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This vignette models ERP data, an example of time series data, using permutation testing. The permutes
package implements two approaches, one based on package 1lmPerm, which is shown in the other vignette,
and the other based on package buildmer, which is shown here. The 1lmPerm approach can do multivariate
responses, but cannot run generalized linear models and only has very limited support for random effects
(i.e.: the Error ) functionality works to run ANOVA with random effects, but only using Type II SS). The
buildmer approach can fit any model that function buildmer from package buildmer can (i.e.: 1m, glm, lmer,
and glmer models), but cannot fit multiple responses. Also, the buildmer approach can use the cluster-mass
test by Maris & Oostenveld (2007), using the relevant machinery in package permuco.

Sample data

The dataset we will be working with is called MMN, which is an excerpt from a passive-oddball task conducted
by Jager (in prep.). A proper method section with more details should eventually be found in that paper,
but a brief and incomplete summary follows here in order to make it easier to work with the data. Jager
(in prep.) presented Dutch learners of English with a stream of isolated vowels from English or from Dutch
created by means of formant synthesis. Each of her six conditions (summarized in the below table; the
package supplies data from two of these conditions) each having used four vowels: three of the same phonetic
category (e.g. three realizations of the DRESS vowel with slightly different formant frequencies) and one of a
different phonetic category (e.g. the TRAP vowel). The first set of vowels, termed ‘standards’, were presented
frequently; the fourth vowel, the ‘deviant’, infrequently interrupted the stream of standards. Participants
were instructed not to pay attention to this stream of sounds, and watched a silent movie to keep them
occupied. EEG recordings of 30 electrodes (T7 and T8 were excluded) were recorded while the participants
were exposed to the vowel stimuli. At the presentation of one of the deviant vowels, we expect to observe a
negative deflection in the EEG signal about 200 milliseconds after stimulus onset, originating from frontal
and central electrode sites. This effect is called the ‘mismatch negativity’. A second effect called the ‘P300’
may also occur, but is ignored here. The data supplied with permutes are a subset of the vowel pairs tested
by Jager (in prep.) consisting of the English vowel in DRESS presented as a standard vs. as a deviant, in
both cases against the vowel from the Dutch word ZET.

The first few rows of the data look as follows:

library(permutes)

head (MMN)

## Fpl AF3 F7 F3 FC1 FC5 C3 CP1 CP5 P7
## 1 -0.0002 -1.7087 0.1357 0.3822 0.1538 1.1556 0.7552 0.7864 -0.0222 0.3399
## 2 0.2871 -2.2155 0.0740 0.3518 0.1051 1.4625 0.6329 0.7107 -0.0411 0.3134
## 3 0.4573 -2.4930 0.0070 0.2775 0.0810 1.6963 0.5497 0.6228 -0.0651 0.2984
## 4 0.5319 -2.4990 -0.0517 0.1462 0.0860 1.8356 0.5089 0.5332 -0.0914 0.2901
## 5 0.5321 -2.2408 -0.0890 -0.0346 0.1177 1.9058 0.4975 0.4489 -0.1169 0.2790
## 6 0.4875 -1.7814 -0.0951 -0.2321 0.1620 1.9712 0.4907 0.3710 -0.1400 0.2545

#i# P3 Pz P03 01 0z 02 P04 P4 P8 CP6
## 1 0.4392 0.6500 -0.1648 -0.5426 -0.5382 -0.9072 -0.0193 0.7312 0.0102 1.0790
## 2 0.4209 0.5860 -0.1576 -0.5430 -0.5308 -0.8392 0.0938 0.7830 0.0822 1.1723



## 3 0.3585 0.5030 -0.1631 -0.5533 -0.5394 -0.7937 0.1809 0.7927 0.1162 1.1724
## 4 0.2612 0.4114 -0.1817 -0.5750 -0.5648 -0.7628 0.2506 0.7774 0.1246 1.1051
## 5 0.1417 0.3183 -0.2126 -0.6071 -0.6043 -0.7330 0.3125 0.7553 0.1226 1.0042
## 6 0.0138 0.2272 -0.2520 -0.6417 -0.6443 -0.6848 0.3767 0.7424 0.1276 0.9066
## CP2 Cc4 FC6 FC2 F4 F8 AF4 Fp2 Fz Cz
## 1 0.8142 1.3876 0.4432 0.7724 -0.1918 0.5416 0.0526 -0.1283 0.1105 0.9059
## 2 0.7216 1.4579 0.6214 0.7768 -0.1749 0.4926 -0.1035 -0.6480 0.0827 0.7886
## 3 0.5969 1.4392 0.7589 0.7753 -0.1024 0.3913 -0.2377 -1.2004 0.0861 0.6604
## 4 0.4643 1.3590 0.8526 0.7678 0.0054 0.2513 -0.3246 -1.7130 0.1086 0.5332
## 5 0.3446 1.2564 0.9184 0.7586 0.1225 0.1030 -0.3462 -2.1017 0.1352 0.4168
## 6 0.2484 1.1672 0.9760 0.7520 0.2162 -0.0195 -0.2996 -2.2827 0.1481 0.3172
## Time Subject Session Deviant
## 1 1.171875 1 0 1
## 2 3.125000 1 0 1
## 3 5.078125 1 0 1
## 4 7.031250 1 0 1
## 5 8.984375 1 0 1
## 6 10.937500 1 0 1

nrow(MMN) #how many observations?

## [1] 22407
length(unique (MMN$Time) ) #how many timepoints?

## [1] 231

The first 30 columns are the 30 sampled EEG electrodes. The Time column denotes the moment from stimulus
onset, in milliseconds, of each measurement type. Subject is the participant, and Session is the session of
the experiment minus one, to make it a proper dummy indicating whether the datapoint is from the first (0)
or the second session (1). Finally, Deviant is a dummy indicating whether the stimulus was a standard (0)
or a deviant (1), explained in the next paragraph. Note that, contrary to the results and recommendations
in Brysbaert (2007), Jager (in prep.) averaged over all her items belonging to the same condition in this
experiment.

Time series data such as these are special because the data consist of multiple, strongly correlated, measurements
of the same signal. This generates two problems. The first is a research problem: which portion of this
time series do we want to analyze? The permutes package was designed to help researchers answer precisely
this question. The second problem is of a statistical nature: how do we handle the strong autocorrelation
present throughout this sampled window? Note that in the case of ERP data, these same two problems are
additionally encountered in the spatial domain: what combination of electrodes (‘region of interest’) do we
want to analyze, and how do we deal with the spatial correlation present in data measured from neighboring
sites? However, in the case of the mismatch-negativity component, we have a priori reason to assume that
it will be reflected most strongly in the Fz electrode. We will therefore only consider this electrode; for an
analysis that includes all electrodes, see the other vignette.

Determining the window

The problem we face equates to what is known in the ERP literature as determining the window. The normal
way to do this is to run a regression analysis on every individual timepoint, and take as the window the point
where a large sequence of significant p-values occurs. If we plot time horizontally and p-value vertically, we
can use this approach to select a time window.

It should be noted that this approach suffers from an extreme multiple-comparisons problem: we will be
running 231 regressions! When compared to an asymptotic null distribution, the p-values will be spuriously
significant in, expectedly, 12 random combinations. The permutation testing approach to time series data
helps with this problem by inferring the null distribution from randomly perturbed data. When including



random effects, this is slightly complicated; clusterperm.lmer uses a simplified version of the algorithm by
Lee & Braun (2012) for this.

The below code runs a permutation test series on the MMN data and plots the results as a heatmap. Note that
permutation testing is not deterministic (the permutations are chosen randomly), so your results may be
slightly different from mine.

perms <- clusterperm.lmer(Fz ~ Deviant * Session + (Deviant + Session | Subject),
data=MMN,series.var=~Time,progress='text')

This takes a few seconds to run. We can speed it up by parallelizing the testing of the individual timepoints. On
most systems (including Windows Rterm, but not Windows RGUI), we can add outfile='"' to makeCluster
and progress='"' (or any other character string) to obtain some rudimentary progress indicator even when
running in parallel. We do not do so now.

library(doParallel)

cl <- makeCluster(2) #or more

registerDoParallel(cl)

perms <- clusterperm.lmer(Fz ~ Deviant * Session + (Deviant + Session | Subject),
data=MMN,series.var=~Time,parallel=TRUE)

We can then plot the results:
plot(perms)

## Loading required namespace: ggplot2

## Loading required namespace: viridis
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By default, the plot method from permutes plots likelihood-ratio tests, as this is what the permutation
procedure by Lee & Braun (2012) operates on. However, these permutation p-values aren’t useful in and of



themselves, at least if following Maris & Oostenveld (2007). Instead, one should use the permuted LRTs to
compute a cluster-mass statistic. This can also be plotted:

plot(perms,type='cluster_mass')
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This suggests some clear windows, of which the strongest one is found for the Deviant effect. We will focus
on this window. Because permutes objects are also normal data frames, this is easily achieved.

head(perms) #what do we have?

##  Time Measure Factor LRT beta t cluster
## 1 1 Fz 1 18.635655 1.1175222 3.0594588 1
#it 2 1 Fz Deviant 4.577659 -0.3979960 -0.7706906 1
## 3 1 Fz Session 2.634262 0.4890000 1.0367109 0
## 4 1 Fz Deviant:Session 11.915262 -1.1857400 -1.6624008 1
## 5 2 Fz 1 .19.947771 1.1143481 3.6544409 1
## 6 2 Fz Deviant 5.847704 -0.5217075 -0.9588454 1
## cluster_mass p p.cluster_mass

## 1 5881.47977 0.00000000 0.000999001

## 2 32.94252 0.05494505 1.000000000

## 3 NA 0.12887113 NA

##t 4 163.42550 0.00000000 0.000999001

## 5  5881.47977 0.00000000 0.000999001

## 6 32.94252 0.03496503 1.000000000

perms2 <- perms[perms$Factor == 'Deviant' & !is.na(perms$cluster_mass),]
perms2 <- perms2[perms2$cluster_mass == max(perms2$cluster_mass),]

print (perms2$Time)



## [1] 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96
## [20] 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115
## [39] 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134
## [58] 135 136 137 138 139 140 141

## 231 Levels: 1234567 89 10 11 12 13 14 15 16 17 18 19 20 21 22 23 ... 231

For technical reasons, the Time variable was coerced to a factor. We see that contiguous permutation
significance was achieved from the 78th to the 141 level of this factor. The below code shows that this
corresponds to a window from 151 ms to 275 ms post-stimulus-onset.

print (unique (MMN$Time) [c(78,141)])

## [1] 151.5625 274.6094

Interpreting the results

We can now proceed in two ways. The first way follows a literal interpretation of Maris & Oostenveld (2007),
asking for the p-values corresponding to the cluster-mass test, and that is the entirety of the analysis. We can
obtain this by reading the results themselves through print (perms) (permutes objects are also normal data
frames), or by specifying the sig option to plot so as to only plot those results that reached cluster-mass
significance:

plot(perms,type='cluster_mass',sig='p.cluster_mass')
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This confirms significance for the chosen factor in the chosen window, as well as some other factor-window
combinations that we will not discuss.

Alternatively, we can use an approach more common in psycholinguistics, which is to use the found window
as input for our actual analysis, which can be a linear mixed-effects model. We will average our data along
the aforementioned window, and then run a permutation linear mized-effects model to analyze the data, so



that we can easily obtain robust p-values. The advantage of these permutation p-values is, again, that we
could run multiple such models without requiring any Bonferroni correction. For the present single model,
however, an ordinary linear mixed-effects model would also suffice.

Previous versions of permutes produced (g)1lm, gam, or (g)lmer objects here; the current version does not,
instead producing the same output as the other permutation functions. For this reason, it is recommended to
start by fitting a linear mixed model, and to then compute the permutation p-values separately. The linear
mixed model can be fitted as follows:

library(buildmer)

data <- MMN[MMN$Time > 151 & MMN$Time < 275,]

data <- aggregate(Fz ~ Deviant + Session + Subject,data,mean)

lmm <- buildmer(Fz ~ Deviant * Session + (Deviant + Session | Subject),data,
buildmerControl=list(direction="'order',ddf="'1me4"'))

## Determining predictor order

## Fitting via 1m: Fz ~ 1

## Currently evaluating LRT for: Deviant, Session

## Fitting via 1m: Fz ~ 1 + Deviant

## Fitting via 1lm: Fz ~ 1 + Session

## Updating formula: Fz ~ 1 + Deviant

## Currently evaluating LRT for: Session

## Fitting via 1lm: Fz ~ 1 + Deviant + Session

## Updating formula: Fz ~ 1 + Deviant + Session

## Currently evaluating LRT for: Deviant:Session

## Fitting via 1lm: Fz ~ 1 + Deviant + Session + Deviant:Session
## Updating formula: Fz ~ 1 + Deviant + Session + Deviant:Session

## Fitting via gam, with REML: Fz ~ 1 + Deviant + Session +
## Deviant:Session

## Currently evaluating LRT for: 1 | Subject

## Fitting via lmer, with REML: Fz ~ 1 + Deviant + Session +
#it Deviant:Session + (1 | Subject)

## Updating formula: Fz ~ 1 + Deviant + Session + Deviant:Session + (1 |
#it Subject)

## Currently evaluating LRT for: Deviant | Subject, Session | Subject

## Fitting via lmer, with REML: Fz ~ 1 + Deviant + Session +
#i# Deviant:Session + (1 + Deviant | Subject)

## Fitting via lmer, with REML: Fz ~ 1 + Deviant + Session +
#Hit Deviant:Session + (1 + Session | Subject)

## Updating formula: Fz ~ 1 + Deviant + Session + Deviant:Session + (1 +
## Deviant | Subject)

## Currently evaluating LRT for: Session | Subject

## Fitting via lmer, with REML: Fz ~ 1 + Deviant + Session +
#Hit Deviant:Session + (1 + Deviant + Session | Subject)



## boundary (singular) fit: see help('isSingular')

## Ending the ordering procedure due to having reached the maximal
#i# feasible model - all higher models failed to converge. The types of
## convergence failure are: Singular fit

where the control argument direction specifies that we want to order the model terms to obtain the
maximal feasible model. In buildmer, the default is c('order', 'backward'), which will also perform
backward stepwise elimination. permutes by default modifies this to use order only, however, if you specify
an explicit buildmerControl argument, all defaults specified by permutes will be overridden. We hence
need to explicitly specify that we only want the term-ordering step, and that we do not also want backward
stepwise elimination. The ddf="'1me4"', also a default set by permutes that deviates from those in buildmer,
saves a little computation time by not coercing the model to an lmerTest model, from which denominator
degrees of freedom can be computed. Since we are doing permutation tests, we don’t need to calculate any
degrees of freedom.

From the above, we observe that the highest random-effects structure that this model could support was
(1 + Deviant | Subject). Given that the data only contain 95 observations—due to Jager’s averaging
over items—this is not surprising. Keeping this in mind, we can use function perm.lmer to obtain the
corresponding permutation p-values:

perm <- perm.lmer(Fz ~ Deviant * Session + (Deviant + Session | Subject),data)

It does not matter here whether we specify (Deviant + Session | Subject) oronly (Deviant | Subject);
the permutation tests are based on the maximal feasible model in any case. The permutation p-values (and
corresponding regression coefficients) are provided as a simple dataframe, which we can print:

print (perm)

## Factor LRT beta t P
## 1 (Intercept) 112.6673200 1.4650608 5.140317 NA
## 2 Deviant 102.6514762 -1.9068498 -5.564720 0.000
## 3 Session 21.8051074 -0.7512031 -2.213254 0.000

## 4 Deviant:Session  0.6725974 -0.1741848 -0.368245 0.373

The main conclusion to be drawn from these results is that there is a significant mismatch negativity of —1.91
microvolts. No evidence is found for a change in this MMN over the two sessions of the experiment.

This concludes our expository foray into these data.
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