
Reading Genetic Data Files Into R with

adegenet and pegas
Emmanuel Paradis

December 13, 2023

adegenet [2] and pegas [4] are two packages that complement each other for population
genetic analyses in R. Since various computer programs have been used by population ge-
neticists, most of them with their own data �le formats, it is crucial that R can read them
to ease users to switch to R. The present document explains how to read several �le formats
commonly used in population genetics. The following formats are considered:

� Text (ASCII) in tabular form,

� VCF �les,

� Fstat data format,

� Genetix data format,

� Genepop data format,

� Structure data format,

� Excel.

Except the last one, these �les are stored in text (usually standard ASCII) format the
di�erences being in the layout of the data.

1 Data Structures in adegenet and pegas

First, let's have a brief look on the way allelic data are stored by our two packages. adegenet

has the class "genind" where individuals are rows and alleles are columns in a matrix named
tab. This is an S4 class, so the elements are accessed with the @ operator (e.g., x@tab).
Additional information are stored in other slots (@ind.names, @pop, . . .) The details can be
found with class?genind.

pegas has the class "loci" which is a simple data frame with a mandatory attribute
named "locicol" which identi�es the columns that are loci; the other columns are additional
(individual) variables that may be of any kind. The loci are coded with factors where the
di�erent levels are the observed genotypes with the alleles separated with a forward slash,
for instance, `A/A' for a classical genotype, or `132/148' for a microsatellite locus. This is
an S3 class.1 Some examples are given in the next subsection.

With version 0.6, pegas supports phased and unphased genotypes (A|A and A/A, re-
spectively). In unphased genotypes, the alleles are sorted with uppercase �rst, and then in
alphabetical order, so that a/A is changed into A/a (even if the latter was not observed in
the original data �le).

1For details: emmanuelparadis.github.io/pegas/De�nitionDataClassesPegas.pdf.

1

There is no need to choose between these two data structures: they are used by each
package and they can be converted between each other with the functions genind2loci

(or the generic form as.loci) and loci2genind. Therefore, it is straightforward to run
analyses with both packages on the same data.

2 Reading Genetic Data Files

2.1 Reading Text Tabular Files

It is intuitive to organise allelic data in a tabular form where each row is an individual and
the columns are loci and possibly other variables such as population, spatial locations, and
so on. A simple example of such a �le would be (�le `toto'):2

a/a

This �le can be read with the pegas function read.loci:

> library(pegas)

> x <- read.loci("toto", header = FALSE)

> x

Allelic data frame: 1 individual

1 locus

> print(x, details = TRUE)

V1

1 a/a

> class(x)

[1] "loci" "data.frame"

Since the �le has no label for the column, we used header = FALSE. Note that printing a
"loci" object displays a very brief account of the data; the option details = TRUE allows
to print them like a standard data frame.3 If the same data were formatted with a di�erent
allele separator (�le `titi'):

a-a

Then this �le would be read with:

> y <- read.loci("titi", header = FALSE, allele.sep = "-")

> print(y, details = TRUE)

V1

1 a/a

> identical(x, y)

[1] TRUE

Let us have a look on the di�erent options of read.loci:

2File contents are printed in blue to distinguish them from R input/output.
3The function View can also be used: this will use the same spreadsheet interface than fix but the data

cannot be edited (see below).

2

> args(read.loci)

function (file, header = TRUE, loci.sep = "", allele.sep = "/|",

col.pop = NULL, col.loci = NULL, ...)

NULL

We already know file, header, and allele.sep. Note the default value for this last
option which speci�es that the allele separator can be either a slash or a vertical bar.
loci.sep is the separator of the columns (not only the loci) which is one or several spaces
by default (use sep = "\t" if a tabulation). col.pop must be an integer giving the index
of the column that will be labelled �population� in the returned data; by default there
is none. col.loci does the same for the loci; by default all columns are treated as loci
except if col.pop is used. Finally `...' may be any further (named) arguments passed to
read.table (e.g., skip in case there are comments at the top of the �le).

Any level of ploidy is accepted and pegas checks the order of the alleles (see above). For
instance the �le `tutu' is:

a/a/A

A/a/a

> print(read.loci("tutu", FALSE), TRUE)

V1

1 A/a/a

2 A/a/a

Phased and unphased genotypes can be mixed in a �le. For instance the �le `tyty' is:

Loc1

A/a

a/A

A|a

a|A

> X <- read.loci("tyty")

> print(X, TRUE)

Loc1

1 A/a

2 A/a

3 A|a

4 a|A

> summary(X)

Locus Loc1:

-- Genotype frequencies:

A/a A|a a|A

2 1 1

-- Allele frequencies:

A a

4 4

A more realistic example with four columns�an allozyme locus, a microsat locus, a
population assignment, and a phenotypic variable�might be (�le `tata'):

3

Adh2 SSR1 pop size

IndA1 A/A 100/200 A 2.3

IndA2 A/a 100/120 A 2.5

IndB1 A/A 100/100 B 2.1

IndB2 a/a 120/120 B 2.8

which will be read with:

> z <- read.loci("tata", loci.sep = "\t", col.loci = 2:3, col.pop = 4, row.names = 1)

> z

Allelic data frame: 4 individuals

2 loci

2 additional variables

> print(z, details = TRUE)

Adh2 SSR1 population size

IndA1 A/A 100/200 A 2.3

IndA2 A/a 100/120 A 2.5

IndB1 A/A 100/100 B 2.1

IndB2 a/a 120/120 B 2.8

Note row.names which is passed with the `...' argument. To make sure that only the
�rst and the second columns are treated as loci, let us extract the alleles from this data set:

> getAlleles(z)

$Adh2

[1] "A" "a"

$SSR1

[1] "100" "120" "200"

We may check that the attribute "locicol" has been set correctly, but usually the user
does not need:

> attr(z, "locicol")

[1] 1 2

Finally we display the internal structure of the data to see that the additional variables
are treated as they should be:

> str(z)

Classes `loci' and 'data.frame': 4 obs. of 4 variables:

$ Adh2 : Factor w/ 3 levels "A/A","A/a","a/a": 1 2 1 3

$ SSR1 : Factor w/ 4 levels "100/100","100/120",..: 3 2 1 4

$ population: Factor w/ 2 levels "A","B": 1 1 2 2

$ size : num 2.3 2.5 2.1 2.8

- attr(*, "locicol")= int [1:2] 1 2

2.2 Reading VCF Files

Starting with version 0.6, pegas can read VCF �les with the function read.vcf. Version 0.8
has a completely rewritten code:

4

> args(read.vcf)

function (file, from = 1, to = 10000, which.loci = NULL, quiet = FALSE)

NULL

By default, the �rst 10,000 loci are read. The option which.loci is an alternative way
to specify which loci to read in the �le. For instance, the following is the same than the
default (the arguments from and to are ignored here):

read.vcf(file, which.loci = 1:1e4)

In practice, the numbers passed to this option will be obtained from additional functions
which query information from VCF �les (see ?VCFloci for more information). read.vcf

returns an object of class "loci".

2.3 Importing Fstat, Genetix, Genepop, and Structure Data

Files

These four programs have their own data format. Roughly, these formats have the same
idea: they store the genotypes of individuals from di�erent populations. So, they store
genotypes at several loci and an individual categorical variable. Additionally, the Genetix
and Structure formats allow for individual labels.

adegenet includes four data �les in each of these formats of the same microsatellite data
set. These �les can be displayed in the R console with:

> file.show(system.file("files/nancycats.dat", package="adegenet"))

> file.show(system.file("files/nancycats.gtx", package="adegenet"))

> file.show(system.file("files/nancycats.gen", package="adegenet"))

> file.show(system.file("files/nancycats.str", package="adegenet"))

If you want to copy these �les into the working directory to further display or edit them
with your favourite editor, use these commands:

> file.copy(system.file("files/nancycats.dat", package = "adegenet"), getwd())

[1] TRUE

> file.copy(system.file("files/nancycats.gtx", package = "adegenet"), getwd())

[1] TRUE

> file.copy(system.file("files/nancycats.gen", package = "adegenet"), getwd())

[1] TRUE

> file.copy(system.file("files/nancycats.str", package = "adegenet"), getwd())

[1] TRUE

adegenet provides four functions to read these formats. Reading the �rst three formats
is straightforward:

> A <- read.fstat("nancycats.dat", quiet = TRUE)

> B <- read.genetix("nancycats.gtx", quiet = TRUE)

> C <- read.genepop("nancycats.gen", quiet = TRUE)

5

Reading a Structure �le is slightly more complicated because the function needs some
exta information. This can be done interactively (the default), or by specifying the appro-
priate options in which case we will use ask = FALSE:

> D <- read.structure("nancycats.str", onerowperind=FALSE, n.ind=237, n.loc=9, col.lab=1, col.pop=2, ask=FALSE, quiet=TRUE)

All four data sets are identical (we only compare the tab slots):

> identical(A@tab, C@tab)

[1] TRUE

> identical(B@tab, D@tab)

[1] TRUE

Once the data have been read into R, they can be analysed with adegenet or with pegas

after eventually converting them with as.loci. We now delete the data �les:

> unlink(c("nancycats.dat", "nancycats.gtx", "nancycats.gen", "nancycats.str"))

Finally, pegas has the function read.gtx to read a Genetix data �le and return an
object of class "loci". This function has no option.

2.4 Importing Excel Files

Excel is widely used for trivial data management, but clearly these data must be exported
to other programs for most analyses. This also applies to the free spreadsheet editors such
as OpenO�ce's Calc or Gnumeric. Several solutions to get such data into R are given below.
I assume that the allelic data in the spreadsheet are in a tabular form similar to what we
have seen in Section 2.1, so the objective is to have them in R as a "loci" object.

1. The simplest solution is to save the spreadsheet as a text �le using either the tab-
delimited or comma-separated-variable (csv) format. This can be done with any
spreadsheet editor since Calc or Gnumeric can import Excel �les. Once the text
�le is created, read.loci can be used with the option loci.sep = "\t" or loci.sep
= ",", as well as any other that may be needed.

2. If the �Save as. . . � solution does not work, it is possible to save a sheet, or part of it,
in a text �le by following these steps:

(a) Open the �le, again this may be done with any program.

(b) Select the cells you want to export; this can be done by clicking once on the top-
left cell, and then clicking a second time on the bottom-right cell after pressing
the Shift key (this could avoid you a tunnel syndrome and is much easier if many
cells must be selected).

(c) Copy the selected cells in the clipboard (usually Ctrl-C).

(d) Open a text editor (do not use a word processor), paste the content of the clip-
board (usually Ctrl-V), and save the �le.

The text �le can now be read with read.loci(..., loci.sep = "\t").

3. If Perl is installed on your computer (this is true for almost all Linux distributions),
you can use the function read.xls from the package gdata (available on CRAN) to
read directly an Excel �le into R (the Perl program actually does the same job than

6

the user does manually in the �Save as. . . � solution above). By default the �rst sheet
is used, but this can be changed with the sheet option. The returned object is a data
frame and can be converted as a "loci" object with as.loci. In that case, the same
options that in read.loci can be used (see ?as.loci.).

In my experience, read.xls works well with small to moderate size Excel �les but can
be very slow with bigger �les (> 10 MB).

We also note the function read.genealex in the package poppr [3] which reads a Genalex
�le that has been exported into csv format and returns an object of class "genind".

3 An Example From Dryad

This section shows how the jaguar data set was prepared. This data set, deliver with pegas,
was published by Haag et al. [1], and was deposited on Dryad.4 The main data �le is in
Excel format and can be accessed directly at the locations indicated below so that it can be
read remotely with gdata:

> f <- "http://datadryad.org/bitstream/handle/10255/dryad.1885/\

MicrosatelliteData.xls?sequence=1"

> library(gdata)

> x <- read.xls(f, row.names = 1)

essai de l'URL 'http://datadryad.org/bitstream/handle/10255/\

dryad.1885/MicrosatelliteData.xls?sequence=1'

Content type 'application/vnd.ms-excel;charset=ISO-8859-1'\

length 29184 bytes (28 KB)

==

downloaded 28 KB

The object x is a data frame with the row names set correctly with the line identi�ers
of the original �le since we have used the option row.names = 1. In this data frame each
column is an allele so that two columns are used to represent the genotype at a given locus.
This is clearly not the format used by the class "loci". Furthermore, some rows indicating
the populations have been inserted with missing values (NA) for all columns. Fortunately,
the rows with genotypes have no NA, so it is easy to �nd the rows with the population
names, and drop them before transforming the data frame with the function alleles2loci.
This function has been specially designed to transform such data sets. The commands are
relatively straightforward:

> s <- apply(x, 1, anyNA)

> y <- alleles2loci(x[!s,])

We can now extract the population names and assign them to each observation; this
is slightly more complicated, but the logical is based on the fact that the rows below a
population name should be assigned to it:5

> w <- which(s)

> n <- diff(c(w, nrow(x) + 1)) - 1

> pop <- factor(rep(1:4, n), labels = names(w))

> y$population <- pop

4http://datadryad.org/resource/doi:10.5061/dryad.1884
5In practice, a for loop can be used: it would be less e�cient but more intuitive and easier to read.

7

The data are now ready to be analysed in R. We can check that the row- and colnames
are correctly set with the labels from original �le:

> y

Allelic data frame: 59 individuals

13 loci

1 additional variable

> dimnames(y)

[[1]]

[1] "bPon01" "bPon02" "bPon133" "bPon134" "bPon135"

[6] "bPon140" "bPon137" "bPon139" "bPon138" "bPon136"

[11] "bPon141" "bPon143" "bPon142" "bPon124" "bPon366"

[16] "bPon12" "bPon91" "bPon04" "bPon25" "bPon48"

[21] "bPon49" "bPon50" "bPon51" "bPon52" "bPon53"

[26] "bPon54" "bPon35" "bPon46" "bPon40" "bPon41"

[31] "bPon47" "bPon78" "bPon36" "bPon359" "bPon44"

[36] "bPon80" "bPon03" "bPon11" "bPon15" "bPon16"

[41] "bPon17" "bPon18" "bPon19" "bPon20" "bPon21"

[46] "bPon22" "bPon23" "bPon27" "bPon29" "bPon30"

[51] "bPon31" "bPon32" "bPon38" "bPon45" "bPon130"

[56] "bPon131" "bPon132" "bPon58" "bPon24"

[[2]]

[1] "FCA742" "FCA723" "FCA740" "FCA441"

[5] "FCA391" "F98" "F53" "F124"

[9] "F146" "F85" "F42" "FCA453"

[13] "FCA741" "population"

4 Editing and Writing Genetic Data Files

After the data have been read into R, they can be manipulated in the standard way. This is
straightforward for the class "loci" since it is a direct extension of data frames. pegas has a
few method functions adapted to "loci": rbind, cbind, and the indexing operator [. Some
other functions, such as subset, split, rownames, colnames, or the $ operator, can be used
without problem since they respect additional attributes. Others, such as transform, drop
the attributes and so will return a simple data frame.

adegenet allows to edit an object of class "genind", but since this is an S4 class, the
elements are accessed with the @ operator. The help page ?genind describes them in details.
A few functions are provided to ease the manipulation of "genind" objects because setting
all elements by hand may be tedious: seploc splits the data with respect to each locus,
seppop does the same with respect to each population, and repool allows to do the opposite
operation.

It is also possible to select a part of a "genind" object with the usual indexing operator [,
the indices will apply to the rows and/or columns of the @tab slot, and the other slots will be
modi�ed accordingly. Some care should be paid when using numerical indexing on columns
because something like x[, 1] will only select one allele column, eventually excluding other
alleles of the same locus. It is safer to use the option nloc which speci�es the loci to be
selected, and so will select the appropriate allele columns. Further details are available in
?pop as well as information on some other functions.

8

In addition to standard data editing, pegas allows to edit a "loci" object with edit or
fix. The command edit(x) opens the data in R's spreadsheet-like data editor. Here are a
few points about this procedure:

� It is possible to change the row and column labels (rownames and colnames).

� It is possible to add new rows (individuals): if some columns are not �lled they will
be given NA.

� You can add new genotypes and/or alleles to a locus column: the levels of the corre-
sponding factor will be adjusted and a warning message will inform you of that.

� New columns may be added, but they can only be numerical or character vectors.

� Like most R functions, edit returns its results in the console if no assignment has
been done, so you may prefer to call the editor with x <- edit(x) or fix(x).

If you forgot the assignment and don't want to lose all the changes you did, after you
have closed the editor you can save the modi�ed data with (only if you don't do any
other operation after edit):

x <- .Last.value

References

[1] T. Haag, A. S. Santos, D. A. Sana, R. G. Morato, L. Cullen, Jr, P. G. Crawshaw, Jr,
C. De Angelo, M. S. Di Bitetti, F. M. Salzano, and E. Eizirik. The e�ect of habitat
fragmentation on the genetic structure of a top predator: loss of diversity and high
di�erentiation among remnant populations of atlantic forest jaguars (Panthera onca).
Molecular Ecology, 22:4906�4921, 2010.

[2] T. Jombart. adegenet: a R package for the multivariate analysis of genetic markers.
Bioinformatics, 24:1403�1405, 2008.

[3] Z. N. Kamvar, J. F. Tabima, and N. J. Grünwald. Poppr : an R package for genetic
analysis of populations with clonal, partially clonal, and/or sexual reproduction. PeerJ,
2:e281, 2014.

[4] E. Paradis. pegas: an R package for population genetics with an integrated�modular
approach. Bioinformatics, 26:419�420, 2010.

9

