The labels must be interpretable by functions
such as reformat_age() and age_group_type(). The age groups must not
have gaps, and the highest age group must be "closed" (ie have an upper limit.)

sex <tidyselect> Sex/gender of the child (not the parent).

by <tidyselect> Separate total fertility rates are calculated for each combination
the by variables. If data is a grouped data frame, then the grouping variables
take precedence over by.

denominator The denominator used to calculate asfr. Default is 1.

suffix Optional suffix added to "tfr" column in result.

Details

The total fertility rate is a summary measures for current fertility levels that removes the effect of
age structure. Is obtained by summing up age-specific fertility rates, multiplying each rate by the
width of the corresponding age group. For instance, the rate for age group "15-19" is multiplied by
5, and the rate for age group "15" is multiplied by 1.

The total fertility rate can be interpreted as the number of average children that a person would
have, under prevailing fertility rates, if the person survived to the maximum age of reproduction.
The hypothetical person is normally a woman, since age-specific fertility rates normally use person-
years lived by women as the denominator. But it can apply to men, if the age-specific fertility rates
are "paternity rates", ie rates that use person-years lived by men as the denominator.

https://dplyr.tidyverse.org/reference/group_data.html

to_matrix 31

Value

A tibble.

Sex-specific fertility rates

Age-specific fertility rates do not normally specify the sex of the children who are born. In cases
where they do, however, rates have to be summed across sexes to give the total fertility rates. If
tfr() is supplied with a sex argument, it assumes that sex applies to the births, and sums over the
sexes.

Denominator

Published tables of age-specific fertility rates often express the rates as births per 1000 person-years
lived, rather than per person-year lived. (Sometimes this is expressed as "births per 1000 women".)
In these cases

Using rvecs to represent uncertainty

An rvec is a ’random vector’, holding multiple draws from a distribution. Using an rvec for the asfr
argument to tfr() is a way of representing uncertainty. This uncertainty is propagated through to
the TFR, which will also be rvecs.

See Also

• lifeexp() Calculate life expectancy from age-specific mortality rates.

Examples

iran_fertility |>
tfr(asfr = rate,

by = c(area, time),
denominator = 1000)

to_matrix Build a Matrix from Measure and ID Variables

Description

Build a matrix where the elements are values of a measure variable, and the rows and columns are
formed by observed combinations of ID variables. The ID variables picked out by rows and cols
must uniquely identify cells. to_matrix(), unlike stats::xtabs(), does not sum across multiple
combinations of ID variables.

Usage

to_matrix(x, rows, cols, measure)

32 trim_01

Arguments

x A data frame.

rows The ID variable(s) used to distinguish rows in the matrix.

cols The ID variable(s) used to distinguish columns in the matrix.

measure The measure variable, eg rates or counts.

Value

A matrix

Examples

x <- expand.grid(age = c(0, 1, 2),
sex = c("F", "M"),
region = c("A", "B"),
year = 2000:2001)

x$count <- 1:24

to_matrix(x,
rows = c(age, sex),
cols = c(region, year),
measure = count)

to_matrix(x,
rows = c(age, sex, region),
cols = year,
measure = count)

cells not uniquely identified
try(
to_matrix(x,

rows = age,
cols = sex,
measure = count)

)

trim_01 Trim Values So They Are Between 0 and 1

Description

Trim a vector so that all values are greater than 0 and less than 1.

Usage

trim_01(x)

west_lifetab 33

Arguments

x A numeric vector. Can be an rvec.

Details

If

• min is lowest element of x that is higher than 0, and

• max is the highest element of x that is lower than 1, then trim_01()

• shifts all elements of x that are lower than min upwards, so that they equal min, and

• shifts all elements of x that are higher than max downwards, so that they equal max.

Value

A trimmed version of x

See Also

• logit(), invlogit() Logit transformation

Examples

x <- c(1, 0.98, -0.001, 0.5, 0.01)
trim_01(x)

west_lifetab Coale-Demeny West Model Life Tables

Description

Life table quantities from the "West" family of Coale-Demeny model life tables.

Usage

west_lifetab

Format

A data frame with 1,050 rows and the following variables:

• level: Index for life table. Lower level implies lower life expectancy.

• sex: "Female", and "Male".

• age: Age, in life table age groups, with an open age group of 95+.

• mx: Mortality rate.

• ax: Average years lived in age interval by people who die in that interval.

• qx: Probability some alive at start of age interval dies during interval.

34 west_lifetab

• lx: Number of people still alive at start of age interval.

• dx: Number of people dying during age interval.

• Lx: Number of person-years lived during age interval.

• ex: Expectation of life at start of age interval.

Source

Coale A, Demeny P, and Vaughn B. 1983. Regional model life tables and stable populations. 2nd
ed. New York: Academic Press, accessed via demogR::cdmltw().

Index

∗ datasets
iran_fertility, 16
nzmort, 24
nzmort_rvec, 24
west_lifetab, 33

age_group_type, 2
age_group_type(), 6, 18, 30
age_labels, 3
age_labels(), 4, 5, 9, 26, 28, 29
age_lower, 4
age_lower(), 29
age_mid (age_lower), 4
age_upper (age_lower), 4

check_age, 5
check_equal_length, 7
check_n, 8
check_no_overlap_colnums, 8
combine_age, 9

ex_to_lifetab_brass, 10
ex_to_lifetab_brass(), 20

find_label_female, 12
find_label_female(), 13, 15
find_label_male, 13
find_label_male(), 12, 15
find_var_age, 14
find_var_age(), 15
find_var_sexgender, 14
find_var_sexgender(), 12–15
find_var_time, 15
find_var_time(), 14, 15

groups_colnums, 16

invlogit (logit), 22
invlogit(), 12, 33
iran_fertility, 16

lifeexp (lifetab), 17
lifeexp(), 12, 31
lifetab, 17
lifetab(), 10, 25
logit, 22
logit(), 12, 33

matrix_to_list_of_cols, 23
matrix_to_list_of_rows

(matrix_to_list_of_cols), 23

nzmort, 24
nzmort_rvec, 24

q0_to_m0, 25
q0_to_m0(), 20

reformat_age, 26
reformat_age(), 4–6, 9, 11, 18, 28, 30
reformat_sex, 27
reformat_sex(), 18, 25, 26
rr3, 28
rvec, 11, 18, 20, 22, 24, 25, 28, 30, 31, 33

set_age_open, 29
set_age_open(), 9

tfr, 30
tfr(), 20
tibble, 19, 31
tidyselect, 18, 30
tidyselect::eval_select(), 8, 9
to_matrix, 31
trim_01, 32

west_lifetab, 33

35

	age_group_type
	age_labels
	age_lower
	check_age
	check_equal_length
	check_n
	check_no_overlap_colnums
	combine_age
	ex_to_lifetab_brass
	find_label_female
	find_label_male
	find_var_age
	find_var_sexgender
	find_var_time
	groups_colnums
	iran_fertility
	lifetab
	logit
	matrix_to_list_of_cols
	nzmort
	nzmort_rvec
	q0_to_m0
	reformat_age
	reformat_sex
	rr3
	set_age_open
	tfr
	to_matrix
	trim_01
	west_lifetab
	Index

