
Package ‘permimp’
March 28, 2025

Type Package

Title Conditional Permutation Importance

Version 1.1-0

Date 2025-03-26

Author Dries Debeer [aut, cre],
Torsten Hothorn [aut],
Carolin Strobl [aut]

Maintainer Dries Debeer <debeer.dries@gmail.com>

Description An add-on to the 'party' package, with a faster implementation
of the partial-conditional permutation importance for random forests. The
standard permutation importance is implemented exactly the same as in
the 'party' package. The conditional permutation importance can be
computed faster, with an option to be backward compatible to the 'party'
implementation. The package is compatible with random forests fit using the
'party' and the 'randomForest' package. The methods are described in
Strobl et al. (2007) <doi:10.1186/1471-2105-8-25> and
Debeer and Strobl (2020) <doi:10.1186/s12859-020-03622-2>.

Depends R (>= 3.6.0)

Imports graphics, grDevices, ipred (>= 0.9-6), methods, party (>=
1.3-3), pbapply, randomForest (>= 4.6-14), stats, survival (>=
2.44-1.1), utils

Suggests knitr, rmarkdown, scales (>= 0.5.0), testthat

License GPL-2 | GPL-3

VignetteBuilder knitr

URL https://ddebeer.github.io/permimp/

NeedsCompilation no

Repository CRAN

Date/Publication 2025-03-28 10:50:02 UTC

1

https://doi.org/10.1186/1471-2105-8-25
https://doi.org/10.1186/s12859-020-03622-2
https://ddebeer.github.io/permimp/

2 permimp-package

Contents

permimp-package . 2
permimp . 3
ranks . 7
selFreq . 8
VarImp . 9
VarImp-Methods . 10

Index 13

permimp-package Conditional Permutation Importance

Description

An add-on to the ’party’ package, with a faster implementation of the partial-conditional permuta-
tion importance for random forests. The standard permutation importance is implemented exactly
the same as in the ’party’ package. The conditional permutation importance can be computed faster,
with an option to be backward compatible to the ’party’ implementation. The package is compat-
ible with random forests fit using the ’party’ and the ’randomForest’ package. The methods are
described in Strobl et al. (2007) <doi:10.1186/1471-2105-8-25> and Debeer and Strobl (2020)
<doi:10.1186/s12859-020-03622-2>.

Details

Index of help topics:

VarImp VarImp Objects
VarImp-methods Methods for VarImp Objects
permimp Random Forest Permutation Importance for random

forests
permimp-package Conditional Permutation Importance
ranks Reversed Rankings
selFreq Predictor Selection Frequency in Random Forests

Author(s)

Maintainer: Dries Debeer <dries.debeer@uzh.ch>

Authors:

• Carolin Strobl

• Torsten Hothorn

permimp 3

permimp Random Forest Permutation Importance for random forests

Description

Standard and partial/conditional permutation importance for random forest-objects fit using the
party or randomForest packages, following the permutation principle of the ‘mean decrease in
accuracy’ importance in randomForest . The partial/conditional permutation importance is imple-
mented differently, selecting the predictions to condition on in each tree using Pearson Chi-squared
tests applied to the by-split point-categorized predictors. In general the new implementation has
similar results as the original varimp function. With asParty = TRUE, the partial/conditional per-
mutation importance is fully backward-compatible but faster than the original varimp function in
party.

Usage

permimp(object, ...)
S3 method for class 'randomForest'
permimp(object, nperm = 1, OOB = TRUE, scaled = FALSE,

conditional = FALSE, threshold = .95, whichxnames = NULL,
thresholdDiagnostics = FALSE, progressBar = interactive(), do_check = TRUE,
oldSeedSelection = FALSE, cl = NULL, ...)

S3 method for class 'RandomForest'
permimp(object, nperm = 1, OOB = TRUE, scaled = FALSE,

conditional = FALSE, threshold = .95, whichxnames = NULL,
thresholdDiagnostics = FALSE, progressBar = interactive(),
pre1.0_0 = conditional, AUC = FALSE, asParty = FALSE, mincriterion = 0,
oldSeedSelection = FALSE, cl = NULL, ...)

Arguments

object an object as returned by cforest or randomForest.

mincriterion the value of the test statistic or 1 - p-value that must be exceeded in order to
include a split in the computation of the importance. The default mincriterion
= 0 guarantees that all splits are included.

conditional a logical that determines whether unconditional or conditional permutation is
performed.

threshold the threshold value for (1 - p-value) of the association between the predictor
of interest and another predictor, which must be exceeded in order to include
the other predictor in the conditioning scheme for the predictor of interest (only
relevant if conditional = TRUE). A threshold value of zero includes all other
predictors.

nperm the number of permutations performed.

OOB a logical that determines whether the importance is computed from the out-of-
bag sample or the learning sample (not suggested).

4 permimp

pre1.0_0 Prior to party version 1.0-0, the actual data values were permuted according
to the original permutation importance suggested by Breiman (2001). Now the
assignments to child nodes of splits in the variable of interest are permuted as
described by Hapfelmeier et al. (2012), which allows for missing values in
the predictors and is more efficient with respect to memory consumption and
computing time. This method does not apply to the conditional permutation
importance, nor to random forests that were not fit using the party package.

scaled a logical that determines whether the differences in prediction accuracy should
be scaled by the total (null-model) error.

AUC a logical that determines whether the Area Under the Curve (AUC) instead of
the accuracy is used to compute the permutation importance (cf. Janitza et al.,
2012). The AUC-based permutation importance is more robust towards class
imbalance, but it is only applicable to binary classification.

asParty a logical that determines whether or not exactly the same values as the original
varimp function in party should be obtained.

whichxnames a character vector containing the predictor variable names for which the permu-
tation importance should be computed. Only use when aware of the implica-
tions, see section ’Details’.

thresholdDiagnostics

a logical that specifies whether diagnostics with respect to the threshold-value
should be prompted as warnings.

progressBar a logical that determines whether a progress bar should be displayed.

do_check a logical that determines whether a check requiring user input should be in-
cluded.

oldSeedSelection

a logical that determines whether the selection of random numbers should be the
same is in the 1.1 version of the package. The default is FALSE, so that seeds
are generated for each tree, and the results are reproducible, also when parallel
processing is used.

cl A cluster object created by makeCluster, or an integer to indicate number of
child-processes (integer values are ignored on Windows) for parallel evalua-
tions (see Details on parallel computing). NULL (default) refers to sequential
evaluation.

... additional arguments to be passed to the Methods

Details

Function permimp is highly comparable to varimp in party, but the partial/conditional variable im-
portance has a different, more efficient implementation. Compared to the original varimp in party,
permimp applies a different strategy to select the predictors to condition on (ADD REFERENCE
TO PAPER).

With asParty = TRUE, permimp returns exactly the same values as varimp in party, but the com-
putation is done more efficiently.

If conditional = TRUE, the importance of each variable is computed by permuting within a grid
defined by the predictors that are associated (with 1 - p-value greater than threshold) to the vari-

permimp 5

able of interest. The threshold can be interpreted as a parameter that moves the permutation im-
portance across a dimension from fully conditional (threshold = 0) to completely unconditional
(threshold = 1), see Debeer and Strobl (2020).

Using the wichxnames argument, the computation of the permutation importance can be limited
to a smaller number of specified predictors. Note, however, that when conditional = TRUE, the
(other) predictors to condition on are also limited to this selection of predictors. Only use when
fully aware of the implications.

For parallel processing, the pbapply package, a wrapper around the parallel package is used. Par-
allel processing can be enabled through the cl argument. parLapply is called when cl is a ’cluster’
object, mclapply is called when cl is an integer.

When doing parallel processing, other objects might need to pushed to the workers, and random
numbers must be handled with care (see the Examples of the pbapply package).

When using parallel processing, showing the progress bar increases the communication overhead
between the main process and nodes / child processes compared to the parallel equivalents of
the functions without the progress bar. The functions fall back to their original equivalents when
progressBar = FALSE. This is the default when interactive() is FALSE (i.e. called from com-
mand line R script)

For further details, please refer to the documentation of varimp.

Value

An object of class varimp, with the mean decrease in accuracy as its $values.

References

Leo Breiman (2001). Random Forests. Machine Learning, 45(1), 5–32.

Alexander Hapfelmeier, Torsten Hothorn, Kurt Ulm, and Carolin Strobl (2012). A New Variable
Importance Measure for Random Forests with Missing Data. Statistics and Computing, https:
//link.springer.com/article/10.1007/s11222-012-9349-1

Torsten Hothorn, Kurt Hornik, and Achim Zeileis (2006b). Unbiased Recursive Partitioning: A
Conditional Inference Framework. Journal of Computational and Graphical Statistics, 15 (3), 651-
674. Preprint available from https://www.zeileis.org/papers/Hothorn+Hornik+Zeileis-2006.
pdf

Silke Janitza, Carolin Strobl and Anne-Laure Boulesteix (2013). An AUC-based Permutation
Variable Importance Measure for Random Forests. BMC Bioinformatics.2013, 14 119. https:
//bmcbioinformatics.biomedcentral.com/articles/10.1186/1471-2105-14-119

Carolin Strobl, Anne-Laure Boulesteix, Thomas Kneib, Thomas Augustin, and Achim Zeileis
(2008). Conditional Variable Importance for Random Forests. BMC Bioinformatics, 9, 307. https:
//bmcbioinformatics.biomedcentral.com/articles/10.1186/1471-2105-9-307

Debeer Dries and Carolin Strobl (2020). Conditional Permutation Importance Revisited. BMC
Bioinformatics, 21, 307. https://bmcbioinformatics.biomedcentral.com/articles/10.1186/
s12859-020-03622-2

See Also

varimp, VarImp

https://link.springer.com/article/10.1007/s11222-012-9349-1
https://link.springer.com/article/10.1007/s11222-012-9349-1
https://www.zeileis.org/papers/Hothorn+Hornik+Zeileis-2006.pdf
https://www.zeileis.org/papers/Hothorn+Hornik+Zeileis-2006.pdf
https://bmcbioinformatics.biomedcentral.com/articles/10.1186/1471-2105-14-119
https://bmcbioinformatics.biomedcentral.com/articles/10.1186/1471-2105-14-119
https://bmcbioinformatics.biomedcentral.com/articles/10.1186/1471-2105-9-307
https://bmcbioinformatics.biomedcentral.com/articles/10.1186/1471-2105-9-307
https://bmcbioinformatics.biomedcentral.com/articles/10.1186/s12859-020-03622-2
https://bmcbioinformatics.biomedcentral.com/articles/10.1186/s12859-020-03622-2

6 permimp

Examples

for RandomForest-objects, by party::cforest()
set.seed(290875)
readingSkills.cf <- party::cforest(score ~ ., data = party::readingSkills,

control = party::cforest_unbiased(mtry = 2, ntree = 25))

conditional importance, may take a while...
party implementation:
set.seed(290875)
party::varimp(readingSkills.cf, conditional = TRUE)
faster implementation but same results
set.seed(290875)
permimp(readingSkills.cf, conditional = TRUE, asParty = TRUE)

different implementation with similar results
set.seed(290875)
permimp(readingSkills.cf, conditional = TRUE, asParty = FALSE)

standard (unconditional) importance is unchanged
set.seed(290875)
party::varimp(readingSkills.cf)
set.seed(290875)
permimp(readingSkills.cf, oldSeedSelection = TRUE)

###
set.seed(290875)
readingSkills.rf <- randomForest::randomForest(score ~ ., data = party::readingSkills,

mtry = 2, ntree = 25, importance = TRUE,
keep.forest = TRUE, keep.inbag = TRUE)

(unconditional) Permutation Importance
set.seed(290875)
permimp(readingSkills.rf, do_check = FALSE)

very close to
readingSkills.rf$importance[,1]

Conditional Permutation Importance
set.seed(290875)
permimp(readingSkills.rf, conditional = TRUE, threshold = .8, do_check = FALSE)

Not run:
Parallel processing - Windows
Only relevant for large trees, for small trees, there may not even be a
'speed up', but a 'slow down'

Make a larger forest
set.seed(290875)
readingSkills.cf <- party::cforest(score ~ ., data = party::readingSkills,

control = party::cforest_unbiased(mtry = 2,

ranks 7

ntree = 200))

sequentiall processing
set.seed(290875)
system.time(print(permimp(readingSkills.cf, conditional = TRUE, asParty = FALSE)))

parallel processing
note that the results are reproducible despite using multiple cores
cluster <- parallel::makeCluster(2)

set.seed(290875)
system.time(print(permimp(readingSkills.cf, conditional = TRUE,

asParty = FALSE, cl = cluster, progressBar = FALSE)))
parallel::stopCluster(cluster)

End(Not run)

ranks Reversed Rankings

Description

Method for giving the reversed rankings of the numerical values of a vector or VarImp object.

Usage

ranks(x, note = TRUE, ...)
Default S3 method:
ranks(x, note = TRUE, ...)
S3 method for class 'VarImp'
ranks(x, note = TRUE, ...)

Arguments

x an object to be reverse ranked.

note a logical specifying whether the (reversed) rankings should be printed instead of
the importance values.

... additional arguments to be passed to rank.

Details

The ranks function is nothing more than (length(x) - rank(x, ...) + 1L). But it also works for
objects of class VarImp.

Value

A vector containing the reversed rankings.

8 selFreq

Examples

High Jump data
HighJumps <- c(Anna = 1.45, Betty = 1.53, Cara = 1.37, Debby = 1.61,

Emma = 1.29, Hanna = 1.44, Juno = 1.71)
HighJumps
ranking of high jump data
ranks(HighJumps)

selFreq Predictor Selection Frequency in Random Forests

Description

counts how many times each predictor variable was selected for splitting in a random forest. Only
implemented for cforest form the party package.

Usage

selFreq(object, whichxnames = NULL)

Arguments

object an object as returned by cforest.
whichxnames a character vector containing the predictor variable names that for which the

permutation importance should be computed. See section ’Details’.

Details

Function selFreq counts how many times each predictor variable was selected for splitting in a
random forest. In the current implementation this selFreq can only be applied to random forests
as returned by cforest.

Value

An object of class VarImp, with as $values the mean of the sum of the selection frequencies across
the trees.

See Also

VarImp,

Examples

set.seed(290875)
readingSkills.cf <- party::cforest(score ~ ., data = party::readingSkills,

control = party::cforest_unbiased(mtry = 2, ntree = 100))

Selection Frequency
selFreq(readingSkills.cf)

VarImp 9

VarImp VarImp Objects

Description

A class for random forest variable importance measures VarImp objects.

Usage

as.VarImp(object, ...)

S3 method for class 'data.frame'
S3 method for class 'data.frame'
as.VarImp(object, FUN = mean,

type = c("Permutation", "Conditional Permutation",
"Selection Frequency", "See Info"),

info = NULL, ...)

S3 method for class 'matrix'
S3 method for class 'matrix'
as.VarImp(object, FUN = mean,

type = c("Permutation", "Conditional Permutation",
"Selection Frequency", "See Info"),

info = NULL, ...)

S3 method for class 'numeric'
S3 method for class 'numeric'
as.VarImp(object, perTree = NULL,

type = c("Permutation", "Conditional Permutation",
"Selection Frequency", "See Info"),

info = NULL, ...)

is.VarImp(VarImp)

Arguments

object an R object.

perTree a matrix or data frame of size ntree x p containing the variable importance
measures for each tree in the random forest.

type a character indicating the type of variable importance measure.

info a list with additional information about the variable importance measure.

FUN a function to compute the variable importance. See section ’Details’.

VarImp an object of the class VarImp.

... additional arguments.

10 VarImp-Methods

Details

as.VarImp creates an object of class ’VarImp’. When object is a matrix or a data.frame, the
final values are computed by applying FUN to its columns. is.VarImp returns a logical indicating
whether the evaluated object is of class ’VarImp’.

See Also

VarImp-methods

Examples

Matrix of fake importance measures per Tree
set.seed(290875)
ntree <- 500
p <- 15
fakeVIM <- matrix(rnorm(ntree * p), nrow = ntree, ncol = p,

dimnames = list(paste0("pred", seq_len(ntree)), paste0("pred", seq_len(p))))
is.VarImp(fakeVIM)

make a 'VarImp' object
fakeVarImp <- as.VarImp(fakeVIM, type = "See Info",

info = list("The Vims are based on fake data.",
"The mean was used to aggregate across the trees"))

is.VarImp(fakeVarImp)

VarImp-Methods Methods for VarImp Objects

Description

Methods for computing on VarImp objects..

Usage

S3 method for class 'VarImp'
plot(x, nVar = length(x$values), type = c("bar", "box", "dot", "rank"),

sort = TRUE, interval = c("no", "quantile", "sd"),
intervalProbs = c(.25, .75), intervalColor = NULL,
horizontal = FALSE, col = NULL, pch = NULL,
main = NULL, margin = NULL, ...)

S3 method for class 'VarImp'
print(x, ranks = FALSE, ...)
S3 method for class 'VarImp'
subset(x, subset, ...)

VarImp-Methods 11

Arguments

x an object of the class VarImp.

nVar an integer specifying the number of predictor variables that should be included
in the plot. The nVar predictor variables with the highest variable importance
measure are retained.

type a character string that indicates the type of plot. Must be one of the following:
"bar", "box", "dot" or "rank" (see Details).

sort a logical that specifies whether the predictors should be ranked according to the
importance measures.

interval a character string that indicates if, and which type of intervals should be added
to the plot. Must be one of the following: "no", "quantile", or "sd" (see
Details).

intervalProbs a numerical vector of the form c(bottom, top), specifying the two quantiles that
should be used for the interval. Only meaningful when interval = "quantile".

intervalColor a color code or name, see par.

horizontal a logical that specifies whether the plot should be horizontal (= importance val-
ues on the x-axis. The default is FALSE.

col a color code or name, see par.

pch Either a single character or an integer code specifying the plotting ’character’,
see par.

main an overall title for the plot: see title.

margin a numerical vector of the form c(bottom, left, top, right), which gives the
number of lines of margin to be specified on the four sides of the plot. See par.

ranks a logical specifying whether the (reversed) rankings should be printed instead of
the importance values.

subset a character, integer or logical vector, specifying the subset of predictor variables.

... additional arguments.

Details

plot gives visualization of the variable importance values. print prints the importance values,
or their (reversed) rankings if ranks = TRUE. ranks returns the reversed rankings of the variable
importance values. The subset method for VarImp objects returns a VarImp object for only a
subset of the original predictors in the random forest.

In plot, the type = "bar" results in a barplot, type = "dot" in a point-plot, type = "rank" in a
point-plot with the importance rankings as the plotting ’characters’, see ranks. In each of these
three options an interval (based on either two quantiles or on the standard deviation of the perTree
values) can be added to the plot. type = "box" results in boxplots, and is only meaningful when
perTree values are available.

See Also

VarImp

12 VarImp-Methods

Examples

Fit a random forest (using cforest)
set.seed(290875)
readingSkills.cf <- party::cforest(score ~ ., data = party::readingSkills,

control = party::cforest_unbiased(mtry = 2, ntree = 50))

compute permutation variable importance:
set.seed(290875)
permVIM <- permimp(readingSkills.cf)

print the variable importance values
permVIM
print(permVIM, ranks = TRUE)
ranks(permVIM)

Visualize the variable importance values
plot(permVIM, type = "bar", margin = c(6,3,3,1))
plot(permVIM, nVar = 2, type = "box", horizontal = TRUE)

note the rankings
plot(subset(permVIM, c("age", "nativeSpeaker")), intervalColor = "pink")
plot(subset(permVIM, c("shoeSize", "nativeSpeaker")), intervalColor = "pink")

Index

∗ package
permimp-package, 2

∗ tree
permimp, 3
selFreq, 8
VarImp, 9
VarImp-Methods, 10

as.VarImp (VarImp), 9

cforest, 8

data.frame, 10

is.VarImp (VarImp), 9

makeCluster, 4
matrix, 10
mclapply, 5

par, 11
parLapply, 5
permimp, 3
permimp-package, 2
plot.VarImp (VarImp-Methods), 10
print.VarImp (VarImp-Methods), 10

rank, 7
ranks, 7, 11

selFreq, 8
subset.VarImp (VarImp-Methods), 10

title, 11

VarImp, 5, 7–9, 9, 10, 11
varimp, 3–5
VarImp-Methods, 10
VarImp-methods (VarImp-Methods), 10

13

	permimp-package
	permimp
	ranks
	selFreq
	VarImp
	VarImp-Methods
	Index

