
Plotting Haplotype Networks with pegas
Emmanuel Paradis

December 13, 2023

Contents

1 Introduction 1

2 The Function plot.haploNet 1

2.1 Node Layout . 2
2.2 Options . 5

3 New Features in pegas 1.0 10

3.1 Improved `Replotting' . 10
3.2 Haplotype Symbol Shapes . 11
3.3 The Function mutations . 13
3.4 Getting and Setting Options . 15

1 Introduction

Haplotype networks are powerful tools to explore the relationships among individuals char-
acterised with genotypic or sequence data [3, 5]. pegas has had tools to infer and plot
haplotype networks since its �rst version (0.1, released in May 2009). These tools have im-
proved over the years and are appreciated in the community working on population genetics
and genomics (see John Bhorne's blog1).

This document covers some aspects of drawing haplotype networks with pegas with an
emphasis on recent improvements. Not all details and options are covered here: see the
respective help pages (?plot.haploNet and ?mutations) for full details. The function
plotNetMDS, which o�ers an alternative approach to plotting networks, is not considered in
this document.

2 The Function plot.haploNet

The current version of pegas includes �ve methods to reconstruct haplotype networks as
listed in the table below.

Method Acronym Input data Function Ref.

Parsimony network TCS distances haploNet [6]
Minimum spanning tree MST " mst [4]
Minimum spanning network MSN " msn [1]
Randomized minimum spanning tree RMST " rmst [5]
Median-joining network MJN sequences mjn [1]

1https://johnbhorne.wordpress.com/2016/09/15/still-making-haplotype-networks-the-old-way-how-to-
do-it-in-r/

1

All these functions output an object of class "haploNet" so that they are plotted with the
same plot method (plot.haploNet).

2.1 Node Layout

The coordinates of the nodes (or vertices) representing the haplotypes are computed in two
steps: �rst, an equal-angle algorithm borrowed from Felsenstein [2] is used; second, the
spacing between nodes is optimised. The second step is ignored if the option fast = TRUE

is used when calling plot. These two steps are detailed a bit in the next paragraphs.
In the �rst step, the haplotype with the largest number of links is placed at the centre

of the plot (i.e., its coordinates are x = y = 0), then the haplotypes connected to this �rst
haplotype are arranged around it and given equal angles. This is then applied recursively
until all haplotypes are plotted. To perform this layout, an initial `backbone' network based
on an MST is used, so there is no reticulation and the equal-angle algorithm makes sure that
there is no segment-crossing. In practice, it is likely that this backbone MST is arbitrary
with respect to the rest of the network. The other segments are then drawn on this MST.

In the second step, a `global energy' is calculated based on the spaces between the nodes
of the network (closer nodes imply higher energies). The nodes are then moved repeatedly,
while keeping the initial structure of the backbone MST, until the global energy is not
improved (decreased).

We illustrate the procedure with the woodmouse data, a set of sequences of cytochrome
b from 15 woodmice (Apodemus sylvaticus):

> library(pegas) # loads also ape

> data(woodmouse)

In order, to simulate some population genetic data, we sample, with replacement, 80 se-
quences, and create two hierarchical groupings: region with two levels each containing 40
haplotypes, and pop with four levels each containing 20 haplotypes:

> set.seed(10)

> x <- woodmouse[sample.int(nrow(woodmouse), 80, TRUE),]

> region <- rep(c("regA", "regB"), each = 40)

> pop <- rep(paste0("pop", 1:4), each = 20)

> table(region, pop)

pop

region pop1 pop2 pop3 pop4

regA 20 20 0 0

regB 0 0 20 20

We extract the haplotypes which are used to reconstruct the RMST after computing the
pairwise Hamming distances:

> h <- haplotype(x)

> h

Haplotypes extracted from: x

Number of haplotypes: 15

Sequence length: 965

Haplotype labels and frequencies:

I II III IV V VI VII VIII IX X XI XII XIII XIV XV

5 6 9 3 7 7 4 6 3 7 7 6 3 5 2

2

> d <- dist.dna(h, "N")

> nt <- rmst(d, quiet = TRUE)

> nt

Haplotype network with:

15 haplotypes

22 links

link lengths between 7 and 7 step(s)

Use print.default() to display all elements.

We now plot the network with the default arguments:

> plot(nt)

I

II

IIIIV

V

VI

VII

VIII

IX

X

XI

XII XIII

XIV

XV

We compare the layout obtained with fast = TRUE:

> plot(nt, fast = TRUE)

3

I

II

IIIIV

V

VI

VIIVIII

IX

X XI

XII

XIII

XIV

XV

By default, not all links are drawn. This is controlled with the option threshold which
takes two values in order to set the lower and upper bounds of the number of mutations for
a link to be drawn:

> plot(nt, threshold = c(1, 14))

4

I

II

IIIIV

V

VI

VII

VIII

IX

X

XI

XII XIII

XIV

XV

The visual aspect of the links is arbitrary: the links of the backbone MST are shown with
continuous segments, while �alternative� links are shown with dashed segments.

2.2 Options

plot.haploNet has a relatively large number of options:

> args(pegas:::plot.haploNet)

function (x, size = 1, col, bg, col.link, lwd, lty, shape = "circles",

pie = NULL, labels, font, cex, col.lab, scale.ratio, asp = 1,

legend = FALSE, fast = FALSE, show.mutation, threshold = c(1,

2), xy = NULL, ...)

NULL

Like for most plot methods, the �rst argument (x) is the object to be plotted. Until
pegas 0.14, all other arguments were de�ned with default values. In recent versions, as
shown above, only size and shape are de�ned with default values; the other options, if not
modi�ed in the call to plot, are taken from a set of parameters which can be modi�ed as
explained in Section 3.4.

The motivation for this new function de�nition is that in most cases users need to modify

5

size and shape with their own data, such as haplotype frequencies or else, and these might
be changed repeatedly (e.g., with di�erent data sets or subsets). On the other hand, the
other options are more likely to be used to modify the visual aspect of the graph, so it could
be more useful to change them once during a session as explained later in this document.

The size of the haplotype symbols can be used to display haplotype frequencies. The
function summary can extract these frequencies from the "haplotype" object:

> (sz <- summary(h))

I II III IV V VI VII VIII IX X XI XII XIII XIV XV

5 6 9 3 7 7 4 6 3 7 7 6 3 5 2

It is likely that these values are not ordered in the same way than haplotypes are ordered
in the network:

> (nt.labs <- attr(nt, "labels"))

[1] "I" "II" "III" "IV" "V" "VI" "VII" "VIII" "IX" "X"

[11] "XI" "XII" "XIII" "XIV" "XV"

It is simple to reorder the frequencies before using them into plot:

> sz <- sz[nt.labs]

> plot(nt, size = sz)

6

I

II

IIIIV

V

VI

VII
VIII

IX

X

XI

XII
XIII

XIV

XV

A similar mechanism can be used to show variables such as region or pop. The function
haploFreq is useful here because it computes the frequencies of haplotypes for each region
or population:

> (R <- haploFreq(x, fac = region, haplo = h))
regA regB

I 2 3

II 2 4

III 5 4

IV 2 1

V 6 1

VI 4 3

VII 3 1

VIII 4 2

IX 1 2

X 3 4

XI 4 3

XII 1 5

XIII 2 1

XIV 1 4

XV 0 2

7

> (P <- haploFreq(x, fac = pop, haplo = h))

pop1 pop2 pop3 pop4

I 1 1 3 0

II 1 1 1 3

III 3 2 3 1

IV 1 1 1 0

V 3 3 0 1

VI 3 1 1 2

VII 1 2 1 0

VIII 4 0 1 1

IX 1 0 1 1

X 1 2 3 1

XI 1 3 1 2

XII 0 1 2 3

XIII 0 2 0 1

XIV 0 1 1 3

XV 0 0 1 1

Like with size, we have to reorder these matrices so that their rows are in the same order
than in the network:

> R <- R[nt.labs,]

> P <- P[nt.labs,]

We may now plot the network with either information on haplotype frequencies by just
changing the argument pie:

> plot(nt, size = sz, pie = R, legend = c(-25, 30))

8

I

II

IIIIV

V

VI

VII
VIII

IX

X

XI

XII
XIII

XIV

XV

25 9
regA
regB

> plot(nt, size = sz, pie = P, legend = c(-25, 30))

9

I

II

IIIIV

V

VI

VII
VIII

IX

X

XI

XII
XIII

XIV

XV

25 9
pop1
pop2
pop3
pop4

The option legend can be:

� FALSE (the default): no legend is shown;

� TRUE: the user is asked to click where the legend should be printed;

� a vector of two values with the coordinates where the print the legend (for non-
interactive use like in this vignette).

3 New Features in pegas 1.0

This section details some of the improvements made to haplotype network drawing after
pegas 0.14.

3.1 Improved `Replotting'

The graphical display of networks is a notoriously di�cult problem, especially when there is
an unde�ned number of links (or edges). The occurrence of reticulations makes line crossings
almost inevitable. The packages igraph and network have algorithms to optimise the layouts
of nodes and edges when plotting such networks.

10

The function replot (introduced in pegas 0.7, March 2015) lets the user modify the
layout of nodes interactively by clicking on the graphical window where a network has been
plotted beforehand. replot�which cannot be used in this non-interactive vignette�has
been improved substantially:

� The explanations printed when the function is called are more detailed and the node
to be moved is visually identi�ed after clicking.

� The �nal coordinates, for instance saved with xy <- replot(), can be used directly
into plot(nt, xy = xy). This also makes possible to input coordinates calculated
with another software.

� In previous versions, the limits of the plot tended to drift when increasing the number
of node moves. This has been �xed, and the network is correctly displayed whatever
the number of moves done.

3.2 Haplotype Symbol Shapes

Haplotypes can be represented with three di�erent shapes: circles, squares, or diamonds.
The argument shape of plot.haploNet is used in the same way than size as explained
above (including the evental need to reorder the values). Some details are given below about
how these symbols are scaled.

There are two ways to display a quantitative variable using the size of a circle: either
with its radius (r) or with the area of the disc de�ned by the circle. This area is πr2, so
if we want the area of the symbols to be proportional to size, we should square-root these
last values. However, in practice this masks variation if most values in size are not very
di�erent (see below). In pegas, the diameters of the circles (2r) are equal to the values
given by size. If these are very heterogeneous, they could be transformed with size =

sqrt(.... keeping in mind that the legend will be relative to this new scale.
The next �gure shows both ways of scaling the size of the circles: the top one is the

scaling used in pegas.

> par(xpd = TRUE)

> size <- c(1, 3, 5, 10)

> x <- c(0, 5, 10, 20)

> plot(0, 0, type="n", xlim=c(-2, 30), asp=1, bty="n", ann=FALSE)

> other.args <- list(y = -5, inches = FALSE, add = TRUE,

+ bg = rgb(1, 1, 0, .3))

> o <- mapply(symbols, x = x, circles = sqrt(size / pi),

+ MoreArgs = other.args)

> other.args$y <- 5

> o <- mapply(symbols, x = x, circles = size / 2,

+ MoreArgs = other.args)

> text(x, -1, paste("size =", size), font = 2, col = "blue")

> text(30, -5, expression("circles = "*sqrt(size / pi)))

> text(30, 5, "circles = size / 2")

11

0 5 10 15 20 25 30

−
15

−
10

−
5

0
5

10
15

size = 1 size = 3 size = 5 size = 10

circles = size π

circles = size / 2

For squares and diamonds (shape = "s" and shape = "d", respectively), they are scaled
so that their areas are equal to the disc areas for the same values given to size. The �gure
below shows these three symbol shapes superposed for several values of this parameter. Note
that a diamond is a square rotated 45° around its center.

> x <- c(0, 6, 13, 25)

> plot(0, 0, type="n", xlim=c(-2, 30), asp=1, bty="n", ann=FALSE)

> other.args$y <- 0

> o <- mapply(symbols, x = x, circles = size/2, MoreArgs = other.args)

> other.args$col <- "black"

> other.args$add <- other.args$inches <- NULL

> o <- mapply(pegas:::square, x = x, size = size, MoreArgs = other.args)

> o <- mapply(pegas:::diamond, x = x, size = size, MoreArgs = other.args)

> text(x, -7, paste("size =", size), font = 2, col = "blue")

12

0 5 10 15 20 25 30

−
15

−
10

−
5

0
5

10
15

size = 1 size = 3 size = 5 size = 10

3.3 The Function mutations

mutations() is a low-level plotting function which displays information about the mutations
related to a particular link of the network. This function can be used interactively. For
instance, the following is copied from an interactive R session:

> mutations(nt)

Link is missing: select one below

1: VII-I

2: VII-VIII

3: V-XI

4: III-VI

5: IX-X

6: IX-II

7: III-IX

8: VII-III

9: XV-V

10: XIII-IX

11: IX-V

12: IX-XII

13

13: III-XIV

14: III-IV

15: IX-XI

16: XV-XI

17: IX-IV

18: I-VIII

19: I-III

20: XIV-IV

21: II-XI

22: II-V

Enter a link number: 18

Coordinates are missing: click where you want to place the annotations:

The coordinates x = -8.880335, y = 16.313 are used

The values entered interactively can be written in a script to reproduce the �gure:

> plot(nt)

> mutations(nt, 18, x = -8.9, y = 16.3, data = h)

I

II

IIIIV

V

VI

VII

VIII

IX

X

XI

XII XIII

XIV

XV

42: T|C
51: T|C

123: G|A
306: A|G
477: G|A
684: C|T
837: A|G
920: G|C

Like any low-level plotting function, mutations() can be called as many times as needed

14

to display similar information on other links. The option style takes the value "table"

(the default) or "sequence". In the second, the positions of the mutations are drawn on a
horizontal segment representing the sequence:

> plot(nt)

> mutations(nt, 18, x = -8.9, y = 16.3, data = h)

> mutations(nt, 18, x = 10, y = 17, data = h, style = "s")

I

II

IIIIV

V

VI

VII

VIII

IX

X

XI

XII XIII

XIV

XV

42: T|C
51: T|C

123: G|A
306: A|G
477: G|A
684: C|T
837: A|G
920: G|C

The visual aspect of these annotations is controlled by parameters as explained in the next
section.

3.4 Getting and Setting Options

The new version of pegas has two ways to change some of the parameters of the plot:
either by changing the appropriate option(s) in one of the above functions, or by set-
ting these values with the function setHaploNetOptions, in which case all subsequent
plots will be a�ected.2 The list of the option values currently in use can be printed
with getHaploNetOptions. There is a relatively large number of options that a�ect ei-
ther plot.haploNet() or mutations(). Their names are quite explicit so that the user

2See ?par for a similar mechanism with basic R graphical functions.

15

should �nd which one(s) to modify easily:

> names(getHaploNetOptions())

[1] "labels" "labels.cex"

[3] "labels.font" "labels.color"

[5] "link.color" "link.type"

[7] "link.type.alt" "link.width"

[9] "link.width.alt" "haplotype.inner.color"

[11] "haplotype.outer.color" "mutations.cex"

[13] "mutations.font" "mutations.frame.background"

[15] "mutations.frame.border" "mutations.text.color"

[17] "mutations.arrow.color" "mutations.arrow.type"

[19] "mutations.sequence.color" "mutations.sequence.end"

[21] "mutations.sequence.length" "mutations.sequence.width"

[23] "pie.inner.segments.color" "pie.colors.function"

[25] "scale.ratio" "show.mutation"

We see here several examples with the command plot(nt, size = 2) which is repeated
after calling setHaploNetOptions:

> plot(nt, size = 2)

16

I

II

IIIIV

V

VI

VII
VIII

IX

X

XI

XII XIII

XIV

XV

> setHaploNetOptions(haplotype.inner.color = "#CCCC4D",

+ haplotype.outer.color = "#CCCC4D",

+ show.mutation = 3, labels = FALSE)

> plot(nt, size = 2)

17

2

2

7

22

7

4
7

14
3

6

10

7

3

8 7

> setHaploNetOptions(haplotype.inner.color = "blue",

+ haplotype.outer.color = "blue",

+ show.mutation = 1)

> par(bg = "yellow3")

> plot(nt, size = 2)

18

> setHaploNetOptions(haplotype.inner.color = "navy",

+ haplotype.outer.color = "navy")

> par(bg = "lightblue")

> plot(nt, size = 2)

19

References

[1] H. J. Bandelt, P. Forster, and A. Röhl. Median-joining networks for inferring intraspeci�c
phylogenies. Molecular Biology and Evolution, 16(1):37�48, 1999.

[2] J. Felsenstein. Inferring Phylogenies. Sinauer Associates, Sunderland, MA, 2004.

[3] D. H. Huson and D. Bryant. Application of phylogenetic networks in evolutionary studies.
Molecular Biology and Evolution, 23(2):254�267, 2006.

[4] J. B. Kruskal, Jr. On the shortest spanning subtree of a graph and the traveling salesman
problem. Proceedings of the American Mathematical Society, 7(1):48�50, 1956.

[5] E. Paradis. Analysis of haplotype networks: the randomized minimum spanning tree
method. Methods in Ecology and Evolution, 9(5):1308�1317, 2018.

[6] A. R. Templeton, K. A. Crandall, and C. F. Sing. A cladistic analysis of phenotypic
association with haplotypes inferred from restriction endonuclease mapping and DNA
sequence data. III. Cladogram estimation. Genetics, 132:619�635, 1992.

20

