Package 'ph2mult'

October 14, 2022

Type Package

Title Phase II Clinical Trial Design for Multinomial Endpoints

Version 0.1.1

Author Yalin Zhu, Rui Qin

Maintainer Yalin Zhu <yalin.zhu@outlook.com>

Description Provide multinomial design methods under intersection-union test (IUT) and unionintersection test (UIT) scheme for Phase II trial. The design types include : Minimax (minimize the maximum sample size), Optimal (minimize the expected sample size), Admissible (minimize the Bayesian risk) and Maxpower (maximize the exact power level).

License GPL (>= 2)

LazyData TRUE

Imports clinfun, graphics, stats

Suggests gsDesign, survival

NeedsCompilation no

Repository CRAN

Date/Publication 2016-11-23 09:38:49

R topics documented:

binom.design	2
binom.power	3
IUT.design	4
IUT.power	6
UIT.design	7
UIT.power	9

12

Index

binom.design

Description

Search criterion to find the Optimal, Minimax, Admissible and Maximized power design stopping boundary and corresponding sample size

Usage

```
binom.design(type = c("minimax","optimal","maxpower","admissible"), p0, p1,
signif.level=0.05, power.level=0.85, nmax=100, plot.out = FALSE)
```

Arguments

type	the output types of design, choose from "minimax","optimal","admissible" and "maxpower"
p0	undesirable response rate.
p1	desirable response rate for treatment efficacy.
signif.level	threshold for the probability of declaring drug desirable under p0.
power.level	threshold for the probability of declaring drug desirable under p1.
nmax	maximum total sample size
plot.out	logical; if FALSE (default), do not output plot, otherwise, output a plot for de- sign selection.

Value

boundset the boundaries set: r_1 and n_1 for first stage r and n for second stage

References

Simon, R. (1989). *Optimal two-stage designs for phase II clinical trials. Controlled clinical trials* **10(1)**, 1-10.

Jung, S. H., Lee, T., Kim, K., & George, S. L. (2004). Admissible two-stage designs for phase II cancer clinical trials. Statistics in medicine **23**(**4**), 561-569.

Examples

binom.design(type = "admissible", p0 = 0.15, p1 = 0.3, signif.level = 0.05, power.level = 0.9,
plot.out = TRUE)

binom.power

Description

Calculate the type I error or power of a two-stage design

Usage

binom.power(r1,n1,r,n,p)

Arguments

r1	first stage threshold to stop the trial for futility.
n1	first stage sample size.
r	overall threshold to stop the trial for futility.
n	total sample size.
р	pre-specified response rate, $p=p_0$ for calculating type I error, $p=p_1$ for calculating power.

Value

References

Simon, R. (1989). *Optimal two-stage designs for phase II clinical trials. Controlled clinical trials* **10(1)**, 1-10.

See Also

binom.design

Examples

Calculate type I error binom.power(5, 31, 16, 76, 0.15) binom.power(5, 31, 16, 76, 0.3) ${\tt IUT.design}$

Description

Search the type I error or power of a multinomial (response and disease progression) single- or two-stage design under IUT: $H_0: p_1 \leq p_{01} \ OR \ p_2 \geq p_{02} \ versus \ H_1: p_1 \geq p_{11} > p_{01} \ AND \ p_2 \leq p_{12} < p_{02}$

Usage

```
IUT.design(method = c("s1", "s2", "s2.f"),
s1.rej, t1.rej, s1.acc, t1.acc, n1, s2.rej, t2.rej, n2,
s1.rej.delta=0, t1.rej.delta=0, s1.acc.delta=0, t1.acc.delta=0,
s2.rej.delta=0, t2.rej.delta=0, n1.delta=0, n2.delta=0,
p0.s, p0.t, p1.s, p1.t, signif.level = 0.05, power.level = 0.85,
show.time = TRUE, output = c("minimax","optimal","maxpower","admissible", "all"),
plot.out=FALSE)
```

Arguments

method	design methods according to number of stage and stopping rule, "s1" represents single-stage design stopping for both efficacy and futility, "s2" represents two-stage design stopping for both efficacy and futility, "s2.f" represents two-stage design stopping for futility only.
s1.rej	first stage responses threshold to stop the trial for efficacy. Applied for "s1" or "s2".
t1.rej	first stage disease progressions threshold to stop the trial for efficacy. Applied for "s1" or "s2".
s1.acc	first stage responses threshold to stop the trial for futility. Applied for "s2" or "s2.f".
t1.acc	first stage disease progressions threshold to stop the trial for futility. Applied for "s2" or "s2.f".
n1	first stage sample size. Applied for "s1", "s2" or "s2.f".
s2.rej	second stage responses threshold to stop the trial for efficacy. Applied for "s2" or "s2.f".
t2.rej	second stage disease progressions threshold to stop the trial for efficacy. Applied for "s2" or "s2.f".
n2	second stage sample size. Applied for "s2" or "s2.f".
s1.rej.delta	pre-specified search difference for s1.rej.
t1.rej.delta	pre-specified search difference for t1.rej.
s1.acc.delta	pre-specified search difference for s1.acc.

IUT.design

t1.acc.delta	pre-specified search difference for t1.acc.
s2.rej.delta	pre-specified search difference for s2.rej.
t2.rej.delta	pre-specified search difference for t2.rej.
n1.delta	pre-specified search difference for n1.
n2.delta	pre-specified search difference for n2.
p0.s	pre-specified response rate under null hypothesis.
p0.t	pre-specified disease progression rate under null hypothesis.
p1.s	pre-specified response rate under alternative hypothesis.
p1.t	pre-specified disease progression rate under alternative hypothesis. Note: type I error calculation needs to take maximum of the power function with $(p.s, p.t) = (p_{01}, 0)$ and $(p.s, p.t) = (1 - p_{02}, p_{02})$
signif.level	pre-specified significant level.
power.level	pre-specified power level.
show.time	logical; if TRUE (default), show the calculation time for the search function.
output	the output types of design, choose from "minimax","optimal","admissible" and "maxpower".
plot.out	logical; if TRUE, output a plot for design selection.

Value

boundset	the boundaries set satisfying the design types properties: $s.rej, t.rej$ and N for
	"s1", s1.rej, t1.rej, s1.acc, t1.acc and N1 for first stage and s2.rej, t2.rej
	and N2 for the second stage of "s2", s1.acc, t1.acc and N1 for first stage and
	s2.rej, t2.rej and N2 for the second stage of "s2.f",

References

Chang, M. N., Devidas, M., & Anderson, J. (2007). One- and two-stage designs for phase II window studies. Statistics in medicine, 26(13), 2604-2614.

Simon, R. (1989). *Optimal two-stage designs for phase II clinical trials. Controlled clinical trials* **10(1)**, 1-10.

Jung, S. H., Lee, T., Kim, K., & George, S. L. (2004). Admissible two-stage designs for phase II cancer clinical trials. Statistics in medicine **23**(4), 561-569.

Examples

```
p01=0.1; p02=0.9
## Calculate type I error for single-stage design
IUT.design(method="s1",s1.rej=18, t1.rej = 12, n1=80,
s1.rej.delta = 1, t1.rej.delta = 1, n1.delta=1,
p0.s = 0.15, p0.t = 0.25, p1.s = 0.3, p1.t= 0.1, output = "minimax")
## Designs for two-stage design, output PET and EN under null hypothesis
IUT.design(method="s2",s1.rej = 11, t1.rej = 4, s1.acc=8, t1.acc = 5, n1=40,
s2.rej=18, t2.rej = 11, n2=40, p0.s = 0.15, p0.t = 0.25, p1.s = 0.3, p1.t= 0.1, output = "minimax")
```

IUT.design(method="s2",s1.rej = 11, t1.rej = 4, s1.acc=8, t1.acc = 5, n1=40, s2.rej=18, t2.rej = 11, n2=40, p0.s = 0.15, p0.t = 0.25, p1.s = 0.3, p1.t= 0.1, output = "optimal")

IUT.power	The power function for multinomial designs under intersection-union
	test (IUT)

Description

Calculate the type I error or power of a multinomial (response and disease progression) single- or two-stage design under IUT: $H_0: p_1 \le p_{01} OR p_2 \ge p_{02} versus H_1: p_1 \ge p_{11} > p_{01} AND p_2 \le p_{12} < p_{02}$

Usage

IUT.power(method, s1.rej, t1.rej, s1.acc, t1.acc, n1, s2.rej, t2.rej, n2, p.s, p.t, output.all)

Arguments

method	design methods according to number of stage and stopping rule, "s1" represents single-stage design stopping for both efficacy and futility, "s2" represents two-stage design stopping for both efficacy and futility, "s2.f" represents two-stage design stopping for futility only.
s1.rej	first stage responses threshold to stop the trial for efficacy. Applied for "s1" or "s2".
t1.rej	first stage disease progressions threshold to stop the trial for efficacy. Applied for "s1" or "s2".
s1.acc	first stage responses threshold to stop the trial for futility. Applied for "s2" or "s2.f".
t1.acc	first stage disease progressions threshold to stop the trial for futility. Applied for "s2" or "s2.f".
n1	first stage sample size. Applied for "s1", "s2" or "s2.f".
s2.rej	second stage responses threshold to stop the trial for efficacy. Applied for "s2" or "s2.f".
t2.rej	second stage disease progressions threshold to stop the trial for efficacy. Applied for "s2" or "s2.f".
n2	second stage sample size. Applied for "s2" or "s2.f".
p.s	pre-specified response rate, $p.s = p_{01}$ for calculating type I error , $p = p_{11}$ for calculating power.
p.t	pre-specified disease progression rate, $p.s = p_{02}$ for calculating type I error, $p = p_{12}$ for calculating power. Note: type I error calculation needs to take maximum of the power function with $(p.s, p.t) = (p_{01}, 0)$ and $(p.s, p.t) = (1 - p_{02}, p_{02})$
output.all	logical, if FALSE (default), only output the value of power or type I error, otherwise, also output the probability of early termination (PET) and expected sample size (EN). Applied for "s2" or "s2.f".

6

Value

prob

the power function g(..., p.s, p.t): $\alpha = \max[g(..., p_{01}, 0), g(..., 1 - p_{02}, p_{02})]$ or $g(..., p_{11}, p_{12})$

References

Chang, M. N., Devidas, M., & Anderson, J. (2007). One- and two-stage designs for phase II window studies. Statistics in medicine, 26(13), 2604-2614.

Examples

```
p01=0.1; p02=0.9
## Calculate type I error for single-stage design
max(IUT.power(method="s1", s1.rej=6, t1.rej=19, n1=25, p.s=p01, p.t=0),
IUT.power(method="s1", s1.rej=6, t1.rej=19, n1=25, p.s=1-p02, p.t=p02))
## Calculate power for single-stage design
IUT.power(method="s1", s1.rej=6, t1.rej=19, n1=25, p.s=p01+0.2, p.t=p02-0.2)
## Calculate type I error for two-stage design
max(IUT.power(method="s2", s1.rej=4, t1.rej=9, s1.acc=0, t1.acc=13, n1=13,
s2.rej=6, t2.rej=18, n2=11, p.s=p01, p.t=0),
IUT.power(method="s2", s1.rej=4, t1.rej=9, s1.acc=0, t1.acc=13, n1=13,
s2.rej=6, t2.rej=18, n2=11, p.s=1-p02, p.t=p02))
## Output PET and EN under null hypothesis
IUT.power(method="s2", s1.rej=4, t1.rej=9, s1.acc=0, t1.acc=13, n1=13,
s2.rej=6, t2.rej=18, n2=11, p.s=p01, p.t=p02, output.all=TRUE)[-1]
## Calculate power for two-stage design
IUT.power(method="s2", s1.rej=4, t1.rej=9, s1.acc=0, t1.acc=13, n1=13,
s2.rej=6, t2.rej=18, n2=11, p.s=p01+0.2, p.t=p02-0.2)
## Calculate type I error for two-stage design stopping for futility only,
## output PET and EN under null hypothesis
max(IUT.power(method="s2.f", s1.acc=0, t1.acc=13, n1=13,
s2.rej=6, t2.rej=18, n2=11, p.s=p01, p.t=0),
IUT.power(method="s2.f", s1.acc=0, t1.acc=13, n1=13,
s2.rej=6, t2.rej=18, n2=11, p.s=1-p02, p.t=p02))
## Output PET and EN under null hypothesis
IUT.power(method="s2.f", s1.acc=0, t1.acc=13, n1=13,
s2.rej=6, t2.rej=18, n2=11, p.s=p01, p.t=p02, output.all=TRUE)[-1]
## Calculate power for two-stage design
IUT.power(method="s2.f", s1.acc=0, t1.acc=13, n1=13,
s2.rej=6, t2.rej=18, n2=11, p.s=p01+0.2, p.t=p02-0.2)
```

UIT.design

The design function for multinomial designs under union-intersection test (UIT)

Description

Search the type I error or power of a multinomial (response and disease progression) single- or twostage design under IUT: $H_0: p_1 \leq p_{01} AND p_2 \geq p_{02} versus H_1: p_1 \geq p_{11} > p_{01} OR p_2 \leq p_{12} < p_{02}$

Usage

```
UIT.design(method, s1.rej, t1.rej, s1.acc, t1.acc, n1, s2.rej, t2.rej, n2,
s1.rej.delta=0, t1.rej.delta=0, s1.acc.delta=0, t1.acc.delta=0,
s2.rej.delta=0, t2.rej.delta=0, n1.delta=0, n2.delta=0, p0.s, p0.t, p1.s, p1.t,
signif.level = 0.05, power.level = 0.85, output.all = FALSE, show.time = TRUE)
```

Arguments

method	design methods according to number of stage and stopping rule, "s1" represents single-stage design stopping for both efficacy and futility, "s2" represents two-stage design stopping for both efficacy and futility, "s2.f" represents two-stage design stopping for futility only.
s1.rej	first stage responses threshold to stop the trial for efficacy. Applied for "s1" or "s2".
t1.rej	first stage disease progressions threshold to stop the trial for efficacy. Applied for "s1" or "s2".
s1.acc	first stage responses threshold to stop the trial for futility. Applied for "s2" or "s2.f".
t1.acc	first stage disease progressions threshold to stop the trial for futility. Applied for "s2" or "s2.f".
n1	first stage sample size. Applied for "s1", "s2" or "s2.f".
s2.rej	second stage responses threshold to stop the trial for efficacy. Applied for "s2" or "s2.f".
t2.rej	second stage disease progressions threshold to stop the trial for efficacy. Applied for "s2" or "s2.f".
n2	second stage sample size. Applied for "s2" or "s2.f".
s1.rej.delta	pre-specified search difference for s1.rej.
t1.rej.delta	pre-specified search difference for t1.rej.
s1.acc.delta	pre-specified search difference for s1.acc.
t1.acc.delta	pre-specified search difference for t1.acc.
s2.rej.delta	pre-specified search difference for s2.rej.
t2.rej.delta	pre-specified search difference for t2.rej.
n1.delta	pre-specified search difference for n1.
n2.delta	pre-specified search difference for n2.
p0.s	pre-specified response rate under null hypothesis.
p0.t	pre-specified disease progression rate under null hypothesis.

UIT.power

p1.s	pre-specified response rate under alternative hypothesis.
p1.t	pre-specified disease progression rate under alternative hypothesis. Note: type I error calculation needs to take maximum of the power function with $(p.s, p.t) = (p_{01}, 0)$ and $(p.s, p.t) = (1 - p_{02}, p_{02})$
signif.level	pre-specified significant level.
power.level	pre-specified power level.
output.all	logical; if TRUE, output all possible designs satisfying type I error and power restrictions, otherwise, only output the design with maximum power.
show.time	logical; if TRUE (default), show the calculation time for the search function.

Value

boundset	the boundaries set satisfying the design types properties: $s.rej, t.rej$ and N for
	"s1", s1.rej, t1.rej, s1.acc, t1.acc and N1 for first stage and s2.rej, t2.rej
	and N2 for the second stage of "s2", s1.acc, t1.acc and N1 for first stage and
	s2.rej, t2.rej and N2 for the second stage of "s2.f",

References

Zee, B., Melnychuk, D., Dancey, J., & Eisenhauer, E. (1999). *Multinomial phase II cancer trials incorporating response and early progression. Journal of biopharmaceutical statistics*, **9(2)**, 351-363.

Simon, R. (1989). *Optimal two-stage designs for phase II clinical trials. Controlled clinical trials* **10(1)**, 1-10.

Examples

Calculate type I error for single-stage design UIT.design(method="s1",s1.rej=18, t1.rej = 12, n1=80, p0.s = 0.15, p0.t = 0.25, p1.s = 0.3, p1.t= 0.1)

Designs for two-stage design, output PET and EN under null hypothesis UIT.design(method="s2",s1.rej = 11, t1.rej = 4, s1.acc=8, t1.acc = 5, n1=40, s2.rej=18, t2.rej = 11, n2=40, p0.s = 0.15, p0.t = 0.25, p1.s = 0.3, p1.t= 0.1, output.all=TRUE)

UIT.power	The power function for multinomial designs under union-intersection
	test (UIT)

Description

Calculate the type I error or power of a multinomial (response and disease progression) single- or two-stage design under UIT: $H_0: p_1 \le p_{01} AND p_2 \ge p_{02} versus H_1: p_1 \ge p_{11} > p_{01} OR p_2 \le p_{12} < p_{02}$ (Note: original Zee et al. (1999) set up the correct hypotheses, but did not make a match decision.)

Usage

UIT.power(method, s1.rej, t1.rej, s1.acc, t1.acc, n1, s2.rej, t2.rej, n2, p.s, p.t, output.all)

Arguments

method	design methods according to number of stage and stopping rule, "s1" represents single-stage design stopping for both efficacy and futility, "s2" represents two-stage design stopping for both efficacy and futility, "s2.f" represents two-stage design stopping for futility only.
s1.rej	first stage responses threshold to stop the trial for efficacy. Applied for "s1" or "s2".
t1.rej	first stage disease progressions threshold to stop the trial for efficacy. Applied for "s1" or "s2".
s1.acc	first stage responses threshold to stop the trial for futility. Applied for "s2" or "s2.f".
t1.acc	first stage disease progressions threshold to stop the trial for futility. Applied for "s2" or "s2.f".
n1	first stage sample size. Applied for "s1", "s2" or "s2.f".
s2.rej	second stage responses threshold to stop the trial for efficacy. Applied for "s2" or "s2.f".
t2.rej	second stage disease progressions threshold to stop the trial for efficacy. Applied for "s2" or "s2.f".
n2	second stage sample size. Applied for "s2" or "s2.f".
p.s	pre-specified response rate, $p.s = p_{01}$ for calculating type I error , $p = p_{11}$ for calculating power.
p.t	pre-specified disease progression rate, $p.s = p_{02}$ for calculating type I error, $p = p_{12}$ for calculating power. Note: type I error calculation needs to take maximum of the power function with $(p.s, p.t) = (p_{01}, 0)$ and $(p.s, p.t) = (1 - p_{02}, p_{02})$
output.all	logical, if FALSE (default), only output the value of power or type I error, otherwise, also output the probability of early termination (PET) and expected sample size (EN). Applied for "s2" or "s2.f".

Value

prob	the power function $g(, p.s, p.t)$: $\alpha = \max[g(, p_{01}, 0), g(, 1 - p_{02}, p_{02})]$ or
	$g(,p_{11},p_{12})$

References

Zee, B., Melnychuk, D., Dancey, J., & Eisenhauer, E. (1999). *Multinomial phase II cancer trials incorporating response and early progression. Journal of biopharmaceutical statistics*, **9(2)**, 351-363.

UIT.power

Examples

```
p01=0.1; p02=0.9
## Calculate type I error for single-stage design
UIT.power(method="s1", s1.rej=6, t1.rej=19, n1=25, p.s=p01, p.t=p02)
## Calculate power for single-stage design
UIT.power(method="s1", s1.rej=6, t1.rej=19, n1=25, p.s=p01+0.2, p.t=p02-0.2)
## Calculate type I error for two-stage design, output PET and EN under null hypothesis
UIT.power(method="s2", s1.rej=4, t1.rej=9, s1.acc=0, t1.acc=13, n1=13,
s2.rej=6, t2.rej=18, n2=11, p.s=p01, p.t=p02, output.all=TRUE)
## Calculate power for two-stage design
UIT.power(method="s2", s1.rej=4, t1.rej=9, s1.acc=0, t1.acc=13, n1=13,
s2.rej=6, t2.rej=18, n2=11, p.s=p01+0.2, p.t=p02-0.2)
## Calculate type I error for two-stage design stopping for futility only,
## output PET and EN under null hypothesis
UIT.power(method="s2.f", s1.acc=0, t1.acc=13, n1=13,
s2.rej=6, t2.rej=18, n2=11, p.s=p01, p.t=p02, output.all=TRUE)
## Calculate power for two-stage design
UIT.power(method="s2.f", s1.acc=0, t1.acc=13, n1=13,
s2.rej=6, t2.rej=18, n2=11, p.s=p01+0.2, p.t=p02-0.2)
```

Index

binom.design, 2
binom.power, 3
IUT.design, 4
IUT.power, 6
UIT.design, 7

UIT.design,7 UIT.power,9