
Introduction to the R package plspm

Gaston Sanchez, Laura Trinchera, Giorgio Russolillo

1 Introduction

plspm is an R package for performing Partial Least Squares Path Modeling (PLS-PM)
analysis. Briefly, PLS-PM is a multivariate data analysis method for analyzing systems of
relationships between multiple sets of variables. In this vignette we present a short intro-
duction to plspm without providing a full description of all the package’s capabilities. An
extended documentation can be found in the book PLS Path Modeling with R freely
available at: https://www.gastonsanchez.com/PLS_Path_Modeling_with_R.pdf

2 About PLS Path Modeling

Partial Least Squares Path Modeling (PLS-PM) is one of the methods from the broad family
of PLS techniques. It is also known as the PLS approach to Structural Equation Modeling,
and it was originally developed by Herman Wold and his research group during the 1970s
and the early 1980s. Around the PLS community, the term Path Modeling is preferred to
that of Structural Equation Modeling, although both terms can be found within the PLS
literature. Our preferred definition of PLS-PM is based on three fundamental concepts:

1. It is a multivariate method for analyzing multiple blocks of variables

2. Each block of variables plays the role of a latent variable

3. It is assumed that there is a system of linear relationships between blocks

In other words: PLS-PM provides a framework for analyzing multiple relationships between
a set of blocks of variables (or data tables). It is supposed that each block of variables is
represented by a latent construct or theoretical concept; the relationships among the blocks
are established taking into account previous knowledge (theory) of the phenomenon under
analysis. There are plenty of references about PLS-PM, but we will only mention one from
Wold, and two more recent ones:

• Esposito Vinzi V., Chin W.W., Henseler J., Wang W. (2010) Handbook of Partial Least
Squares: Concepts, Methods and Applications. Springer.

• Tenenhaus M., Esposito Vinzi V., Chatelin Y.M., and Lauro C. (2005) PLS Path Mod-
elling. Computational Statistics & Data Analysis, 48: 159-205.

1

https://www.gastonsanchez.com/PLS_Path_Modeling_with_R.pdf

• Wold H. (1982) Soft modeling: the basic design and some extensions. In: K.G. Joreskog &
H. Wold (Eds.), Systems under indirect observations: Causality, structure, prediction,
Part 2, pp. 1-54. Amsterdam: Holland.

3 Installation and Usage

plspm is freely available from the Comprehensive R Archive Network, better known as CRAN,
at: https://cran.r-project.org/web/packages/plspm/index.html
Since version 0.4.0, plspm contains a set of features for handling non-metric data (discrete,
ordinal, categorical, qualitative, etc). More information related with non-metric PLS-PM
will be available in a separated vignette (coming soon).

3.1 Installation

The main version of the package is the one hosted in CRAN. You can install it like you would
install any other package in R by using the function install.packages(). In your R console
simply type:

installation

install.packages("plspm")

Once plspm has been installed, you can use the function library() to load the package in
your working session:

load package 'plspm'

library("plspm")

3.2 Development Version

In addition to the stable version in CRAN, there is also a development version that lives
in a github repository: https://github.com/gastonstat/plspm. This version will usually
be the latest version that we’re developing and that will eventually end up in CRAN. Most
people don’t need to use this version but if you feel tempted, intrigued, or adventurous,
you are welcome to play with it. To download the devel version in R, you will need to use
the package "devtools" —which means you have to install it first—. Once you installed
"devtools", type the following in your R console:

load devtools

library(devtools)

then download 'plspm' using 'install_github'

install_github("gastonstat/plspm")

finally, load it with library()

library(plspm)

2

https://cran.r-project.org/web/packages/plspm/index.html
https://github.com/gastonstat/plspm

4 What’s in plspm

plspm comes with a number of functions to perform a series of different types of analysis.
The main function, which has the same name as the package, is the function plspm() which
is designed for running a full PLS-PM analysis. A modified version of plspm() is its sibling
function plspm.fit() which is intended to perform a PLS-PM analysis with limited results.
In other words, plspm() is the deluxe version, while plspm.fit() is a minimalist option.
The accessory functions of plspm() are the plotting and the summary functions. The plot()
method is a wraper of the functions innerplot() and outerplot() which allow you to
display the results of the inner and outer model, respectively. In turn, the summary() function
will display the results in a similar format like other standard software for PLS-PM.
In third place we have the function plspm.groups() which allows you to compare two groups
(i.e. two models). This function offers two options for doing the comparison: a bootstrap
t-test, and a non-parametric permutation test.
In fourth place, thanks to the collaboration of Laura Trinchera, there’s the set of functions
dedicated to the detection of latent classes by using REBUS-PLS.
Last but not least, plspm() also comes with several data sets to play with: satisfaction,
mobile, spainfoot, soccer, offense, technology, oranges, wines, arizona, russett,
russa, russb, and sim.data.

5 Quick Example with plspm()

In order to show a toy analysis example with plspm(), we will use the russett data set
which is one of the traditional examples for presenting PLS-PM. To load the data, simple
type in your R console:

laod data set

data(russett)

5.1 Data russett

The data conatins 11 variales about agricultural inequality, industrial development, and
political instability measured on 47 countries, collected by Ruseett B. M. in his 1964 paper:
The Relation of Land Tenure to Politics. World Politics, 16:3, pp. 442-454.
To get an idea of what the data looks like we can use the head() function which will show
us the first n rows in russett

take a look at the data

head(russett)

gini farm rent gnpr labo inst ecks death demostab demoinst dictator

Argentina 86.3 98.2 3.52 5.92 3.22 0.07 4.06 5.38 0 1 0

Australia 92.9 99.6 3.40 7.10 2.64 0.01 0.00 0.00 1 0 0

Austria 74.0 97.4 2.46 6.28 3.47 0.03 1.61 0.00 0 1 0

3

Belgium 58.7 85.8 4.15 6.92 2.30 0.45 2.20 0.69 1 0 0

Bolivia 93.8 97.7 3.04 4.19 4.28 0.37 3.99 6.50 0 0 1

Brasil 83.7 98.5 2.31 5.57 4.11 0.45 3.91 0.69 0 1 0

The description of each variable is given in the following table:

Table 1: Description of variables in data russett
Variable Description Block
gini Inequality of land distribution AGRIN

farm Percentage of farmers that own half of the land AGRIN

rent Percentage of farmers that rent all their land AGRIN

gnpr Gross national product per capita INDEV

labo Percentage of labor force employed in agriculture INDEV

inst Instability of executive POLINS

ecks Number of violent internal war incidents POLINS

death Number of people killed as a result of civic group violence POLINS

demostab Political regime: stable democracy POLINS

demoinst Political regime: unstable democracy POLINS

dictator Political regime: dictatorship POLINS

The proposed structural model consists of three latent variables: Agricultural Inequality
(AGRIN), Industrial Development (INDEV), and Political Instability (POLINS). The model
statement for the relationships between latent variables can be declared as follows:

The Political Instability of a country depends on both its Agricultural Inequality,
and its Industrial Development.

Besides the data, the other main ingredients that we need for running a PLS-PM analysis
are: an inner model (i.e. structural model), and an outer model (i.e. measurement model).
With other software that provide a graphical interface, the inner and the outer model are
typically defined by drawing a path diagram. This is not the case with plspm. Instead, you
need to define the structural relationships in matrix format, and you also need to specify the
different blocks of variables. But don’t be scared, this sounds more complicated than it is.
Once you learn the basics, you’ll realize how convenient it is to define a PLS path model for
plspm().

5.1.1 Path Model Matrix

The first thing to do is to define the inner model in matrix format. More specifically this
implies that you need to provide the structural relationships in what we call a path matrix.
To do this, you must follow a pair of important guidelines. The path matrix must be a
lower triangular boolean matrix. In other words, it must be a square matrix (same number
of rows and columns); the elements in the diagonal and above it must be zeros; and the
elements below the diagonal can be either zeros or ones. Here’s how the path matrix should
be defined:

4

path matrix (inner model realtionships)

AGRIN = c(0, 0, 0)

INDEV = c(0, 0, 0)

POLINS = c(1, 1, 0)

rus_path = rbind(AGRIN, INDEV, POLINS)

add optional column names

colnames(rus_path) = rownames(rus_path)

how does it look like?

rus_path

AGRIN INDEV POLINS

AGRIN 0 0 0

INDEV 0 0 0

POLINS 1 1 0

The way in which you should read this matrix is by “columns affecting rows”. A number one
in the cell i, j (i-th row and j-th column) means that column j affects row i. For instance,
the one in the cell 3,1 means that AGRIN affects POLINS. The zeros in the diagonal of the
matrix mean that a latent variable cannot affect itself. The zeros above the diagonal imply
that PLS-PM only works wiht non-recursive models (no loops in the inner model).
We can also use the function innerplot() that allows us to quickly inspect the path matrix

in a path diagram format (and making sure it is what we want)

plot the path matrix

innerplot(rus_path)

POLINSINDEV

AGRIN

5.1.2 List of Blocks for Outer Model

The second ingredient is the outer model. The way in which the outer model is defined is by
using a list. Basically, the idea is to tell the plspm() function what variables of the data set

5

are associated with what latent variables. Here’s how you do it in R:

list indicating what variables are associated with what latent variables

rus_blocks = list(1:3, 4:5, 6:11)

The list above contains three elements, one per each latent variable. Each element is a vector
of indices. Thus, the first latent variable, AGRIN, is associated with the first three columns of
the data set. INDEV is formed by the columns from 4 and 5 in the data set. In turn, INDEV
is formed by the columns from 6 to 11.
Alternatively, you can also specify the list of blocks by giving the names of the variables
forming each block:

list indicating what variables are associated with what latent variables

rus_blocks = list(

c("gini", "farm", "rent"),

c("gnpr", "labo"),

c("inst", "ecks", "death", "demostab", "demoinst", "dictator"))

By default, plspm() will set the measurement of the latent variables in reflective mode,
known as mode A in the PLSPM world. However, it is a good idea if you explicitly provide
the vector of measurement modes by using a character vector with as many letters as latent
variables:

all latent variables are measured in a reflective way

rus_modes = rep("A", 3)

5.2 Running plspm()

Now we are ready to run our first PLS path model with the function plspm(). You need to
plug-in the data set, the path matrix, the list of blocks, and the vector of modes, like this:

run plspm analysis

rus_pls = plspm(russett, rus_path, rus_blocks, modes = rus_modes)

what's in foot_pls?

rus_pls

Partial Least Squares Path Modeling (PLS-PM)

NAME DESCRIPTION

1 $outer_model outer model

2 $inner_model inner model

3 $path_coefs path coefficients matrix

6

4 $scores latent variable scores

5 $crossloadings cross-loadings

6 $inner_summary summary inner model

7 $effects total effects

8 $unidim unidimensionality

9 $gof goodness-of-fit

10 $boot bootstrap results

11 $data data matrix

You can also use the function 'summary'

What we get in rus pls is an object of class "plspm". Everytime you type an object of this
class you will get a display with the previous list of results. For example, if you want to
inspect the matrix of path coefficients, simply type:

path coefficients

rus_pls$path_coefs

AGRIN INDEV POLINS

AGRIN 0.0000000 0.0000000 0

INDEV 0.0000000 0.0000000 0

POLINS 0.2150858 -0.6949622 0

Likewise, if you want to inspect the results of the inner model just type:

inner model

rus_pls$inner_model

$POLINS

Estimate Std. Error t value Pr(>|t|)

Intercept -2.422509e-16 0.09263892 -2.615001e-15 1.000000e+00

AGRIN 2.150858e-01 0.09749335 2.206159e+00 3.263963e-02

INDEV -6.949622e-01 0.09749335 -7.128304e+00 7.417367e-09

In addition, there is a summary() method that you can apply to any obect of class "plspm".
This function gives a full summary with the standard results provided in most software for
PLS Path Modeling. We won’t display the bunch of stuff that summary() provides but we
recommend you to check it out in your computer:

summarized results

summary(rus_pls)

7

5.3 Plotting results

One of the nice features about plspm is that you can also take a peek of the results using the
function plot(). By default, this function displays the path coefficients of the inner model:

plot the results (inner model)

plot(rus_pls)

− 0.695

0.2151

POLINSINDEV

AGRIN

Equivalently, you can also use the function innerplot() to get the same plot.
In order to check the results of the outer model, say the loadings, you need to use the
parameter what of the plot() function

plot the loadings of the outer model

plot(rus_pls, what = "loadings", arr.width = 0.1)

AGRIN
loadings

0.977

0.986

0.5159

gini

farm

rent

AGRIN

INDEV
loadings

0.9501
− 0.9551

gnprlabo

INDEV

POLINS
loadings

0.3516

0.8157

0.7939
− 0.8657

0.0943

0.733
inst

ecks

deathdemostab

demoinst

dictator

POLINS

8

plot the weights of the outer model

plot(rus_pls, what = "weights", arr.width = 0.1)

AGRIN
weights

0.4596

0.5163

0.0813

gini

farm

rent

AGRIN

INDEV
weights

− 0.5112
0.5384

gnprlabo

INDEV

POLINS
weights

0.104

0.27

0.3023
− 0.3363

0.0369

0.2846
inst

ecks

deathdemostab

demoinst

dictator

POLINS

Plotting Cross-Loadings

In addition to the plotting functions provided in plspm, we can also use the packages ggplot2
and reshape to get some nice bar-charts of the cross-loadings:

load ggplot2 and reshape

library(ggplot2)

library(reshape)

reshape crossloadings data.frame for ggplot

xloads = melt(rus_pls$crossloadings, id.vars = c("name", "block"),

variable_name = "LV")

bar-charts of crossloadings by block

ggplot(data = xloads,

aes(x = name, y = value, fill = block)) +

geom_hline(yintercept = 0, color = "gray75") +

geom_hline(yintercept = c(-0.5, 0.5), color = "gray70", linetype = 2) +

geom_bar(stat = 'identity', position = 'dodge') +

facet_wrap(block ~ LV) +

theme(axis.text.x = element_text(angle = 90),

line = element_blank()) +

ggtitle("Crossloadings")

9

POLINS

AGRIN

POLINS

INDEV

POLINS

POLINS

INDEV

AGRIN

INDEV

INDEV

INDEV

POLINS

AGRIN

AGRIN

AGRIN

INDEV

AGRIN

POLINS
gi

ni

fa
rm

re
nt

gn
pr

la
bo

in
st

ec
ks

de
at

h

de
m

os
ta

b

de
m

oi
ns

t

di
ct

at
or

gi
ni

fa
rm

re
nt

gn
pr

la
bo

in
st

ec
ks

de
at

h

de
m

os
ta

b

de
m

oi
ns

t

di
ct

at
or

gi
ni

fa
rm

re
nt

gn
pr

la
bo

in
st

ec
ks

de
at

h

de
m

os
ta

b

de
m

oi
ns

t

di
ct

at
or

−1.0

−0.5

0.0

0.5

1.0

−1.0

−0.5

0.0

0.5

1.0

−1.0

−0.5

0.0

0.5

1.0

name

va
lu

e

block

AGRIN

INDEV

POLINS

Crossloadings

10

	Introduction
	About PLS Path Modeling
	Installation and Usage
	Installation
	Development Version

	What's in plspm
	Quick Example with plspm()
	Data russett
	Path Model Matrix
	List of Blocks for Outer Model

	Running plspm()
	Plotting results

