Package ‘philentropy’

November 12, 2024
Type Package

Title Similarity and Distance Quantification Between Probability
Functions

Version 0.9.0
Date 2024-11-12
Maintainer Hajk-Georg Drost <hajk-georg.drost@tuebingen.mpg.de>

Description Computes 46 optimized distance and similarity measures for comparing probability func-
tions (Drost (2018) <doi:10.21105/joss.00765>). These comparisons between probability func-
tions have their foundations in a broad range of scientific disciplines from mathematics to ecol-
ogy. The aim of this package is to provide a core framework for clustering, classification, statisti-
cal inference, goodness-of-fit, non-parametric statistics, information theory, and machine learn-
ing tasks that are based on comparing univariate or multivariate probability functions.

Depends R (>=3.1.2)

Imports Rcpp, KernSmooth, poorman
License GPL-2

LinkingTo Rcpp

URL https://drostlab.github.io/philentropy/,
https://github.com/drostlab/philentropy
Suggests testthat, knitr, rmarkdown, microbenchmark

VignetteBuilder knitr

BugReports https://github.com/drostlab/philentropy/issues
RoxygenNote 7.3.1
NeedsCompilation yes

Author Hajk-Georg Drost [aut, cre] (<https://orcid.org/0000-0002-1567-306X>),
Jakub Nowosad [ctb] (<https://orcid.org/0000-0002-1057-3721>)

Repository CRAN
Date/Publication 2024-11-12 21:40:02 UTC

https://doi.org/10.21105/joss.00765
https://drostlab.github.io/philentropy/
https://github.com/drostlab/philentropy
https://github.com/drostlab/philentropy/issues
https://orcid.org/0000-0002-1567-306X
https://orcid.org/0000-0002-1057-3721

2 Contents

Contents
additive_symm_chi_sq L 3
AVE . o e e e e e e e 4
bhattacharyya 4
binned.kernel.est 5
CANDEITA o i e e e e e e e e e e e e e e 6
CE . . e e e 7
chebyshev e 8
clark_sq e 9
cosine_diSt e 9
czekanowski L L L e 10
dice_diSt L e e 10
dist.diversity e e e e e e e e e 11
distance e e e e e e e e 12
dist_many_many e e e e e e 16
dist_one_many e e e e 18
diSt_ONE_ONE e e e 19
dIVErgence_Sq . - . - v v o e e e 20
estimate.probability Lo 21
euclidean e e e e 22
fidelity e e 22
getDistMethods L 23
gISD . e 23
GOWET . o v v v e it e e e e e e e e e e e e e e e e 25
H e 25
harmonic_mean_dist e 26
hellinger e 27
Inner_product e e e e e e e e 27
intersection_dist L. L L e e e e e e e e 28
jaccard . . .o e 29
JE e 29
jeffreys . . e 30
jensen_difference 31
jensen_shannon 32
ISD . e 33
S 35
kulezynski_d e 37
kullback_leibler_distance 38
kumar_hassebrook 39
kumar_johnson 39
ko divergence 40
LIN.COT e e e e e e e 41
lorentzian L. e e e e e e e e e e e 42
manhattan L. e e e e e e e e e e e 42
MatuSIta e e e e e e 43
MI . e 44

minkowski e 45

additive_symm_chi_sq 3

Index

motyka e e e 45
neyman_chi_sq e 46
pearson_chi_Sq 47
prob_symm_chi_sq 48
TUZICKA e e 48
soergel 49
1) () 11 o 1 49
squared_chi_sq 50
squared_chord 51
squared_euclidean L 51
tANEJA 52
tanImOLO e e e e e e 53
TOPSOB o e 53
wave_hedges L 54

55

additive_symm_chi_sq Additive symmetric chi-squared distance (lowlevel function)

Description

The lowlevel function for computing the additive_symm_chi_sq distance.

Usage

additive_symm_chi_sq(P, Q, testNA)

Arguments
P a numeric vector storing the first distribution.
Q a numeric vector storing the second distribution.
testNA a logical value indicating whether or not distributions shall be checked for NA
values.
Author(s)
Hajk-Georg Drost
Examples

additive_symm_chi_sq(P = 1:10/sum(1:10), Q = 20:29/sum(20:29), testNA = FALSE)

4 bhattacharyya

avg AVG distance (lowlevel function)

Description

The lowlevel function for computing the avg distance.

Usage

avg(P, Q, testNA)

Arguments
P a numeric vector storing the first distribution.
Q a numeric vector storing the second distribution.
testNA a logical value indicating whether or not distributions shall be checked for NA
values.
Author(s)

Hajk-Georg Drost

Examples

avg(P = 1:10/sum(1:10), Q = 20:29/sum(20:29), testNA = FALSE)

bhattacharyya Bhattacharyya distance (lowlevel function)

Description

The lowlevel function for computing the bhattacharyya distance.

Usage

bhattacharyya(P, Q, testNA, unit, epsilon)

binned.kernel.est

Arguments
P

Q
testNA

unit

epsilon

Author(s)
Hajk-Georg Drost

Examples

bhattacharyya(P =

a numeric vector storing the first distribution.
a numeric vector storing the second distribution.

a logical value indicating whether or not distributions shall be checked for NA
values.

type of log function. Option are

epsilon a small value to address cases in the distance computation where division
by zero occurs. In these cases, x / 0 or 0 / 0 will be replaced by epsilon. The
default is epsilon =0.00001. However, we recommend to choose a custom
epsilon value depending on the size of the input vectors, the expected similar-
ity between compared probability density functions and whether or not many 0
values are present within the compared vectors. As a rough rule of thumb we
suggest that when dealing with very large input vectors which are very simi-
lar and contain many @ values, the epsilon value should be set even smaller
(e.g. epsilon = 0.000000001), whereas when vector sizes are small or distri-
butions very divergent then higher epsilon values may also be appropriate (e.g.
epsilon =0.01). Addressing this epsilon issue is important to avoid cases
where distance metrics return negative values which are not defined and only
occur due to the technical issues of computing x / 0 or 0/ 0 cases.

1:10/sum(1:10), Q = 20:29/sum(20:29), testNA = FALSE,

unit = "log2", epsilon = 0.00001)

binned.kernel.est

Kernel Density Estimation

Description

This function implements an interface to the kernel density estimation functions provided by the
KernSmooth package.

Usage

binned.kernel.est(

data,

kernel = "normal”,
bandwidth = NULL,
canonical = FALSE,
scalest = "minim”,

level = 2L,

canberra

gridsize = 401L,
range.data = range(data),
truncate = TRUE

Arguments

data

kernel
bandwidth
canonical

scalest

level

gridsize
range.data

truncate

Author(s)
Hajk-Georg Drost

References

a numeric vector containing the sample on which the kernel density estimate is
to be constructed.

character string specifying the smoothing kernel
the kernel bandwidth smoothing parameter.
a logical value indicating whether canonically scaled kernels should be used
estimate of scale.
* "stdev” - standard deviation is used.
e "igr"” - inter-quartile range divided by 1.349 is used.
e "minim” - minimum of "stdev"” and "iqr" is used.
number of levels of functional estimation used in the plug-in rule.

the number of equally-spaced points over which binning is performed to obtain
kernel functional approximation.

vector containing the minimum and maximum values of data at which to com-
pute the estimate. The default is the minimum and maximum data values.

logical value indicating whether data with x values outside the range specified
by range.data should be ignored.

Matt Wand (2015). KernSmooth: Functions for Kernel Smoothing Supporting Wand & Jones
(1995). R package version 2.23-14.

Henry Deng and Hadley Wickham (2011). Density estimation in R. http://vita.had.co.nz/
papers/density-estimation.pdf.

canberra

Canberra distance (lowlevel function)

Description

The lowlevel function for computing the canberra distance.

Usage

canberra(P, Q, testNA)

http://vita.had.co.nz/papers/density-estimation.pdf
http://vita.had.co.nz/papers/density-estimation.pdf

CE 7

Arguments
P a numeric vector storing the first distribution.
Q a numeric vector storing the second distribution.
testNA a logical value indicating whether or not distributions shall be checked for NA
values.
Author(s)

Hajk-Georg Drost

Examples

canberra(P = 1:10/sum(1:10), Q = 20:29/sum(20:29), testNA = FALSE)

CE Shannon’s Conditional-Entropy H(X|Y)

Description
Compute Shannon’s Conditional-Entropy based on the chain rule H(X|Y) = H(X,Y) — H(Y)
based on a given joint-probability vector P(X,Y") and probability vector P(Y").

Usage

CE(xy, y, unit = "log2")

Arguments

Xy a numeric joint-probability vector P(X,Y") for which Shannon’s Joint-Entropy
H(X,Y) shall be computed.

y a numeric probability vector P(Y") for which Shannon’s Entropy H (Y) (as part
of the chain rule) shall be computed. It is important to note that this probability
vector must be the probability distribution of random variable Y (P(Y) for which
H(Y) is computed).

unit a character string specifying the logarithm unit that shall be used to compute
distances that depend on log computations.

Details

This function might be useful to fastly compute Shannon’s Conditional-Entropy for any given joint-
probability vector and probability vector.

Value

Shannon’s Conditional-Entropy in bit.

8 chebyshev

Note

Note that the probability vector P(Y) must be the probability distribution of random variable Y
(P(Y) for which H(Y) is computed) and furthermore used for the chain rule computation of
HX|Y)=H(X,Y)—H(Y).

Author(s)
Hajk-Georg Drost

References
Shannon, Claude E. 1948. "A Mathematical Theory of Communication". Bell System Technical
Journal 27 (3): 379-423.

See Also

H, JE

Examples

CE(1:10/sum(1:10),1:10/sum(1:10))

chebyshev Chebyshev distance (lowlevel function)

Description

The lowlevel function for computing the chebyshev distance.

Usage

chebyshev(P, Q, testNA)

Arguments
P a numeric vector storing the first distribution.
Q a numeric vector storing the second distribution.
testNA a logical value indicating whether or not distributions shall be checked for NA
values.
Author(s)

Hajk-Georg Drost

Examples

chebyshev(P = 1:10/sum(1:10), Q = 20:29/sum(20:29), testNA = FALSE)

clark_sq 9

clark_sq Clark squared distance (lowlevel function)

Description

The lowlevel function for computing the clark_sq distance.

Usage

clark_sq(P, Q, testNA)

Arguments
P a numeric vector storing the first distribution.
Q a numeric vector storing the second distribution.
testNA a logical value indicating whether or not distributions shall be checked for NA
values.
Author(s)

Hajk-Georg Drost

Examples

clark_sq(P = 1:10/sum(1:10), Q = 20:29/sum(20:29), testNA = FALSE)

cosine_dist Cosine distance (lowlevel function)

Description

The lowlevel function for computing the cosine_dist distance.

Usage

cosine_dist(P, Q, testNA)

Arguments
P a numeric vector storing the first distribution.
Q a numeric vector storing the second distribution.
testNA a logical value indicating whether or not distributions shall be checked for NA

values.

10 dice_dist

Author(s)
Hajk-Georg Drost

Examples

cosine_dist(P = 1:10/sum(1:10), Q = 20:29/sum(20:29), testNA = FALSE)

czekanowski Czekanowski distance (lowlevel function)

Description

The lowlevel function for computing the czekanowski distance.

Usage

czekanowski(P, Q, testNA)

Arguments
P a numeric vector storing the first distribution.
Q a numeric vector storing the second distribution.
testNA a logical value indicating whether or not distributions shall be checked for NA
values.
Author(s)

Hajk-Georg Drost

Examples

czekanowski(P = 1:10/sum(1:10), Q = 20:29/sum(20:29), testNA = FALSE)

dice_dist Dice distance (lowlevel function)

Description

The lowlevel function for computing the dice_dist distance.

Usage

dice_dist(P, Q, testNA)

dist.diversity 11

Arguments
P a numeric vector storing the first distribution.
Q a numeric vector storing the second distribution.
testNA a logical value indicating whether or not distributions shall be checked for NA
values.
Author(s)

Hajk-Georg Drost

Examples

dice_dist(P = 1:10/sum(1:10), Q = 20:29/sum(20:29), testNA = FALSE)

dist.diversity Distance Diversity between Probability Density Functions

Description
This function computes all distance values between two probability density functions that are avail-
able in getDistMethods and returns a vector storing the corresponding distance measures. This
vector is named distance diversity vector.

Usage
dist.diversity(x, p, test.na = FALSE, unit = "log2")

Arguments
X a numeric data.frame or matrix (storing probability vectors) or a numeric
data.frame or matrix storing counts (if est.prob is specified).
p power of the Minkowski distance.
test.na a boolean value indicating whether input vectors should be tested for NA values.
Faster computations if test.na = FALSE.
unit a character string specifying the logarithm unit that should be used to compute
distances that depend on log computations. Options are:
e unit ="log"
e unit ="log2"
e unit="logl0Q"
Author(s)

Hajk-Georg Drost

Examples

dist.diversity(rbind(1:10/sum(1:10), 20:29/sum(20:29)), p = 2, unit = "log2")

12

distance

distance

Distances and Similarities between Probability Density Functions

Description

This functions computes the distance/dissimilarity between two probability density functions.

Usage
distance(
X)
method = "euclidean”,
p = NULL,
test.na = TRUE,
unit = "log",

epsilon = 1e-05,
est.prob = NULL,
use.row.names = FALSE,
as.dist.obj = FALSE,
diag = FALSE,

upper = FALSE
mute.message

Arguments

X

method

p
test.na

unit

epsilon

’

= FALSE

a numeric data.frame or matrix (storing probability vectors) or a numeric
data.frame or matrix storing counts (if est.prob is specified).

a character string indicating whether the distance measure that should be com-
puted.

power of the Minkowski distance.

a boolean value indicating whether input vectors should be tested for NA values.
Faster computations if test.na = FALSE.

a character string specifying the logarithm unit that should be used to compute
distances that depend on log computations.

a small value to address cases in the distance computation where division by
zero occurs. In these cases, x / 0 or 0 / 0 will be replaced by epsilon. The
default is epsilon = 0.00001. However, we recommend to choose a custom
epsilon value depending on the size of the input vectors, the expected similar-
ity between compared probability density functions and whether or not many 0
values are present within the compared vectors. As a rough rule of thumb we
suggest that when dealing with very large input vectors which are very simi-
lar and contain many @ values, the epsilon value should be set even smaller
(e.g. epsilon =0.000000001), whereas when vector sizes are small or distri-
butions very divergent then higher epsilon values may also be appropriate (e.g.

distance

est.prob

use.row.names

as.dist.obj

diag

upper

mute.message

Details

13

epsilon =0.01). Addressing this epsilon issue is important to avoid cases
where distance metrics return negative values which are not defined and only
occur due to the technical issues of computing x / 0 or 0/ 0 cases.

method to estimate probabilities from input count vectors such as non-probability
vectors. Default: est.prob = NULL. Options are:

e est.prob = "empirical”: The relative frequencies of each vector are com-
puted internally. For example an input matrix rbind(1:10, 11:20) will
be transformed to a probability vector rbind(1:10 / sum(1:10), 11:20 /
sum(11:20))

a logical value indicating whether or not row names from the input matrix shall
be used as rownames and colnames of the output distance matrix. Default value
is use.row.names = FALSE.

shall the return value or matrix be an object of class link[stats]{dist}? De-
fault is as.dist.obj = FALSE.

if as.dist.obj = TRUE, then this value indicates whether the diagonal of the
distance matrix should be printed. Default

if as.dist.obj = TRUE, then this value indicates whether the upper triangle of
the distance matrix should be printed.

a logical value indicating whether or not messages printed by distance shall be
muted. Default is mute.message = FALSE.

Here a distance is defined as a quantitative degree of how far two mathematical objects are apart
from eachother (Cha, 2007).

This function implements the following distance/similarity measures to quantify the distance be-
tween probability density functions:

* L_p Minkowski family
- Euclidean : d = sqrt(>_ |P; — Q;]?)
— Manhattan : d = > | P; — Q]
— Minkowski: d = (3 |P; — Q:|P)/p
— Chebyshev : d = maz|P; — Q|

e L_1 family

— Sorensen: d =Y |P; — Q;|/ > (P + Q;)

Gower: d = 1/d x> |P; — Q]

Soergel : d = > |P; — Q;|/ Y. max(P;, Q;)
Kulczynskid : d = Y|P — Qi|/ Y. min(P;, Q;)
Canberra: d =Y |P;, — Q;|/(P; + Q)
Lorentzian : d = Y In(1 + |P; — Qi)

* Intersection family
— Intersection : s = Y min(P;, Q;)
— Non-Intersection: d =1 — > min(P;, Q;)

14

distance

Wave Hedges : d = > |P; — Q;|/max(P;, Q;)
— Czekanowski: d = Y|P, — Q;|/ | P + Qi
- Motyka: d = > min(P;, Q;)/(P; + Q)
— Kulezynskis: d =1/ |P; — Q;|/ > min(P;, Q;)
— Tanimoto : d = Y (max(P;, Q;) — min(P;,Q;))/ > max(P;,Q;) ; equivalent to So-
ergel
— Ruzicka : s = Y min(P;,Q;)/ > max(P;, Q;) ; equivalent to 1 - Tanimoto = 1 - So-
ergel
* Inner Product family
— Inner Product: s = > P; * Q;
Harmonic mean: s = 2% > (P; x Q;)/(P; + Q;)
Cosine : s = > (P * Qi) /sqrt(Y. P?) = sqrt(>. Q?)
Kumar-Hassebrook (PCE) : s = Y (P, x Q;) /(3. P2 + 3. Q? — Y (P x Q;))
Jaccard : d = 1 — Y (P« Q;)/ (X P? +>.Q% — > (P x Q;)) ; equivalent to 1 -
Kumar-Hassebrook
Dice : d = 33(P; — Q:)*/ (2 P? +32Q7)
* Squared-chord family
— Fidelity : s = > sqrt(P; x Q;)
Bhattacharyya : d = —In Y sqrt(P; x Q;)
Hellinger : d = 2 x sqrt(1 — > sqrt(P; x Q;))
Matusita : d = sqrt(2 — 2 x> sqrt(P; x Q;))
Squared-chord : d = " (sqrt(P;) — sqrt(Q:))?
e Squared L_2 family (X”2 squared family)
- Squared Euclidean : d = > (P; — Q;)?
Pearson X2 :d =Y (P, — Q:)%/Q:)
Neyman X*2:d = > ((P; — Q;)?/P;)
Squared X*2: d = >_((P; — Q;)?/(P; + Q:))
Probabilistic Symmetric X2 :d =2 >_((P; — Q;)?/(P; + Q.))
Divergence : X2 :d=2x>_.((P; — Q:)?/(P; + Q;)?)
Clark : d = sqri(S(|P. — Qil/(Ps +Q)?)
Additive Symmetric X2 :d =Y (((P — Qi)? * (P, + Q;))/(P; x Q;))
* Shannon’s entropy family
Kullback-Leibler : d = > P; % log(P;/Q;)
Jeffreys : d = > (P, — Qi) x log(P;/Q;)
K divergence : d = > P; xlog(2 x P;/P; + Q;)
Topsoe : d = (P xlog(2 x P;/P; + Q) + (Q; * log(2 x Q;/ P; + Q;))
Jensen-Shannon : d = 0.5% (3. P;xlog(2* P;/P; +Q;) + > Q; ¥1og(2x Q;/ P; + Q;))
— Jensen difference : d = > ((P;*log(P;)+Qixlog(Q;)/2)—(Pi+Q;/2)xlog(Pi+Q;/2))
* Combinations
— Taneja: d = > (P + Q;/2) *log(P; + Q; /(2 * sqrt(P; * Q;)))
— Kumar-Johnson : d = > (P? — Q?)%/2 % (P, * Q;)'.5

distance 15

- AVg(L_l, L_l’l) N d = Z |PZ — Qz| + max|Pi — Qz|/2

In cases where x specifies a count matrix, the argument est.prob can be selected to first
estimate probability vectors from input count vectors and second compute the corresponding
distance measure based on the estimated probability vectors.

The following probability estimation methods are implemented in this function:

— est.prob ="empirical” : relative frequencies of counts.

Value
The following results are returned depending on the dimension of x:

* in case nrow(x) =2 : a single distance value.

* in case nrow(x) > 2 : a distance matrix storing distance values for all pairwise probability
vector comparisons.
Note

According to the reference in some distance measure computations invalid computations can occur
when dealing with O probabilities.

In these cases the convention is treated as follows:

* division by zero - case @/0: when the divisor and dividend become zero, @/0 is treated as ©.

* division by zero - case n/@: when only the divisor becomes @, the corresponsning 0 is replaced
by a small e = 0.00001.

* log of zero - case @ * Log(@): is treated as 9.

* log of zero - case 1og(@): zero is replaced by a small ¢ = 0.00001.

Author(s)
Hajk-Georg Drost

References

Sung-Hyuk Cha. (2007). Comprehensive Survey on Distance/Similarity Measures between Prob-
ability Density Functions. International Journal of Mathematical Models and Methods in Applied
Sciences 4: 1.

See Also

getDistMethods, estimate.probability, dist.diversity
Examples
Simple Examples

receive a list of implemented probability distance measures
getDistMethods ()

16 dist_many_many

compute the euclidean distance between two probability vectors
distance(rbind(1:10/sum(1:10), 20:29/sum(20:29)), method = "euclidean”)

compute the euclidean distance between all pairwise comparisons of probability vectors
ProbMatrix <- rbind(1:10/sum(1:10), 20:29/sum(20:29),30:39/sum(30:39))
distance(ProbMatrix, method = "euclidean")

compute distance matrix without testing for NA values in the input matrix
distance(ProbMatrix, method = "euclidean"”, test.na = FALSE)

alternatively use the colnames of the input data for the rownames and colnames
of the output distance matrix

ProbMatrix <- rbind(1:10/sum(1:10), 20:29/sum(20:29),30:39/sum(30:39))

rownames (ProbMatrix) <- paste@("Example”, 1:3)

distance(ProbMatrix, method = "euclidean"”, use.row.names = TRUE)

Specialized Examples
CountMatrix <- rbind(1:10, 20:29, 30:39)

estimate probabilities from a count matrix
distance(CountMatrix, method = "euclidean”, est.prob = "empirical"”)

compute the euclidean distance for count data
NOTE: some distance measures are only defined for probability values,
distance(CountMatrix, method = "euclidean")

compute the Kullback-Leibler Divergence with different logarithm bases:
case: unit = log (Default)
distance(ProbMatrix, method = "kullback-leibler”, unit = "log")

case: unit = log2
distance(ProbMatrix, method

"kullback-leibler”, unit = "log2")

case: unit = loglo
distance(ProbMatrix, method = "kullback-leibler"”, unit = "logl@")

dist_many_many Distances and Similarities between Many Probability Density Func-
tions

Description
This functions computes the distance/dissimilarity between two sets of probability density func-
tions.

Usage

dist_many_many(

dist_many_many 17

distsT,
dists2,
method,
p = NA_real_,
testNA = TRUE,
unit = "log",
epsilon = 1e-05
)
Arguments
dists1 a numeric matrix storing distributions in its rows.
dists2 a numeric matrix storing distributions in its rows.
method a character string indicating whether the distance measure that should be com-
puted.
p power of the Minkowski distance.
testNA a logical value indicating whether or not distributions shall be checked for NA
values.
unit type of log function. Option are
e unit ="log"
e unit ="log2"
e unit="log10Q"
epsilon epsilon a small value to address cases in the distance computation where division
by zero occurs. In these cases, x / 0 or 0 / 0 will be replaced by epsilon. The
default is epsilon =0.00001. However, we recommend to choose a custom
epsilon value depending on the size of the input vectors, the expected similar-
ity between compared probability density functions and whether or not many 0
values are present within the compared vectors. As a rough rule of thumb we
suggest that when dealing with very large input vectors which are very simi-
lar and contain many @ values, the epsilon value should be set even smaller
(e.g. epsilon =0.000000001), whereas when vector sizes are small or distri-
butions very divergent then higher epsilon values may also be appropriate (e.g.
epsilon=0.01). Addressing this epsilon issue is important to avoid cases
where distance metrics return negative values which are not defined and only
occur due to the technical issues of computing x / 0 or 0/ 0 cases.
Value

A matrix of distance values

Examples

set.seed(2020-08-20)

M1 <- t(replicate(10, sample(1:10, size = 10) / 55))

M2 <- t(replicate(10, sample(1:10, size = 10) / 55))

result <- dist_many_many(M1, M2, method = "euclidean”, testNA = FALSE)

18 dist_one_many

dist_one_many Distances and Similarities between One and Many Probability Density
Functions

Description

This functions computes the distance/dissimilarity between one probability density functions and a
set of probability density functions.

Usage
dist_one_many(
P,
dists,
method,
p = NA_real_,
testNA = TRUE,
unit = "log",
epsilon = 1e-05
)
Arguments
P a numeric vector storing the first distribution.
dists a numeric matrix storing distributions in its rows.
method a character string indicating whether the distance measure that should be com-
puted.
p power of the Minkowski distance.
testNA a logical value indicating whether or not distributions shall be checked for NA
values.
unit type of log function. Option are
e unit ="log"
* unit = "log2"
e unit ="loglQ"
epsilon epsilon a small value to address cases in the distance computation where division

by zero occurs. In these cases, x / 0 or 0 / 0 will be replaced by epsilon. The
default is epsilon =0.00001. However, we recommend to choose a custom
epsilon value depending on the size of the input vectors, the expected similar-
ity between compared probability density functions and whether or not many 0
values are present within the compared vectors. As a rough rule of thumb we
suggest that when dealing with very large input vectors which are very simi-
lar and contain many @ values, the epsilon value should be set even smaller
(e.g. epsilon =0.000000001), whereas when vector sizes are small or distri-
butions very divergent then higher epsilon values may also be appropriate (e.g.
epsilon =0.01). Addressing this epsilon issue is important to avoid cases

dist_one_one 19

where distance metrics return negative values which are not defined and only
occur due to the technical issues of computing x / 0 or 0/ 0 cases.

Value

A vector of distance values

Examples

set.seed(2020-08-20)

P <-1:10 / sum(1:10)

M <- t(replicate(100, sample(1:10, size = 10) / 55))
dist_one_many(P, M, method = "euclidean”, testNA = FALSE)

dist_one_one Distances and Similarities between Two Probability Density Functions

Description

This functions computes the distance/dissimilarity between two probability density functions.

Usage
dist_one_one(
P,
Q,
method,
p = NA_real_,
testNA = TRUE,
unit = "log",
epsilon = 1e-05
)
Arguments
P a numeric vector storing the first distribution.
Q a numeric vector storing the second distribution.
method a character string indicating whether the distance measure that should be com-
puted.
p power of the Minkowski distance.
testNA a logical value indicating whether or not distributions shall be checked for NA
values.
unit type of log function. Option are

e unit ="log"
e unit ="log2"
e unit ="loglQ"

20

epsilon

Value

divergence_sq

epsilon a small value to address cases in the distance computation where division
by zero occurs. In these cases, x / 0 or 0 / 0 will be replaced by epsilon. The
default is epsilon = 0.00001. However, we recommend to choose a custom
epsilon value depending on the size of the input vectors, the expected similar-
ity between compared probability density functions and whether or not many 0
values are present within the compared vectors. As a rough rule of thumb we
suggest that when dealing with very large input vectors which are very simi-
lar and contain many @ values, the epsilon value should be set even smaller
(e.g. epsilon = 0.000000001), whereas when vector sizes are small or distri-
butions very divergent then higher epsilon values may also be appropriate (e.g.
epsilon =0.01). Addressing this epsilon issue is important to avoid cases
where distance metrics return negative values which are not defined and only
occur due to the technical issues of computing x / 0 or 0/ O cases.

A single distance value

Examples

P <-1:10 / sum(1:10)
Q <- 20:29 / sum(20:29)
dist_one_one(P, Q, method = "euclidean”, testNA = FALSE)

divergence_sq

Divergence squared distance (lowlevel function)

Description

The lowlevel function for computing the divergence_sq distance.

Usage

divergence_sq(P, Q, testNA)

Arguments

P

Q
testNA

Author(s)
Hajk-Georg Drost

Examples

divergence_sq(P =

a numeric vector storing the first distribution.
a numeric vector storing the second distribution.

a logical value indicating whether or not distributions shall be checked for NA
values.

1:10/sum(1:10), Q = 20:29/sum(20:29), testNA = FALSE)

estimate.probability 21

estimate.probability Estimate Probability Vectors From Count Vectors

Description

This function takes a numeric count vector and returns estimated probabilities of the corresponding
counts.

The following probability estimation methods are implemented in this function:

* method = "empirical” : generates the relative frequency of the data x/sum(x).

Usage
estimate.probability(x, method = "empirical")
Arguments
X a numeric vector storing count values.
method a character string specifying the estimation method tht should be used to esti-
mate probabilities from input counts.
Value

a numeric probability vector.

Author(s)

Hajk-Georg Drost

Examples

generate a count vector

X <= runif(100)

generate a probability vector from corresponding counts
X.prob <- estimate.probability(x, method = 'empirical')

22 fidelity

euclidean Euclidean distance (lowlevel function)

Description

The lowlevel function for computing the euclidean distance.

Usage

euclidean(P, Q, testNA)

Arguments
P a numeric vector storing the first distribution.
Q a numeric vector storing the second distribution.
testNA a logical value indicating whether or not distributions shall be checked for NA
values.
Author(s)

Hajk-Georg Drost

Examples

euclidean(P = 1:10/sum(1:10), Q = 20:29/sum(20:29), testNA = FALSE)

fidelity Fidelity distance (lowlevel function)

Description

The lowlevel function for computing the fidelity distance.

Usage

fidelity(P, Q, testNA)

Arguments
P a numeric vector storing the first distribution.
Q a numeric vector storing the second distribution.
testNA a logical value indicating whether or not distributions shall be checked for NA

values.

getDistMethods 23

Author(s)

Hajk-Georg Drost

Examples

fidelity(P = 1:10/sum(1:10), Q = 20:29/sum(20:29), testNA = FALSE)

getDistMethods Get method names for distance

Description

This function returns the names of the methods that can be applied to compute distances between
probability density functions using the distance function.

Usage

getDistMethods ()

Author(s)

Hajk-Georg Drost

Examples

getDistMethods ()

gJSD Generalized Jensen-Shannon Divergence

Description

This function computes the Generalized Jensen-Shannon Divergence of a probability matrix.

Usage

gJSD(x, unit = "log2", weights = NULL, est.prob = NULL)

24

Arguments

X

unit

weights

est.prob

Details

gISD

a probability matrix.

a character string specifying the logarithm unit that shall be used to compute
distances that depend on log computations.

a numeric vector specifying the weights for each distribution in x. Default:
weights = NULL; in this case all distributions are weighted equally (= uniform
distribution of weights). In case users wish to specify non-uniform weights for
e.g. 3 distributions, they can specify the argument weights =c(0.5, 0.25,
0.25). This notation denotes that vec1 is weighted by 0.5, vec?2 is weighted by
0.25, and vec3 is weighted by 9. 25 as well.

method to estimate probabilities from input count vectors such as non-probability
vectors. Default: est.prob = NULL. Options are:

* est.prob = "empirical”: The relative frequencies of each vector are com-
puted internally. For example an input matrix rbind(1:10, 11:20) will
be transformed to a probability vector rbind(1:10 / sum(1:10), 11:20 /
sum(11:20))

Function to compute the Generalized Jensen-Shannon Divergence
JSDg, ... x, (Pr,..

where 71, ..., T, denote the weights selected for the probability vectors P_1,...,P_n and H(P_1i)
denotes the Shannon Entropy of probability vector P_i.

Value

The Jensen-Shannon divergence between all possible combinations of comparisons.

Author(s)
Hajk-Georg Drost

See Also
KL, H, JSD, CE, JE

Examples

define input probability matrix
Prob <- rbind(1:10/sum(1:10), 20:29/sum(20:29), 30:39/sum(30:39))

compute the Generalized JSD comparing the PS probability matrix

gJSD(Prob)

Generalized Jensen-Shannon Divergence between three vectors using different log bases

gJSD(Prob, unit
gJSD(Prob, unit
gJSD(Prob, unit

"log2") # Default
"log")
"og10")

gower 25

Jensen-Shannon Divergence Divergence between count vectors P.count and Q.count
.count <- 1:10

.count <- 20:29

.count <- 30:39

.count <- rbind(P.count, Q.count, R.count)

gJSD(x.count, est.prob = "empirical”)

X VO UV H

gower Gower distance (lowlevel function)

Description

The lowlevel function for computing the gower distance.

Usage
gower (P, Q, testNA)

Arguments
P a numeric vector storing the first distribution.
Q a numeric vector storing the second distribution.
testNA a logical value indicating whether or not distributions shall be checked for NA
values.
Author(s)

Hajk-Georg Drost

Examples

gower(P = 1:10/sum(1:10), Q = 20:29/sum(20:29), testNA = FALSE)

H Shannon’s Entropy H(X)

Description
Compute the Shannon’s Entropy H(X) = — > P(X) * log2(P (X)) based on a given probability
vector P(X).

Usage

H(x, unit = "log2")

26

Arguments

X

unit

Details

harmonic_mean_dist

a numeric probability vector P(X) for which Shannon’s Entropy H (X) shall
be computed.

a character string specifying the logarithm unit that shall be used to compute
distances that depend on log computations.

This function might be useful to fastly compute Shannon’s Entropy for any given probability vector.

Value

a numeric value representing Shannon’s Entropy in bit.

Author(s)

Hajk-Georg Drost

References

Shannon, Claude E. 1948. "A Mathematical Theory of Communication". Bell System Technical
Journal 27 (3): 379-423.

See Also

JE, CE, KL, JSD, gJSD

Examples

H(1:10/sum(1:10))

harmonic_mean_dist Harmonic mean distance (lowlevel function)

Description

The lowlevel function for computing the harmonic_mean_dist distance.

Usage

harmonic_mean_dist(P, Q, testNA)

Arguments

P

Q
testNA

a numeric vector storing the first distribution.
a numeric vector storing the second distribution.

a logical value indicating whether or not distributions shall be checked for NA
values.

hellinger 27

Author(s)
Hajk-Georg Drost

Examples

harmonic_mean_dist(P = 1:10/sum(1:10), Q = 20:29/sum(20:29), testNA = FALSE)

hellinger Hellinger distance (lowlevel function)

Description

The lowlevel function for computing the hellinger distance.

Usage
hellinger(P, Q, testNA)

Arguments
P a numeric vector storing the first distribution.
Q a numeric vector storing the second distribution.
testNA a logical value indicating whether or not distributions shall be checked for NA
values.
Author(s)

Hajk-Georg Drost

Examples

hellinger(P = 1:10/sum(1:10), Q = 20:29/sum(20:29), testNA = FALSE)

inner_product Inner product distance (lowlevel function)

Description

The lowlevel function for computing the inner_product distance.

Usage

inner_product(P, Q, testNA)

28 intersection_dist

Arguments
P a numeric vector storing the first distribution.
Q a numeric vector storing the second distribution.
testNA a logical value indicating whether or not distributions shall be checked for NA
values.
Author(s)

Hajk-Georg Drost

Examples

inner_product(P = 1:10/sum(1:10), Q = 20:29/sum(20:29), testNA = FALSE)

intersection_dist Intersection distance (lowlevel function)

Description

The lowlevel function for computing the intersection_dist distance.

Usage

intersection_dist(P, Q, testNA)

Arguments
P a numeric vector storing the first distribution.
Q a numeric vector storing the second distribution.
testNA a logical value indicating whether or not distributions shall be checked for NA
values.
Author(s)

Hajk-Georg Drost

Examples

intersection_dist(P = 1:10/sum(1:10), Q = 20:29/sum(20:29), testNA = FALSE)

Jjaccard 29

jaccard Jaccard distance (lowlevel function)

Description

The lowlevel function for computing the jaccard distance.

Usage

jaccard(P, Q, testNA)

Arguments
P a numeric vector storing the first distribution.
Q a numeric vector storing the second distribution.
testNA a logical value indicating whether or not distributions shall be checked for NA
values.
Author(s)

Hajk-Georg Drost

Examples

jaccard(P = 1:10/sum(1:10), Q = 20:29/sum(20:29), testNA = FALSE)

JE Shannon’s Joint-Entropy H(X,Y)

Description
This funciton computes Shannon’s Joint-Entropy H(X,Y) = —> Y P(X,Y) * log2(P(X,Y))
based on a given joint-probability vector P(X,Y).

Usage

JE(x, unit = "log2")

Arguments
X a numeric joint-probability vector P(X,Y") for which Shannon’s Joint-Entropy
H(X,Y) shall be computed.
unit a character string specifying the logarithm unit that shall be used to compute

distances that depend on log computations.

30

Value

Jjeffreys

a numeric value representing Shannon’s Joint-Entropy in bit.

Author(s)

Hajk-Georg Drost

References

Shannon, Claude E. 1948. "A Mathematical Theory of Communication". Bell System Technical
Journal 27 (3): 379-423.

See Also

H, CE, KL, JSD, gJSD, distance

Examples

JE(1:100/sum(1:100))

jeffreys

Jeffreys distance (lowlevel function)

Description

The lowlevel function for computing the jeffreys distance.

Usage

jeffreys(P, Q, testNA, unit, epsilon)

Arguments
P

Q
testNA

unit

a numeric vector storing the first distribution.
a numeric vector storing the second distribution.

a logical value indicating whether or not distributions shall be checked for NA
values.

type of log function. Option are
e unit ="log"
* unit = "log2"
e unit ="loglQ"

Jjensen_difference

epsilon

Author(s)

Hajk-Georg Drost

Examples

jeffreys(P = 1:10
unit = "log2"”, e

31

epsilon a small value to address cases in the distance computation where division
by zero occurs. In these cases, x / 0 or 0 / 0 will be replaced by epsilon. The
default is epsilon = 0.00001. However, we recommend to choose a custom
epsilon value depending on the size of the input vectors, the expected similar-
ity between compared probability density functions and whether or not many 0
values are present within the compared vectors. As a rough rule of thumb we
suggest that when dealing with very large input vectors which are very simi-
lar and contain many @ values, the epsilon value should be set even smaller
(e.g. epsilon = 0.000000001), whereas when vector sizes are small or distri-
butions very divergent then higher epsilon values may also be appropriate (e.g.
epsilon =0.01). Addressing this epsilon issue is important to avoid cases
where distance metrics return negative values which are not defined and only
occur due to the technical issues of computing x / 0 or 0/ O cases.

/sum(1:10), Q = 20:29/sum(20:29), testNA = FALSE,
psilon = 0.00001)

jensen_difference

Jensen difference (lowlevel function)

Description

The lowlevel function for computing the jensen_difference distance.

Usage

jensen_difference(P, Q, testNA, unit)

Arguments
P

Q
testNA

unit

a numeric vector storing the first distribution.
a numeric vector storing the second distribution.

a logical value indicating whether or not distributions shall be checked for NA
values.

type of log function. Option are
* unit = "log"
e unit ="log2"
e unit ="loglQ"

32 Jjensen_shannon
Author(s)

Hajk-Georg Drost

Examples

jensen_difference(P = 1:10/sum(1:10), Q = 20:29/sum(20:29), testNA = FALSE, unit = "log2")

jensen_shannon Jensen-Shannon distance (lowlevel function)

Description

The lowlevel function for computing the jensen_shannon distance.

Usage

jensen_shannon(P, Q, testNA, unit)

Arguments
P a numeric vector storing the first distribution.
Q a numeric vector storing the second distribution.
testNA a logical value indicating whether or not distributions shall be checked for NA
values.
unit type of log function. Option are
e unit ="log"
* unit = "log2"
e unit ="logloQ"
Author(s)

Hajk-Georg Drost

Examples

jensen_shannon(P = 1:10/sum(1:10), Q = 20:29/sum(20:29), testNA = FALSE, unit = "log2")

JSD 33

JSD Jensen-Shannon Divergence

Description

This function computes a divergence matrix or divergence value based on the Jensen-Shannon Di-

vergence with equal weights. Please be aware that when aiming to compute the Jensen-Shannon

Distance (rather than Divergence), you will need to apply the 1ink{sqrt} on the JSD() output.
Usage

JSD(x, test.na = TRUE, unit = "log2", est.prob = NULL)

Arguments

X a numeric data.frame or matrix (storing probability vectors) or a numeric
data.frame or matrix storing counts (if est.prob = TRUE). See distance for
details.

test.na a boolean value specifying whether input vectors shall be tested for NA values.

unit a character string specifying the logarithm unit that shall be used to compute
distances that depend on log computations.

est.prob method to estimate probabilities from input count vectors such as non-probability
vectors. Default: est.prob = NULL. Options are:

* est.prob = "empirical”: The relative frequencies of each vector are com-
puted internally. For example an input matrix rbind(1:10, 11:20) will
be transformed to a probability vector rbind(1:10 / sum(1:10), 11:20 /
sum(11:20))

Details

Function to compute the Jensen-Shannon Divergence JSD(P Il Q) between two probability distribu-
tions P and Q with equal weights 7 = w5 = 1/2.

The Jensen-Shannon Divergence JSD(P Il Q) between two probability distributions P and Q is de-
fined as:

JSD(P||Q) = 0.5« (KL(P||R) + KL(Q||R))

where R = 0.5 % (P + @) denotes the mid-point of the probability vectors P and Q, and KL(P I R),
KL(Q Il R) denote the Kullback-Leibler Divergence of P and R, as well as Q and R.

General properties of the Jensen-Shannon Divergence:

* 1) JSD is non-negative.
e 2) JSD is a symmetric measure JSD(P Il Q) = JSD(Q Il P).
* 3)JSD=0,ifandonly if P=Q.

34 JSD

Value

a divergence value or matrix based on JSD computations.

Author(s)

Hajk-Georg Drost

References

Lin J. 1991. "Divergence Measures Based on the Shannon Entropy". IEEE Transactions on Infor-
mation Theory. (33) 1: 145-151.

Endres M. and Schindelin J. E. 2003. "A new metric for probability distributions". IEEE Trans. on
Info. Thy. (49) 3: 1858-1860.

See Also

KL, H, CE, gJSD, distance

Examples

Jensen-Shannon Divergence between P and Q
P <- 1:10/sum(1:10)

Q <- 20:29/sum(20:29)

x <= rbind(P,Q)

ISD(x)

Jensen-Shannon Divergence between P and Q using different log bases
JSD(x, unit = "log2") # Default

JSD(x, unit = "log")

JSD(x, unit = "logl1@")

Jensen-Shannon Divergence Divergence between count vectors P.count and Q.count
P.count <- 1:10

Q.count <- 20:29

x.count <- rbind(P.count,Q.count)

JSD(x.count, est.prob = "empirical”)

Example: Divergence Matrix using JSD-Divergence
Prob <- rbind(1:10/sum(1:10), 20:29/sum(20:29), 30:39/sum(30:39))

compute the KL matrix of a given probability matrix
JSDMatrix <- JSD(Prob)

plot a heatmap of the corresponding JSD matrix
heatmap(JSDMatrix)

KL

35

KL

Kullback-Leibler Divergence

Description

This function computes the Kullback-Leibler divergence of two probability distributions P and Q.

Usage

KL(x, test.na = TRUE, unit = "log2", est.prob = NULL, epsilon = 1e-05)

Arguments

X

test.na

unit

est.prob
epsilon

Details

a numeric data.frame or matrix (storing probability vectors) or a numeric
data.frame or matrix storing counts (if est.prob = TRUE). See distance for
details.

a boolean value indicating whether input vectors should be tested for NA values.

a character string specifying the logarithm unit that shall be used to compute
distances that depend on log computations.

method to estimate probabilities from a count vector. Default: est.prob = NULL.

a small value to address cases in the KL computation where division by zero
occurs. In these cases, x / 0 or 0 / 0 will be replaced by epsilon. The default
is epsilon = 0.00001. However, we recommend to choose a custom epsilon
value depending on the size of the input vectors, the expected similarity be-
tween compared probability density functions and whether or not many 0 values
are present within the compared vectors. As a rough rule of thumb we suggest
that when dealing with very large input vectors which are very similar and con-
tain many @ values, the epsilon value should be set even smaller (e.g. epsilon
= 0.000000001), whereas when vector sizes are small or distributions very di-
vergent then higher epsilon values may also be appropriate (e.g. epsilon =
0.01). Addressing this epsilon issue is important to avoid cases where dis-
tance metrics return negative values which are not defined and only occur due to
the technical issues of computing x / 0 or 0/ 0 cases.

KL(P||Q) =Y P(P) xlog2(P(P)/P(Q)) = H(P,Q) — H(P)

where H(P,Q) denotes the joint entropy of the probability distributions P and Q and H(P) denotes
the entropy of probability distribution P. In case P = Q then KL(P,Q) = 0 and in case P != Q then

KL(P,Q) > 0.

The KL divergence is a non-symmetric measure of the directed divergence between two probability
distributions P and Q. It only fulfills the positivity property of a distance metric.

Because of the relation KL(PIIQ) = H(P,Q) - H(P), the Kullback-Leibler divergence of two prob-
ability distributions P and Q is also named Cross Entropy of two probability distributions P and

Q.

36 KL

Value

The Kullback-Leibler divergence of probability vectors.

Author(s)

Hajk-Georg Drost

References

Cover Thomas M. and Thomas Joy A. 2006. Elements of Information Theory. John Wiley & Sons.

See Also

H, CE, JSD, gJSD, distance

Examples

Kulback-Leibler Divergence between P and Q
P <- 1:10/sum(1:10)

Q <- 20:29/s5um(20:29)

x <= rbind(P,Q)

KL(x)

Kulback-Leibler Divergence between P and Q using different log bases
KL(x, unit = "log2") # Default

KL(x, unit = "log")

KL(x, unit = "logl10")

Kulback-Leibler Divergence between count vectors P.count and Q.count
P.count <- 1:10

Q.count <- 20:29

x.count <- rbind(P.count,Q.count)

KL(x, est.prob = "empirical”)

Example: Distance Matrix using KL-Distance
Prob <- rbind(1:10/sum(1:10), 20:29/sum(20:29), 30:39/sum(30:39))

compute the KL matrix of a given probability matrix
KLMatrix <- KL(Prob)

plot a heatmap of the corresponding KL matrix
heatmap (KLMatrix)

kulczynski_d 37

kulczynski_d Kulczynski_d distance (lowlevel function)

Description

The lowlevel function for computing the kulczynski_d distance.

Usage

kulczynski_d(P, Q, testNA, epsilon)

Arguments

P a numeric vector storing the first distribution.
Q a numeric vector storing the second distribution.

testNA a logical value indicating whether or not distributions shall be checked for NA
values.

epsilon epsilon a small value to address cases in the distance computation where division
by zero occurs. In these cases, x / 0 or 0 / 0 will be replaced by epsilon. The
default is epsilon =0.00001. However, we recommend to choose a custom
epsilon value depending on the size of the input vectors, the expected similar-
ity between compared probability density functions and whether or not many 0
values are present within the compared vectors. As a rough rule of thumb we
suggest that when dealing with very large input vectors which are very simi-
lar and contain many @ values, the epsilon value should be set even smaller
(e.g. epsilon = 0.000000001), whereas when vector sizes are small or distri-
butions very divergent then higher epsilon values may also be appropriate (e.g.
epsilon =0.01). Addressing this epsilon issue is important to avoid cases
where distance metrics return negative values which are not defined and only
occur due to the technical issues of computing x / 0 or 0/ 0 cases.

Author(s)

Hajk-Georg Drost

Examples

kulczynski_d(P = 1:10/sum(1:10), Q = 20:29/sum(20:29),
testNA = FALSE, epsilon = 0.00001)

38 kullback_leibler_distance

kullback_leibler_distance
kullback-Leibler distance (lowlevel function)

Description

The lowlevel function for computing the kullback_leibler_distance distance.

Usage

kullback_leibler_distance(P, Q, testNA, unit, epsilon)

Arguments

P a numeric vector storing the first distribution.
Q a numeric vector storing the second distribution.

testNA a logical value indicating whether or not distributions shall be checked for NA
values.

unit type of log function. Option are
e unit ="log"
* unit = "log2"
e unit="loglQ"

epsilon epsilon a small value to address cases in the distance computation where division
by zero occurs. In these cases, x / 0 or 0 / 0 will be replaced by epsilon. The
default is epsilon = 0.00001. However, we recommend to choose a custom
epsilon value depending on the size of the input vectors, the expected similar-
ity between compared probability density functions and whether or not many 0
values are present within the compared vectors. As a rough rule of thumb we
suggest that when dealing with very large input vectors which are very simi-
lar and contain many @ values, the epsilon value should be set even smaller
(e.g. epsilon =0.000000001), whereas when vector sizes are small or distri-
butions very divergent then higher epsilon values may also be appropriate (e.g.
epsilon =0.01). Addressing this epsilon issue is important to avoid cases
where distance metrics return negative values which are not defined and only
occur due to the technical issues of computing x / 0 or 0/ 0 cases.

Author(s)

Hajk-Georg Drost

Examples

kullback_leibler_distance(P = 1:10/sum(1:10), Q = 20:29/sum(20:29), testNA = FALSE,
unit = "log2", epsilon = 0.00001)

kumar hassebrook 39

kumar_hassebrook Kumar hassebrook distance (lowlevel function)

Description

The lowlevel function for computing the kumar_hassebrook distance.

Usage

kumar_hassebrook (P, Q, testNA)

Arguments
P a numeric vector storing the first distribution.
Q a numeric vector storing the second distribution.
testNA a logical value indicating whether or not distributions shall be checked for NA
values.
Author(s)

Hajk-Georg Drost

Examples

kumar_hassebrook(P = 1:10/sum(1:10), Q = 20:29/sum(20:29), testNA = FALSE)

kumar_johnson Kumar-Johnson distance (lowlevel function)

Description

The lowlevel function for computing the kumar_johnson distance.

Usage

kumar_johnson(P, Q, testNA, epsilon)

40

Arguments
P

Q
testNA

epsilon

Author(s)
Hajk-Georg Drost

Examples

k_divergence

a numeric vector storing the first distribution.
a numeric vector storing the second distribution.

a logical value indicating whether or not distributions shall be checked for NA
values.

epsilon a small value to address cases in the distance computation where division
by zero occurs. In these cases, x / 0 or 0 / 0 will be replaced by epsilon. The
default is epsilon =0.00001. However, we recommend to choose a custom
epsilon value depending on the size of the input vectors, the expected similar-
ity between compared probability density functions and whether or not many 0
values are present within the compared vectors. As a rough rule of thumb we
suggest that when dealing with very large input vectors which are very simi-
lar and contain many @ values, the epsilon value should be set even smaller
(e.g. epsilon =0.000000001), whereas when vector sizes are small or distri-
butions very divergent then higher epsilon values may also be appropriate (e.g.
epsilon=0.01). Addressing this epsilon issue is important to avoid cases
where distance metrics return negative values which are not defined and only
occur due to the technical issues of computing x / 0 or 0/ O cases.

kumar_johnson(P = 1:10/sum(1:10), Q = 20:29/sum(20:29),
testNA = FALSE, epsilon = 0.00001)

k_divergence

K-Divergence (lowlevel function)

Description

The lowlevel function for computing the k_divergence distance.

Usage

k_divergence(P,

Arguments
P

Q
testNA

Q, testNA, unit)

a numeric vector storing the first distribution.
a numeric vector storing the second distribution.

a logical value indicating whether or not distributions shall be checked for NA
values.

lin.cor 41

unit type of log function. Option are
e unit ="log"
e unit ="log2"
* unit = "logl1@"
Author(s)
Hajk-Georg Drost

Examples

k_divergence(P = 1:10/sum(1:10), Q = 20:29/sum(20:29), testNA = FALSE, unit = "log2")

lin.cor Linear Correlation

Description

This function computed the linear correlation between two vectors or a correlation matrix for an
input matrix.

The following methods to compute linear correlations are implemented in this function:

Usage

lin.cor(x, y = NULL, method = "pearson”, test.na = FALSE)

Arguments

X a numeric vector, matrix, or data. frame.

y a numeric vector that should be correlated with x.

method the method to compute the linear correlation between x and y.

test.na a boolean value indicating whether input data should be checked for NA values.
Details

e method = "pearson” : Pearson’s correlation coefficient (centred).
* method = "pearson2” : Pearson’s uncentred correlation coefficient.
* method = "sq_pearson” . Squared Pearson’s correlation coefficient.
* method = "kendall” : Kendall’s correlation coefficient.
* method = "spearman” : Spearman’s correlation coefficient.

Further Details:

* Pearson’s correlation coefficient (centred) :

Author(s)
Hajk-Georg Drost

42 manbhattan

lorentzian Lorentzian distance (lowlevel function)

Description

The low-level function for computing the lorentzian distance.

Usage

lorentzian(P, Q, testNA, unit)

Arguments
P a numeric vector storing the first distribution.
Q a numeric vector storing the second distribution.
testNA a logical value indicating whether or not distributions shall be checked for NA
values.
unit type of log function. Option are
e unit ="log"
e unit ="log2"
e unit="loglQ"
Author(s)

Hajk-Georg Drost

Examples

lorentzian(P = 1:10/sum(1:10), Q = 20:29/sum(20:29), testNA = FALSE, unit = "log2")

manhattan Manhattan distance (lowlevel function)

Description

The lowlevel function for computing the manhattan distance.

Usage

manhattan(P, Q, testNA)

matusita 43

Arguments
P a numeric vector storing the first distribution.
Q a numeric vector storing the second distribution.
testNA a logical value indicating whether or not distributions shall be checked for NA
values.
Author(s)

Hajk-Georg Drost

Examples

manhattan(P = 1:10/sum(1:10), Q = 20:29/sum(20:29), testNA = FALSE)

matusita Matusita distance (lowlevel function)

Description

The lowlevel function for computing the matusita distance.

Usage

matusita(P, Q, testNA)

Arguments
P a numeric vector storing the first distribution.
Q a numeric vector storing the second distribution.
testNA a logical value indicating whether or not distributions shall be checked for NA
values.
Author(s)

Hajk-Georg Drost

Examples

matusita(P = 1:10/sum(1:10), Q = 20:29/sum(20:29), testNA = FALSE)

44 MI

MI Shannon’s Mutual Information I(X,Y)

Description

Compute Shannon’s Mutual Information based on the identity I[(X,Y) = H(X) + H(Y) —
H(X,Y) based on a given joint-probability vector P(X,Y’) and probability vectors P(X) and
P(Y).

Usage
MI(x, y, xy, unit = "log2")

Arguments
X a numeric probability vector P(X).
y a numeric probability vector P(Y).
Xy a numeric joint-probability vector P(X,Y).
unit a character string specifying the logarithm unit that shall be used to compute
distances that depend on log computations.
Details

This function might be useful to fastly compute Shannon’s Mutual Information for any given joint-
probability vector and probability vectors.
Value

Shannon’s Mutual Information in bit.

Author(s)
Hajk-Georg Drost

References
Shannon, Claude E. 1948. "A Mathematical Theory of Communication". Bell System Technical
Journal 27 (3): 379-423.

See Also

H, JE, CE

Examples

MI(x = 1:10/sum(1:10), y = 20:29/sum(20:29), xy = 1:10/sum(1:10))

minkowski 45

minkowski Minkowski distance (lowlevel function)

Description

The lowlevel function for computing the minkowski distance.

Usage

minkowski(P, Q, n, testNA)

Arguments
P a numeric vector storing the first distribution.
Q a numeric vector storing the second distribution.
n index for the minkowski exponent.
testNA a logical value indicating whether or not distributions shall be checked for NA
values.
Author(s)

Hajk-Georg Drost

Examples

minkowski(P = 1:10/sum(1:10), Q = 20:29/sum(20:29), n = 2, testNA = FALSE)

motyka Motyka distance (lowlevel function)

Description

The lowlevel function for computing the motyka distance.

Usage

motyka(P, Q, testNA)

Arguments
P a numeric vector storing the first distribution.
Q a numeric vector storing the second distribution.
testNA a logical value indicating whether or not distributions shall be checked for NA

values.

46

Author(s)
Hajk-Georg Drost

Examples

neyman_chi_sq

motyka(P = 1:10/sum(1:10), Q = 20:29/sum(20:29), testNA = FALSE)

neyman_chi_sq

Neyman chi-squared distance (lowlevel function)

Description

The lowlevel function for computing the neyman_chi_sq distance.

Usage

neyman_chi_sq(P, Q, testNA, epsilon)

Arguments
P

Q
testNA

epsilon

Author(s)
Hajk-Georg Drost

Examples

a numeric vector storing the first distribution.
a numeric vector storing the second distribution.

a logical value indicating whether or not distributions shall be checked for NA
values.

epsilon a small value to address cases in the distance computation where division
by zero occurs. In these cases, x / 0 or 0 / 0 will be replaced by epsilon. The
default is epsilon =0.00001. However, we recommend to choose a custom
epsilon value depending on the size of the input vectors, the expected similar-
ity between compared probability density functions and whether or not many 0
values are present within the compared vectors. As a rough rule of thumb we
suggest that when dealing with very large input vectors which are very simi-
lar and contain many @ values, the epsilon value should be set even smaller
(e.g. epsilon =0.000000001), whereas when vector sizes are small or distri-
butions very divergent then higher epsilon values may also be appropriate (e.g.
epsilon=0.01). Addressing this epsilon issue is important to avoid cases
where distance metrics return negative values which are not defined and only
occur due to the technical issues of computing x / 0 or 0/ O cases.

neyman_chi_sq(P = 1:10/sum(1:10), Q = 20:29/sum(20:29),
testNA = FALSE, epsilon = 0.00001)

pearson_chi_sq

47

pearson_chi_sq

Pearson chi-squared distance (lowlevel function)

Description

The lowlevel function for computing the pearson_chi_sq distance.

Usage

pearson_chi_sq(P, Q, testNA, epsilon)

Arguments
P

Q
testNA

epsilon

Author(s)

Hajk-Georg Drost

Examples

pearson_chi_sq(P

a numeric vector storing the first distribution.
a numeric vector storing the second distribution.

a logical value indicating whether or not distributions shall be checked for NA
values.

epsilon a small value to address cases in the distance computation where division
by zero occurs. In these cases, x / 0 or 0 / 0 will be replaced by epsilon. The
default is epsilon =0.00001. However, we recommend to choose a custom
epsilon value depending on the size of the input vectors, the expected similar-
ity between compared probability density functions and whether or not many 0
values are present within the compared vectors. As a rough rule of thumb we
suggest that when dealing with very large input vectors which are very simi-
lar and contain many @ values, the epsilon value should be set even smaller
(e.g. epsilon = 0.000000001), whereas when vector sizes are small or distri-
butions very divergent then higher epsilon values may also be appropriate (e.g.
epsilon =0.01). Addressing this epsilon issue is important to avoid cases
where distance metrics return negative values which are not defined and only
occur due to the technical issues of computing x / 0 or 0/ 0 cases.

= 1:10/sum(1:10), Q = 20:29/sum(20:29),

testNA = FALSE, epsilon = 0.00001)

48 ruzicka

prob_symm_chi_sq Probability symmetric chi-squared distance (lowlevel function)

Description

The lowlevel function for computing the prob_symm_chi_sq distance.

Usage

prob_symm_chi_sq(P, Q, testNA)

Arguments
P a numeric vector storing the first distribution.
Q a numeric vector storing the second distribution.
testNA a logical value indicating whether or not distributions shall be checked for NA
values.
Author(s)

Hajk-Georg Drost

Examples

prob_symm_chi_sq(P = 1:10/sum(1:10), Q = 20:29/sum(20:29), testNA = FALSE)

ruzicka Ruzicka distance (lowlevel function)

Description

The lowlevel function for computing the ruzicka distance.

Usage

ruzicka(P, Q, testNA)

Arguments
P a numeric vector storing the first distribution.
Q a numeric vector storing the second distribution.
testNA a logical value indicating whether or not distributions shall be checked for NA

values.

soergel 49

Author(s)
Hajk-Georg Drost

Examples

ruzicka(P = 1:10/sum(1:10), Q = 20:29/sum(20:29), testNA = FALSE)

soergel Soergel distance (lowlevel function)

Description

The lowlevel function for computing the soergel distance.

Usage

soergel (P, Q, testNA)

Arguments
P a numeric vector storing the first distribution.
Q a numeric vector storing the second distribution.
testNA a logical value indicating whether or not distributions shall be checked for NA
values.
Author(s)

Hajk-Georg Drost

Examples

soergel(P = 1:10/sum(1:10), Q = 20:29/sum(20:29), testNA = FALSE)

sorensen Sorensen distance (lowlevel function)

Description

The lowlevel function for computing the sorensen distance.

Usage

sorensen(P, Q, testNA)

50 squared_chi_sq

Arguments
P a numeric vector storing the first distribution.
Q a numeric vector storing the second distribution.
testNA a logical value indicating whether or not distributions shall be checked for NA
values.
Author(s)

Hajk-Georg Drost

Examples

sorensen(P = 1:10/sum(1:10), Q = 20:29/sum(20:29), testNA = FALSE)

squared_chi_sq Squared chi-squared distance (lowlevel function)

Description

The lowlevel function for computing the squared_chi_sq distance.

Usage

squared_chi_sq(P, Q, testNA)

Arguments
P a numeric vector storing the first distribution.
Q a numeric vector storing the second distribution.
testNA a logical value indicating whether or not distributions shall be checked for NA
values.
Author(s)

Hajk-Georg Drost

Examples

squared_chi_sq(P = 1:10/sum(1:10), Q = 20:29/sum(20:29), testNA = FALSE)

squared_chord 51

squared_chord Squared chord distance (lowlevel function)

Description

The lowlevel function for computing the squared_chord distance.

Usage

squared_chord(P, Q, testNA)

Arguments
P a numeric vector storing the first distribution.
Q a numeric vector storing the second distribution.
testNA a logical value indicating whether or not distributions shall be checked for NA
values.
Author(s)

Hajk-Georg Drost

Examples

squared_chord(P = 1:10/sum(1:10), Q = 20:29/sum(20:29), testNA = FALSE)

squared_euclidean Squared euclidean distance (lowlevel function)

Description

The lowlevel function for computing the squared_euclidean distance.

Usage

squared_euclidean(P, Q, testNA)

Arguments
P a numeric vector storing the first distribution.
Q a numeric vector storing the second distribution.
testNA a logical value indicating whether or not distributions shall be checked for NA

values.

52

Author(s)
Hajk-Georg Drost

Examples

taneja

squared_euclidean(P = 1:10/sum(1:10), Q = 20:29/sum(20:29), testNA = FALSE)

taneja

Taneja difference (lowlevel function)

Description

The lowlevel function for computing the taneja distance.

Usage

taneja(P, Q, testNA, unit, epsilon)

Arguments
P

Q
testNA

unit

epsilon

Author(s)
Hajk-Georg Drost

a numeric vector storing the first distribution.
a numeric vector storing the second distribution.

a logical value indicating whether or not distributions shall be checked for NA
values.

type of log function. Option are
e unit ="log"
e unit = "log2"
e unit ="loglQ"

epsilon a small value to address cases in the distance computation where division
by zero occurs. In these cases, x / 0 or 0 / 0 will be replaced by epsilon. The
default is epsilon =0.00001. However, we recommend to choose a custom
epsilon value depending on the size of the input vectors, the expected similar-
ity between compared probability density functions and whether or not many 0
values are present within the compared vectors. As a rough rule of thumb we
suggest that when dealing with very large input vectors which are very simi-
lar and contain many @ values, the epsilon value should be set even smaller
(e.g. epsilon = 0.000000001), whereas when vector sizes are small or distri-
butions very divergent then higher epsilon values may also be appropriate (e.g.
epsilon =0.01). Addressing this epsilon issue is important to avoid cases
where distance metrics return negative values which are not defined and only
occur due to the technical issues of computing x / 0 or 0/ 0 cases.

tanimoto 53

Examples

taneja(P = 1:10/sum(1:10), Q = 20:29/sum(20:29), testNA = FALSE,
unit = "log2", epsilon = 0.00001)

tanimoto Tanimoto distance (lowlevel function)

Description

The lowlevel function for computing the tanimoto distance.

Usage

tanimoto(P, Q, testNA)

Arguments
P a numeric vector storing the first distribution.
Q a numeric vector storing the second distribution.
testNA a logical value indicating whether or not distributions shall be checked for NA
values.
Author(s)

Hajk-Georg Drost

Examples

tanimoto(P = 1:10/sum(1:10), Q = 20:29/sum(20:29), testNA = FALSE)

topsoe Topsoe distance (lowlevel function)

Description

The lowlevel function for computing the topsoe distance.

Usage

topsoe(P, Q, testNA, unit)

54 wave_hedges

Arguments
P a numeric vector storing the first distribution.
Q a numeric vector storing the second distribution.
testNA a logical value indicating whether or not distributions shall be checked for NA
values.
unit type of log function. Option are
e unit ="log"
e unit ="log2"
e unit="loglQ"
Author(s)

Hajk-Georg Drost

Examples

topsoe(P = 1:10/sum(1:10), Q = 20:29/sum(20:29), testNA = FALSE, unit = "log2")

wave_hedges Wave hedges distance (lowlevel function)

Description

The lowlevel function for computing the wave_hedges distance.

Usage

wave_hedges(P, Q, testNA)

Arguments
P a numeric vector storing the first distribution.
Q a numeric vector storing the second distribution.
testNA a logical value indicating whether or not distributions shall be checked for NA
values.
Author(s)

Hajk-Georg Drost

Examples

wave_hedges(P = 1:10/sum(1:10), Q = 20:29/sum(20:29), testNA = FALSE)

Index

additive_symm_chi_sq, 3
avg, 4

bhattacharyya, 4
binned.kernel.est, 5

canberra, 6

CE, 7, 24, 26, 30, 34, 36, 44
chebyshev, 8

clark_sq, 9
cosine_dist, 9
czekanowski, 10

dice_dist, 10
dist.diversity, 11, 15
dist_many_many, 16
dist_one_many, 18
dist_one_one, 19
distance, 12, 23, 30, 33-36
divergence_sq, 20

estimate.probability, 75, 21
euclidean, 22

fidelity, 22

getDistMethods, 11, 15,23
gJSD, 23, 26, 30, 34, 36
gower, 25

H, 8, 24, 25, 30, 34, 36, 44
harmonic_mean_dist, 26
hellinger, 27

inner_product, 27
intersection_dist, 28

jaccard, 29

JE, 8, 24, 26, 29, 44
jeffreys, 30
jensen_difference, 31

55

jensen_shannon, 32
JSD, 24, 26, 30, 33, 36

k_divergence, 40

KL, 24, 26, 30, 34, 35
kulczynski_d, 37
kullback_leibler_distance, 38
kumar_hassebrook, 39
kumar_johnson, 39

lin.cor, 41
lorentzian, 42

manhattan, 42
matusita, 43
MI, 44
minkowski, 45
motyka, 45

neyman_chi_sq, 46

pearson_chi_sq, 47
prob_symm_chi_sq, 48

ruzicka, 48

soergel, 49
sorensen, 49
squared_chi_sq, 50
squared_chord, 51
squared_euclidean, 51

taneja, 52
tanimoto, 53

topsoe, 53

wave_hedges, 54

	additive_symm_chi_sq
	avg
	bhattacharyya
	binned.kernel.est
	canberra
	CE
	chebyshev
	clark_sq
	cosine_dist
	czekanowski
	dice_dist
	dist.diversity
	distance
	dist_many_many
	dist_one_many
	dist_one_one
	divergence_sq
	estimate.probability
	euclidean
	fidelity
	getDistMethods
	gJSD
	gower
	H
	harmonic_mean_dist
	hellinger
	inner_product
	intersection_dist
	jaccard
	JE
	jeffreys
	jensen_difference
	jensen_shannon
	JSD
	KL
	kulczynski_d
	kullback_leibler_distance
	kumar_hassebrook
	kumar_johnson
	k_divergence
	lin.cor
	lorentzian
	manhattan
	matusita
	MI
	minkowski
	motyka
	neyman_chi_sq
	pearson_chi_sq
	prob_symm_chi_sq
	ruzicka
	soergel
	sorensen
	squared_chi_sq
	squared_chord
	squared_euclidean
	taneja
	tanimoto
	topsoe
	wave_hedges
	Index

