Package ‘pendensity’

October 14, 2022

Type Package

Title Density Estimation with a Penalized Mixture Approach

Version 0.2.13

Date 2019-04-07

Depends R (>=2.15.1), lattice, fda

Author Christian Schellhase

Maintainer Christian Schellhase <christian.schellhase@gmx.net>

Description Estimation of univariate (conditional) densities using penalized B-
splines with automatic selection of optimal smoothing parameter.

License GPL (>=2)

LazyLoad yes

NeedsCompilation no

Repository CRAN

Date/Publication 2019-04-07 22:10:10 UTC

R topics documented:

pendensity-package L. e 2
Alllanz L L e 3
bias.par e e 4
CK e 5
Dam . . e 6
Dervl . . . e 7
Derv2 . . e 8
DeutscheBank 9
distrfunc L 10
dpendensity e e 11
fhat e 12
Lomat e 13
marg.likelihood 13
my.AIC . . . e 14
mybspline e 15

2 pendensity-package
my.positive.definite.solve 16
newbetaval 17
new.lambda oL 18
pendoglike 19
pendenForm 20
pendensity L. e e e e e e e e 21
plot.pendensity e e e e e 23
print.pendensity L. 26
testequal L L e 26
VAMANCE.PAT .« « . o v v v v e e e e e e e e e e e e e e e e e 27
variance.val 28

Index 29

pendensity-package The package ’pendensity’ offers routines for estimating penalized un-
conditional and conditional (on factor groups) densities.

Description

The package ’pendensity’ offers routines for estimating penalized unconditional and conditional
(on factor groups) densities. For details see the description of the function pendensity.

Details

Package: pendensity
Type: Package
Version: 0.2.12
Date: 2019-04-07

License: GPL (>=2) LazyLoad: yes

The packages contributes the function *pendensity()’ for estimating densities using penalized splines
techniques.

Author(s)

Christian Schellhase <christian.schellhase @ gmx.net>

References

Density Estimation with a Penalized Mixture Approach, Schellhase C. and Kauermann G. (2012),
Computational Statistics 27 (4), p. 757-777.

Examples

y <= rnorm(100)
test <- pendensity(y~1)

Allianz 3

plot(test)
HHHHHHHEEEE

#second simple example
#with covariate

X <- rep(c(0,1),200)

y <= rnorm(400,x*0.2,1)

test <- pendensity(y~as.factor(x),lambdad=2e+07)

plot(test)

SRR

#calculate the value at some (maybe not observed) value yi=c(@,1) of the estimated density
plot(test,val=c(0,1))

SR

#density-example of the stock exchange Allianz in 2006

data(Allianz)
time.Allianz <- strptime(Allianz[,1],form="%d.%m.%y")

#looking for all dates in 2006
data.Allianz <- Allianz[which(time.Allianz$year==106),2]

#building differences of first order
d.Allianz <- diff(data.Allianz)

#estimating the density, choosing a special start value for lambda
density.Allianz <- pendensity(d.Allianz~1,lambda0=90000)
plot(density.Allianz)

Allianz Daily final prices (DAX) of the German stock Allianz in the years 2006
and 2007

Description

Containing the daily final prices of the German stock Allianz in the years 2006 and 2007.

Usage

data(Allianz)

4 bias.par

Format

A data frame with 507 observations of the following 2 variables.

Date Date

ClosingPrice ClosingPrice

Examples

data(Allianz)
form<-"'%d.%m.%y"
time.Allianz <- strptime(Allianz[,1],form)

#looking for all dates in 2006
data.Allianz <- Allianz[which(time.Allianz$year==106),2]

#building differences of first order
d.Allianz <- diff(data.Allianz)

#estimating the density
density.Allianz <- pendensity(d.Allianz~1,)
plot(density.Allianz)

bias.par Calculating the bias of the parameter beta

Description

Calculating the bias of the parameter beta.

Usage

bias.par(penden.env)

Arguments

penden.env Containing all information, environment of pendensity()

Details

The bias of the parameter beta is calculated as the product of the penalty parameter lambda, the
penalized second order derivative of the log likelihood function w.r.t. beta 'Derv.pen’, the penalty
matrix 'Dm’ and the parameter set "beta’.

Bias(B) = —ADerv2.pen(8) "' Dy, 3

The needed values are saved in the environment.

ck 5

Value

Returning the bias of the parameter beta.

Author(s)

Christian Schellhase <cschellhase @ wiwi.uni-bielefeld.de>

References

Density Estimation with a Penalized Mixture Approach, Schellhase C. and Kauermann G. (2012),
Computational Statistics 27 (4), p. 757-777.

ck Calculating the actual weights ck

Description

Calculating the actual weights ck for each factor combination of the covariates combinations.

Usage

ck(penden.env, beta.val)

Arguments
penden.env Containing all information, environment of pendensity()
beta.val actual parameter beta

Details

The weights in depending of the covariate ’x’ are calculated as follows.
_ exp(Z(z)Bx)
CplT =
(z,5) Do exp(Z(@)B))
For estimations without covariates, Z doesn’t appear in calculations.

_ _ exp(Br)
Ck(ﬂ) ZkK:_KeXp(B’“)

Starting density calculation, the groupings of the covariates are indexed in the main program. The
groupings are saved in ’x.factor’, the index which response belongs to which group is saved in
’Z.index’. Therefore, one can link to the rows in ’x.factor’ to calculate the weights 'ck’.

The needed values are saved in the environment.

Value

Returning the actual weights ck, depending on the actual parameter beta in a matrix with rows.

Author(s)

Christian Schellhase <cschellhase @ wiwi.uni-bielefeld.de>

References

Density Estimation with a Penalized Mixture Approach, Schellhase C. and Kauermann G. (2012),
Computational Statistics 27 (4), p. 757-777.

D.m Calculating the penalty matrix

Description

calculating the penalty matrix depending on the number of covariates ’p’, the order of differences
to be penalized m’, the corresponding difference matrix 'L’ of order m’, the covariate matrix *Z’,
the number of observations 'n’ and the number of knots "K’.

Usage

D.m(penden.env)

Arguments

penden.env Containing all information, environment of pendensity()

Details

The penalty matrix is calculated as
Dy = (LT @ L)(Ixc-m ® ZE)(L @ I,)

The needed values are saved in the environment.

Value

Returning the penalty matrix.

Author(s)

Christian Schellhase <cschellhase @ wiwi.uni-bielefeld.de>

References

Density Estimation with a Penalized Mixture Approach, Schellhase C. and Kauermann G. (2012),
Computational Statistics 27 (4), p. 757-777.

Dervl 7

Derv1 Calculating the first derivative of the pendensity likelihood function
w.r.t. parameter beta

Description

Calculating the first derivative of the pendensity likelihood function w.r.t. parameter beta.

Usage

Derv1(penden.env)

Arguments

penden.env Containing all information, environment of pendensity()

Details

We calculate the first derivative of the pendensity likelihood function w.r.t. the parameter beta. The
calculation of the first derivative of the pendensity likelihood function w.r.t. parameter beta is done
in four steps. The first derivative equals in the case of covariates

s(8) = 0l(B)/9B = Z si(8)

where ~
@i

(B) = 2T (z)CT (24, B) ——

si(B) (z:)C" (x B)f(yi|$i)

Without covariates, the matrix 'Z’ doesn’t appear. Starting density calculation, the groupings of
the covariates are indexed in the main program. The groupings are saved in ’x.factor’. Creating an
index that reports which response belongs to which covariate group, saving in *Z.index’. Therefore,
one can link to the rows in the object "ck’ to calculate the matrix *C.bold’, which depends only on
the grouping of the covariate. Without any covariate, *C.bold’ is equal for every observation.

The calculation of the first derivative of the pendensity likelihood function w.r.t. parameter beta is
done in four steps. Firstly, we calculate the matrix *C.bold’, depending on the groups of ’x.factor’.
Secondly, for calculating we need the fitted values of each observation, ’f.hat’. These values are
calculated for the actual parameter set beta in the program ’f.hat’. Of course, we need the value of
the base for each observation, ¢[i].

Moreover, for the case of conditional density estimation, we need a Z-Matrix, due to the rules for
derivations of the function ’exp()’. This Z-matrix doesn’t appear directly in the calculations. We
construct the multiplication with this Z-matrix with using an outer product between the correspond-
ing grouping in ’x.factor’ and the product of the corresponding values *C.bold’ and ’base.den’,
divided by the fitted value *f.hat’. Finally, we add some penalty on the derivative, which is calcu-
lated in the fourth step. The penalty equals —AD,,, 5.

For later use, we save the unpenalized first derivative as a matrix, in which the i-th column contains
the first derivative of the pendensity likelihood function, evaluated for the i-th value of the response.
The needed values are saved in the environment.

8 Derv2

Value
Dervl.cal matrix, in which the i-th column contains the first derivative, evaluated for the
i-th value of the response variable without penalty. Needed for calculating the
second order derivative, called s(03)
Derv1.pen first order derivation of the penalized likelihood function w.r.t. parameter beta,
called
5;0(5)
f.hat.val fitted values of the response for actual parameter beta, called f
Author(s)

Christian Schellhase <cschellhase @wiwi.uni-bielefeld.de>

References

Density Estimation with a Penalized Mixture Approach, Schellhase C. and Kauermann G. (2012),
Computational Statistics 27 (4), p. 757-777.

Derv?2 Calculating the second order derivative with and without penalty

Description

Calculating the second order derivative of the likelihood function of the pendensity approach w.r.t.
the parameter beta. Thereby, for later use, the program returns the second order derivative with and
without the penalty.

Usage

Derv2(penden.env, lambda®)

Arguments
penden.env Containing all information, environment of pendensity()
lambda@ smoothing parameter lambda

Details

We approximate the second order derivative in this approach with the negative fisher information.

IE) = = Y s ST 6).

Therefore we construct the second order derivative of the i-th observation w.r.t. beta with the outer
product of the matrix Dervl.cal and the i-th row of the matrix Dervl.cal.
The penalty is computed as

AD,,

DeutscheBank 9

Value
Derv2.pen second order derivative w.r.t. beta with penalty
Derv2.cal second order derivative w.r.t. beta without penalty. Needed for calculating of
e.g. AIC.
Author(s)

Christian Schellhase <cschellhase @ wiwi.uni-bielefeld.de>

References

Density Estimation with a Penalized Mixture Approach, Schellhase C. and Kauermann G. (2012),
Computational Statistics 27 (4), p. 757-777.

DeutscheBank Daily final prices (DAX) of the German stock Deutsche Bank in the
years 2006 and 2007

Description

Containing the daily final prices of the German stock Deutsche Bank in the years 2006 and 2007.

Usage

data(DeutscheBank)

Format
A data frame with 507 observations of the following 2 variables.

Date Date
ClosingPrice ClosingPrice

Examples
data(DeutscheBank)
form<-'%d.%m.%y"'
time.DeutscheBank <- strptime(DeutscheBank[,1],form)

#looking for all dates in 2006
data.DeutscheBank <- DeutscheBank[which(time.DeutscheBank$year==106),2]

#building differences of first order
d.DeutscheBank <- diff(data.DeutscheBank)

#testimating the density
density.DeutscheBank <- pendensity(d.DeutscheBank~1)
plot(density.DeutscheBank)

10 distr.func

distr.func These functions are used for calculating the empirical and theoretical
distribution functions.

Description

These functions cooperate with each other for calculating the distribution functions. ’distr.func’
is the main program, calling ’distr.func.help’,generating an environment with needed values for
calculating the distribution of each interval between two neighbouring knots. ’distr.func’ returns
analytical functions of the distribution of each interval between two neighbouring knots. Therefore
the function ’poly.part’ is needed to construct these functions. ’cal.int’ evaluates these integrals,
considering if the whole interval should be evaluated or if any discrete value "yi’ is of interest.

Usage

distr.func(yi = NULL, obj, help.env=distr.func.help(obj))
distr.func.help(obj)

cal.int(len.b, g, help.env, knots.val)
poly.part(i,j,knots.val,help.env,q, yi=NULL, poly=FALSE)

Arguments
yi if the distribution at any discrete point is of interest, you can call for it. De-
fault=NULL doesn’t consider any discrete point
obj a object of class pendensity
help.env object is generated with calling distr.func.help(obj)
len.b length of B-Spline
q order of the B-Spline
knots.val values of the used knots
poly TRUE/FALSE
i internal values for calculating the polynomials of each B-Spline
b internal values for calculating the polynomials of each B-Spline
Value
distr.func returns analytical functions of the distributions between each two neighbouring

intervals

distr.func.help
creating environment “help.env’, creating help points between each two neigh-
bouring knots and calculates the polynomial-coefficients of each base part

cal.int evaluating the result of distr.func. Thereby it’s possible to call for an explicit
distribution values F(yi)

poly.part using in ’distr.func’ for creating the polynomial functions of each interval of
each two neighbouring knots

dpendensity 11

Author(s)

Christian Schellhase <cschellhase @ wiwi.uni-bielefeld.de>

References

Density Estimation with a Penalized Mixture Approach, Schellhase C. and Kauermann G. (2012),
Computational Statistics 27 (4), p. 757-777.

dpendensity Calculating the fitted density or distribution

Description

Calculating the fitted density or distribution.

Usage

dpendensity(x,val)
ppendensity(x,val)

Arguments

X Object of class pendensity

val Vector of values where to calculate the density
Author(s)

Christian Schellhase <cschellhase @wiwi.uni-bielefeld.de>

References

Density Estimation with a Penalized Mixture Approach, Schellhase C. and Kauermann G. (2012),
Computational Statistics 27 (4), p. 757-777.

12 f.hat

f.hat Calculating the actual fitted values ’f.hat’ of the estimated density
function f for the response y

Description

Calculating the actual fitted values of the response, depending on the actual parameter set beta

Usage

f.hat(penden.env,ck.temp=NULL)

Arguments
penden.env Containing all information, environment of pendensity()
ck.temp actual weights, depending on the actual parameter set beta. If NULL, the beta
parameter is caught in th environment
Details

Calculating the actual fitted values of the response, depending on the actual parameter set beta. Mul-
tiplying the actual set of parameters c; with the base ’base.den’ delivers the fitted values, depending
on the group of covariates, listed in ’x.factor’.

Value

The returned value is a vector of the fitted value for each observation of y.

Author(s)

Christian Schellhase <cschellhase @wiwi.uni-bielefeld.de>

References

Density Estimation with a Penalized Mixture Approach, Schellhase C. and Kauermann G. (2012),
Computational Statistics 27 (4), p. 757-777.

L.mat 13

L.mat Calculates the difference matrix of order m

Description

Calculating the differences matrix "L’ of order *'m’, depending on the number of knots ’k’.

Usage

L.mat(penden.env)

Arguments

penden.env Environment of pendensity()

Value

Returns the difference matrix of order *'m’ for given number of knots "K’.

The needed values are saved in the environment.

Note

Right now, the difference matrix is implemented for m=1,2,3,4.

Author(s)

Christian Schellhase <cschellhase @wiwi.uni-bielefeld.de>

References

Density Estimation with a Penalized Mixture Approach, Schellhase C. and Kauermann G. (2012),
Computational Statistics 27 (4), p. 757-777.

marg.likelihood Calculating the marginal likelihood

Description

Calculating the marginal likelihood.

Usage

marg.likelihood(penden.env,pen.likelihood)

14 my.AIC

Arguments

penden.env Containing all information, environment of pendensity()

pen.likelihood penalized log likelihood

Details

Calculating is done using a Laplace approximation for the integral of the marginal likelihood.

The needed values are saved in the environment.

Value

Returning the marginal likelihood.

Author(s)

Christian Schellhase <cschellhase @wiwi.uni-bielefeld.de>

References

Density Estimation with a Penalized Mixture Approach, Schellhase C. and Kauermann G. (2012),
Computational Statistics 27 (4), p. 757-777.

my.AIC Calculating the AIC value

Description

Calculating the AIC value of the density estimation. Therefore, we add the unpenalized log likeli-
hood of the estimation and the degree of freedom, which are

Usage
my.AIC(penden.env, lambda®@, opt.Likelihood = NULL)

Arguments
penden.env Containing all information, environment of pendensity()
lambda@ penalty parameter lambda

opt.Likelihood optimal unpenalized likelihood of the density estimation

Details
AIC is calculated as AIC(\) = —1(B) + df (\)

my.bspline 15

Value
myAIC sum of the negative unpenalized log likelihood and mytrace
mytrace calculated mytrace as the sum of the diagonal matrix df, which results as the
product of the inverse of the penalized second order derivative of the log likeli-
hood with the unpenalized second order derivative of the log likelihood
Author(s)

Christian Schellhase <cschellhase @ wiwi.uni-bielefeld.de>

References

Density Estimation with a Penalized Mixture Approach, Schellhase C. and Kauermann G. (2012),
Computational Statistics 27 (4), p. 757-777.

my.bspline my.bspline

Description

Integrates the normal B-Spline Base to a value of one. The dimension of the base depends on the
input of number of knots "k’ and of the order of the B-Spline base ’q’.

Usage

my.bspline(h, g, knots.val, y, K, plot.bsp)

Arguments
h if equidistant knots are just (default in pendensity()), h is the distance between
two neighbouring knots
q selected order of the B-Spline base
knots.val selected values for the knots
y values of the response variable y
K the number of knots K for the construction of the base
plot.bsp Indicator variable TRUE/FALSE if the integrated B-Spline base should be plot-

ted

16 my.positive.definite.solve

Details

Firstly, the function constructs the B-Spline base to the given number of knots K’ and the given
locations of the knots "knots.val\$val. Due to the recursive construction of the B-Spline, for all or-
ders greater than 2, the dimension of the B-Spline base of given K grows up with help.degree=q-2.
Avoiding open B-Splines at the boundary, we simulate 6 extra knots at both ends of the support,
saved in knots.val\$all. Therefore, we get normal B-Splines at the given knots "knots.val\$val’. For
these knots, we construct the B-Spline base of order ’q” and for order "q+1° (using for calculation
the distribution). Additionally, we save g-1 knots at both ends of the support of ’knots.val\$val’.
After construction, we get a base of dimension K=K+help.degree. So, we define our value K
and cut our B-Spline base at both ends to get the adequate base due to the order ’q’ and the
number of knots *K’. For the base of order 'q+1’, we need to get an additional base, due to the
construction of the B-Splines. Due to the fact, that we use equidistant knots, we can integrate
our B-Splines very simple to the value of 1. The integration is done by the well-known factor
g/(knots.val\$help[i+q]-knots.val\$help[i]). This results the standardization coefficients ’stand.num’
for each B-spline (which are identically for equidistant knots). Moreover, one can draw the inte-
grated base and, if one calls this function with the argument *plot.bsp=TRUE’.

Value
base.den The integrated B-Spline base of order q
base.den2 The integrated B-Spline base of order q+1
stand.num The coefficients for standardization of the ordinary B-Spline base
knots.val This return is a list. It consider of the used knots ’knots.val\$val’, the help
knots ’knots.val\$help’ and the additional knots "knots.val\$all’, used for the
construction of the base and the calculation of the distribution function of each
B-Spline.
K The transformed value of K, due to used order ’q’ and the input of K’
help.degree Due to the recursive construction of the B-Spline, for all orders greater than 2,
the dimension of the B-Spline base of given K grows up with "help.degree=q-2’.
This value is returned for later use.
Note

This functions uses the fda-package for the construction of the B-Spline Base.

Author(s)

Christian Schellhase <cschellhase @ wiwi.uni-bielefeld.de>

my.positive.definite.solve
my.positive.definite.solve

Description

Reverses a quadratic positive definite matrix.

new.beta.val 17

Usage

my.positive.definite.solve(A, eps = 1e-15)

Arguments

A quadratic positive definite matrix

eps level of the lowest eigenvalue to consider
Details

The program makes an eigenvalue decomposition of the positive definite matrix A and searches all
eigenvalues greater than eps. The value of return is the inverse matrix of A, constructed with the
matrix product of the corresponding eigenvalues and eigenvectors.

Value

The return is the inverse matrix of A.

Author(s)

Christian Schellhase <cschellhase @ wiwi.uni-bielefeld.de>

new.beta.val Calculating the new parameter beta

Description

Calculating the direction of the Newton-Raphson step for the known beta and iterate a step size
bisection to control the maximizing of the penalized likelihood.

Usage

new.beta.val(llold, penden.env)

Arguments

1lold log likelihood of the algorithm one step before

penden.env Containing all information, environment of pendensity()

18 new.lambda

Details

We terminate the search for the new beta, when the new log likelihood is smaller than the old
likelihood and the step size is smaller or equal le-3. We calculate the direction of the Newton
Raphson step for the known beta; and iterate a step size bisection to control the maximizing of the
penalized likelihood

lp(ﬂh)\0)

. This means we set
ﬂt+1 - 5t - 27v{sp(ﬁta AO) : (_Jp(ﬂtv >‘0))71}

with s, as penalized first order derivative and J,, as penalized second order derivative. We begin
with v = 0. Not yielding a new maximum for a current v, we increase v step by step respectively
bisect the step size. We terminate the iteration, if the step size is smaller than some reference value
epsilon (eps=1e-3) without yielding a new maximum. We iterate for new parameter beta until the
new log likelihood depending on the new estimated parameter beta differ less than 0.1 log-likelihood
points from the log likelihood estimated before.

Value
Likelie corresponding log likelihood
step used step size

Author(s)

Christian Schellhase <cschellhase @wiwi.uni-bielefeld.de>

References

Density Estimation with a Penalized Mixture Approach, Schellhase C. and Kauermann G. (2012),
Computational Statistics 27 (4), p. 757-777.

new.lambda Calculating new penalty parameter lambda

Description

Calculating new penalty parameter lambda.

Usage

new. lambda(penden.env,lambda®)

Arguments

penden.env Containing all information, environment of pendensity()

lambda@ actual penalty parameter lambda

pen.log.like 19

Details

Iterating for the lambda is stopped, when the changes between the old and the new lambda is smaller
than 0.01*lambda0. If this criterion isn’t reached, the iteration is terminated after 11 iterations.

The iteration formulae is
A= M
df(A) — (m —1)

Value

Returning the new lambda.

Author(s)

Christian Schellhase <cschellhase @ wiwi.uni-bielefeld.de>

References

Density Estimation with a Penalized Mixture Approach, Schellhase C. and Kauermann G. (2012),
Computational Statistics 27 (4), p. 757-777.

pen.log.like Calculating the log likelihood

Description

Calculating the considered log likelihood. If one chooses lambda0=0, one gets the (actual) unpe-
nalized log likelihood. Otherwise, one gets the penalized log likelihood for the used fitted values of
the response y and the actual parameter set beta.

Usage

pen.log.like(penden.env,lambda®,f.hat.val=NULL,beta.val=NULL)

Arguments
penden.env Containing all information, environment of pendensity()
lambda@ penalty parameter lambda
f.hat.val matrix contains the fitted values of the response, if NULL the matrix is caught

in the environment

beta.val actual parameter set beta, if NULL the vector is caught in the environment

20 pendenForm

Details

The calculation depends on the fitted values of the response as well as on the penalty parameter
lambda and the penalty matrix Dm.

n K
1
1B) =) |log{ 3 culwi.)du(yi)}| — 578" D3
i=1 k=—K
The needed values are saved in the environment.

Value

Returns the log likelihood depending on the penalty parameter lambda.

Author(s)

Christian Schellhase <cschellhase @wiwi.uni-bielefeld.de>

References

Density Estimation with a Penalized Mixture Approach, Schellhase C. and Kauermann G. (2012),
Computational Statistics 27 (4), p. 757-777.

pendenForm Formula interpretation and data transfer

Description

Function ’pendenForm’ interprets the input "form’ of the function pendensity(),transfers the re-
sponse and covariates data back to the main program and categorize the values to groupings.

Usage
pendenForm(penden.env)
string.help(string, star = " ")
Arguments
penden.env environment used in pendensity()
string string of the formula
star separating letter
Value

Returning the values and the structure of response and covariates.

Author(s)

Christian Schellhase <cschellhase @wiwi.uni-bielefeld.de>

pendensity

21

pendensity

Calculating penalized density

Description

Main program for estimation penalized densities. The estimation can be done for response with or
without any covariates. The covariates have to be factors. The response is called ’y’, the covariates

LI

x’. We estimate densities using penalized splines. This done by using a number of knots and

a penalty parameter, which are sufficient large. We penalize the m-order differences of the beta-
coefficients to estimate the weights 'ck’ of the used base functions.

Usage

pendensity(form, base, no.base, max.iter, lambda®@, q, sort, with.border, m, data,eps)

Arguments

form

base

no.base

max.iter

lambda®

q

sort

with.border

data

eps

formula describing the density, the formula is

Yy~T1+To2+ ... Ty

where "x’ have to be factors.
supported bases are "bspline" or "gaussian"

how many knots *’K’, following the approach to use 2’no.base’+1 knots, if *no.base’
is NULL, default is K=41.

maximum number of iteration, the default is max.iter=20.
start penalty parameter, the default is lambda0=500
order of B-Spline base, the default is *q=3’

TRUE or FALSE, if TRUE the response and the covariates should be sorted.
Default is TRUE.

determining the number of additional knots on the left and the right of the sup-
port of the response. The number of knots 'no.base’ is not influenced by this
parameter. The amount of knots 'no.base’ are placed on the support of the re-
sponse. The amount of knots determined in ’with.border’ is placed outside the
support and reduce the amount of knots on the support about its value. Default
is NULL.

m-th order difference for penalization. Default is m=q.
reference to the data. Default reference is the data=parent.frame().

Level of percentage to determine calculation of optimal lambda, default=0.01

22 pendensity

Details

pendensity() begins with setting the parameters for the estimation. Checking the formula and trans-
ferring the data into the program, setting the knots and creating the base, depending on the chosen
parameter 'base’. Moreover the penalty matrix is constructed. At the beginning of the first iteration
the beta parameter are set equal to zero. With this setup, the first log likelihood is calculated and is
used for the first iteration for a new beta parameter.

The iteration for a new beta parameter is done with a Newton-Raphson-Iteration and implemented
in the function "'new.beta.val’. We calculate the direction of the Newton Raphson step for the known
beta; and iterate a step size bisection to control the maximizing of the penalized likelihood

lp(ﬁtv)‘O)

. This means we set
Bir1 = Br — 27 Lsp (Bt Ao) - (—Jp(Be. X)) '}

with s, as penalized first order derivative and J,, as penalized second order derivative. We begin
with v = 0. Not yielding a new maximum for a current v, we increase v step by step respectively
bisect the step size. We terminate the iteration, if the step size is smaller than some reference value
epsilon (eps=1le-3) without yielding a new maximum. We iterate for new parameter beta until the
new log likelihood depending on the new estimated parameter beta differ less than 0.1 log-likelihood
points from the log likelihood estimated before.

After reaching the new parameter beta, we iterate for a new penalty parameter lambda. This iteration
is done by the function 'new.lambda’. The iteration formula is

i PTDnp
df (A) = p(m —1)

The iteration for the new lambda is terminated, if the approximate degree of freedom minus p*(m-1)
is smaller than some epsilon2 (eps2=0.01). Moreover, we terminate the iteration if the new lambda
is approximatively converted, i.e. the new lambda differs only 0.001*old lambda (*) from the old
lambda. If these both criteria doesn’t fit, the lambda iteration is terminated after eleven iterations.
We begin a new iteration with the new lambda, restarting with parameter beta setting equal to zero
again. This procedure is repeated until convergence of lambda, i.e. that the new lambda fulfills the
criteria (*). If this criteria is not fulfilled after 20 iterations, the total iteration terminates.

After terminating all iterations, the final AIC, ck and beta are saved in the output.

For speediness, all values, matrices, vectors etc. are saved in an environment called *penden.env’.
Most of the used programs get only this environment as input.

Value

Returning an object of class pendensity. The class pendensity consists of the "call" and three main

non

groups "values", "splines" and "results".
call: the formula prompted for calculation of the penalized density.
HitHHHE

\$values contains: y: the values of the response variable x: the values of the covariate(s) sort:
TRUE/FALSE if TRUE the response (and covariates) have been sorted in increasing order of the
response

plot.pendensity 23

\$values\$covariate contains Z: matrix Z levels: existing levels of each covariate how.levels: number
of existing levels of all covariates how.combi: number of combination of levels x.factor: list of all
combination of levels

HHEHE

\$splines contains K: number of knots N: number of coefficients estimated for each base, depending
on the number of covariates. MeanW: values of the knots used for splines and means of the Gaussian
densities Stand.abw: values of the standard deviance of the Gaussian densities h: distance between
the equidistant knots m: used difference order for penalization q: used order of the B-Spline base
stand.num: calculated values for standardization getting B-Spline densities base: used kind of base,
"bspline" or "gaussian" base.den: values of the base of order q created with knots=knots.val$val
base.den2: values of the base of order q+1 created with knots=knots.val$val. Used for calculating
the distribution function(s). L: used difference matrix Dm: used penalty matrix, depending on
lambda0, L (,Z) and n=number of observations help.degree: additional degree(s) depending on the
number of knots K and the used order q

\$splines\$knots.val contains: val: list of the used knots in the support of the response all: list of the
used knots extended with additional knots used for constructing

HHHHEH

results contains: ck: final calculated weights ck beta.val: final calculated parameter beta lambda0:
final calculated lambda0 fitted: fitted values of the density f(y) variance.par: final variances of the
parameter beta bias.par: final bias of the parameter beta

results\$AIC contains: my.AIC: final AIC value my.trace: trace component of the final AIC

results\$Derv contains: Derv2.pen: final penalized second order derivation Derv2.cal: final non-
penalized second order derivation Dervl.cal: final non-penalized first order derivation

results\$iterations contains: list.opt.results: list of the final results of each iteration of new beta +
new lambda all.lists: list of lists. Each list contains the result of one iteration

results\$likelihood contains: pen.Likelihood: final penalized log likelihood opt.Likelihood: final
log likelihood marg.Likelihood: final marginal likelihood
Author(s)

Christian Schellhase <cschellhase @ wiwi.uni-bielefeld.de>

References

Density Estimation with a Penalized Mixture Approach, Schellhase C. and Kauermann G. (2012),
Computational Statistics 27 (4), p. 757-777.

plot.pendensity Plotting estimated penalized densities

Description

Plotting estimated penalized densities, need object of class ’pendensity’.

24

Usage

plot.pendensity

S3 method for class 'pendensity'

plot(x, plot.val = 1, val=NULL, latt = FALSE, kernel = FALSE, confi = TRUE,
main = NULL, sub = NULL, xlab = NULL, ylab = NULL, plot.base = FALSE,
1wd=NULL, legend. txt=NULL,plot.dens=TRUE,...)

Arguments

X

plot.val

val

latt

kernel

confi

main

sub

xlab
ylab
plot.base

1wd

legend. txt

plot.dens

Details

object of class pendensity

if plot.val=1 the density is plotted, if plot.val=2 the distribution function of the
observation values is plotted, if plot.val=3 the distribution function is plotted as
function

vector of y, at which the estimated density should be calculated. If plot.val=2,
the calculated values of distribution are returned and the values are pointed in
the distribution function of the observed values.

TRUE/FALSE, if TRUE the lattice interface should be used for plotting, de-
fault=FALSE

TRUE/FALSE, if TRUE a kernel density estimation should be added to the den-
sity plots, default=FALSE

TRUE/FALSE, if TRUE confidence intervals should be added to the density
plots, default=TRUE

Main of the density plot, if NULL main contains settings 'K’, ’AIC’ and ’lambda0’
of the estimation

sub of the density plot, if NULL sub contains settings used base *base’ and used
order of B-Spline ’q’

xlab of the density plot, if NULL xlab contains 'y’

ylab of the density plot, if NULL ylab contains ’density’

TRUE/FALSE, if TRUE the weighted base should be added to the density plot,
default=FALSE

Iwd of the lines of density plot, if NULL Iwd=3, the confidence bands are plotted
with lwd=2

if FALSE no legend is plotted, legend.txt can get a vector of characters with
length of the groupings. legend.txt works only for plot.val=1

TRUE/FALSE, if the estimated density should be plotted. Default=TRUE. In-
teresting for evaluating densities in values ’val’, while this special plot is not
needed.

further arguments

Each grouping of factors is plotted. Therefore, equidistant help values are constructed in the support
of the response for each grouping of factors. Weighting these help values with knots weights ck
results in the density estimation for each grouping of factors. If asked for, pointwise confidence
intervals are computed and plotted.

plot.pendensity 25

Value

If the density function is plotted, function returns two values

help.env Contains the constructed help values for the response, the corresponding values
for the densities and if asked for the calculated confidence intervals

combi list of all combinations of the covariates

If additionally the function is called with a valid argument for ’val’, a list returns with

y values at which the estimated density has been calculated
fy calculated density values in 'y
sd.up.y.val the values of the upper confidence interval of y

sd.down.y.val the values of the lower confidence interval of y
If the empirical distribution function is plotted, the function returns

y containing the observed values y

sum containing the empirical distribution of each observation y

If the theoretical distribution function is plotted, the function returns an environment. For plotting
the theoretical distributions, each interval between two knots is evaluated at 100 equidistant sim-
ulated points between the two knots considered. These points are saved in the environment with

nyn

the name "paste("x",i,sep="")" for each interval i, the calculated distribution is save with the name
"paste("F(x)",i,sep="")" for each interval i. For these points, the distribution is calculated.

Note
For plotting the density and e.g. the empirical distributions, use e.g. *X11()’ before calling the
second plot to open a new graphic device.

Author(s)

Christian Schellhase <cschellhase @ wiwi.uni-bielefeld.de>

References

Density Estimation with a Penalized Mixture Approach, Schellhase C. and Kauermann G. (2012),
Computational Statistics 27 (4), p. 757-777.

Examples

y <= rnorm(100)
test <- pendensity(y~1)
plot(test)

#distribution
plot(test,plot.val=2)

26 test.equal

print.pendensity Printing the main results of the (conditional) penalized density estima-
tion

Description

Printing the call of the estimation, the resulting weights, the final lambda0 and the corresponding
value of AIC. Need an object of class pendensity.

Usage
S3 method for class 'pendensity'
print(x, ...)
Arguments
X x has to be object of class pendensity
further arguments
Author(s)

Christian Schellhase <cschellhase @ wiwi.uni-bielefeld.de>

test.equal Testing pairwise equality of densities

Description

Every group of factor combination is tested pairwise for equality to all other groups.

Usage

test.equal(obj)

Arguments

obj object of class pendensity

Details

We consider the distribution of the integrated B-Spline density base. This is saved in the program
in the object named mat1’. Moreover, we use the variance ’var.par’ of the estimation, the weights
and some matrices 'C’ of the two compared densities to construct the matrix *W’. We simulate the
distribution of the test statistic using a spectral decomposition of W.

variance.par 27

Value

Returning a list of p-values for testing pairwise for equality.

Author(s)

Christian Schellhase <cschellhase @ wiwi.uni-bielefeld>

References

Density Estimation with a Penalized Mixture Approach, Schellhase C. and Kauermann G. (2012),
Computational Statistics 27 (4), p. 757-777.

variance.par Calculating the variance of the parameters

Description

Calculating the variance of the parameters of the estimation, depending on the second order deriva-
tive and the penalized second order derivative of the density estimation.

Usage

variance.par(penden.env)

Arguments

penden.env Containing all information, environment of pendensity()

Details

The variance of the parameters of the estimation results as the product of the inverse of the penalized
second order derivative times the second order derivative without penalization time the inverse of
the penalized second order derivative.

V(B Xo) = I; 1 (B, NI, (8, A = 0) I, (8, A) with I,(871, \) = Ey(y {Jp(8, 1)}
The needed values are saved in the environment.

Value

The return is a variance matrix of the dimension (K-1)x(K-1).

Author(s)

Christian Schellhase <cschellhase @ wiwi.uni-bielefeld.de>

References

Density Estimation with a Penalized Mixture Approach, Schellhase C. and Kauermann G. (2012),
Computational Statistics 27 (4), p. 757-777.

28 variance.val

variance.val Calculating variance and standard deviance of each observation.

Description
Calculating the variance and standard deviance of each observation. Therefore we use the variance
of the parameter set beta, called "var.par’.

Usage

variance.val(base.den, var.par, weight, K, x, list.len, Z, x.factor, y.val=NULL)

Arguments
base.den base values
var.par variance of the parameter set beta
weight weights ck
K number of knots
X covariates
list.1len number of covariate combinations
Z covariate matrix
x.factor list of covariate combinations
y.val optimal values for calculating the variance in any point yi in the case of a facto-

rial density
Value

Returning a vector with the standard deviance of each observation.

Author(s)

Christian Schellhase <cschellhase @ wiwi.uni-bielefeld>

References

Density Estimation with a Penalized Mixture Approach, Schellhase C. and Kauermann G. (2012),
Computational Statistics 27 (4), p. 757-777.

Index

* 10
pendenForm, 20

x algebra
my.positive.definite.solve, 16

* aplot
plot.pendensity, 23

+ datasets
Allianz, 3
DeutscheBank, 9

+x math
Derv1, 7
Derv2, 8
distr.func, 10
dpendensity, 11
marg.likelihood, 13
my.AIC, 14
my.bspline, 15

* nonparametric
bias.par, 4
ck, 5
D.m, 6
f.hat, 12
L.mat, 13
new.beta.val, 17
new.lambda, 18
pen.log.like, 19
pendensity, 21
pendensity-package, 2
test.equal, 26
variance.par, 27
variance.val, 28

* print
print.pendensity, 26

Allianz, 3
bias.par, 4

cal.int (distr.func), 10
ck, 5

29

D.m, 6

Derv1, 7
Derv2, 8
DeutscheBank, 9
distr.func, 10
dpendensity, 11

f.hat, 12
L.mat, 13

marg.likelihood, 13

my.AIC, 14

my.bspline, 15
my.positive.definite.solve, 16

new.beta.val, 17
new.lambda, 18

pen.log.like, 19
pendenForm, 20
pendensity, 21
pendensity-package, 2

plot (plot.pendensity), 23
plot.pendensity, 23
poly.part (distr.func), 10
ppendensity (dpendensity), 11
print (print.pendensity), 26
print.pendensity, 26

string.help (pendenForm), 20
test.equal, 26

variance.par, 27
variance.val, 28

	pendensity-package
	Allianz
	bias.par
	ck
	D.m
	Derv1
	Derv2
	DeutscheBank
	distr.func
	dpendensity
	f.hat
	L.mat
	marg.likelihood
	my.AIC
	my.bspline
	my.positive.definite.solve
	new.beta.val
	new.lambda
	pen.log.like
	pendenForm
	pendensity
	plot.pendensity
	print.pendensity
	test.equal
	variance.par
	variance.val
	Index

