Package ‘pegas’

December 13, 2023

Version 1.3

Date 2023-12-13

Title Population and Evolutionary Genetics Analysis System
Depends R (>=3.2.0), ape (>=5.3-11)

Imports graphics, utils, methods

Suggests rgl, snpStats, adegenet

ZipData no

Description Functions for reading, writing, plotting, analysing, and manipulating allelic and haplo-
typic data, including from VCF files, and for the analysis of population nucleotide se-
quences and micro-satellites including coalescent analyses, linkage disequilibrium, popula-
tion structure (Fst, Amova) and equilibrium (HWE), haplotype networks, minimum span-
ning tree and network, and median-joining networks.

License GPL (>=2)

URL https://emmanuelparadis.github.io/pegas.html
NeedsCompilation yes

Author Emmanuel Paradis [aut, cre, cph]
(<https://orcid.org/0000-0003-3092-2199>),

Thibaut Jombart [aut, cph] (<https://orcid.org/0000-0003-2226-8692>),
Zhian N. Kamvar [aut, cph] (<https://orcid.org/0000-0003-1458-7108>),
Brian Knaus [aut, cph] (<https://orcid.org/0000-0003-1665-4343>),
Klaus Schliep [aut, cph] (<https://orcid.org/0000-0003-2941-0161>),
Alastair Potts [aut, cph] (<https://orcid.org/0000-0003-0919-7279>),
David Winter [aut, cph] (<https://orcid.org/0000-0002-6165-0029>)

Maintainer Emmanuel Paradis <Emmanuel .Paradis@ird.fr>
Repository CRAN
Date/Publication 2023-12-13 11:10:02 UTC

R topics documented:

pegas-package
all.equalhaploNet e

https://emmanuelparadis.github.io/pegas.html
https://orcid.org/0000-0003-3092-2199
https://orcid.org/0000-0003-2226-8692
https://orcid.org/0000-0003-1458-7108
https://orcid.org/0000-0003-1665-4343
https://orcid.org/0000-0003-2941-0161
https://orcid.org/0000-0003-0919-7279
https://orcid.org/0000-0002-6165-0029

R topics documented:

alleles2loci 4
allelicrichness 6
AMOVA . o v v e vt e e e e e e e e e e e e e e e e 7
asdoci 9
bind.doci e 11
byloci e 12
cophenetic.haploNet 13
diffHaplo e e e 14
distasd e 15
disthamming 16
editloci 17
B4 e 18
Fst . . e 19
geod . .. e 20
geoTrans e e e 21
getHaploNetOptions L 23
hap.div. L 24
haploFreq e e 25
haploNet e e e 27
haplotype 30
haplotypedoci 33
heterozygosity i e e e e e e e 34
hwitest e e e 36
JAGUAL . . L e e 37
LD . o e 38
LDscan e 40
MO . o o e e e e e 42
MMD . . 44
MSE. . o e e e e e e e e e e 45
MULALIONS .+ . . ¢ v vt vt e 47
naomitloci 48
nuc.div. . . . L e 49
plotNetMDS e 50
R2utest . . o o e 51
read.@tX L 52
readJoci L e 53
read.vef . ..o L 54
replot . . oL 57
TEAEST o o o o o e e e e e e e 58
SIE.SPECLIUM v it e e e e e e 59
SLAITWAY e e e 61
subset.haplotype e e e e 62
summary.loci e e 64
SW o e e e e e e e e e e 65
tajimatest L e e e e 67
thetah 68
theta.k L e 69

thetamsat e 70

pegas-package 3

thetass L 71
thetatree e 72
utilities 74
VCFloci e 76
writeJocl L 78
Index 80
pegas-package Population and Evolutionary Genetics Analysis System
Description

pegas provides functions for the analysis of allelic data and of haplotype data from DNA sequences.
It requires and complements two other R-packages: ape and adegenet.

The complete list of functions can be displayed with library(help = pegas).

More information on pegas can be found at https: //emmanuelparadis.github.io/pegas.html.

Author(s)

Emmanuel Paradis, Thibaut Jombart, Zhian N. Kamvar, Brian Knaus, Alastair Potts, Klaus Schliep,
David Winter

Maintainer: Emmanuel Paradis

all.equal.haploNet Compare Two Haplotype Networks

Description

This function compares two haplotype networks and returns either TRUE or a description of the

differences.
Usage
S3 method for class 'haploNet'
all.equal(target, current, use.steps = TRUE, ...)
Arguments

target, current
two objects of class "haplotype”.

use.steps a logical value: whether to consider the number of steps (or length) in each link.

(unused).

https://emmanuelparadis.github.io/pegas.html

4 alleles2loci

Details

This function should return TRUE if the two networks are identical even if the links are ordered
differently. In all other situations, a vector of character strings describing the differences is returned.

As usual with the all.equal function, this cannot be used directly to return a TRUE/FALSE value
(see examples).

Value

either a logical value (TRUE), or a vector of mode character.

Author(s)

Emmanuel Paradis

See Also

haploNet, mst

Examples

data(woodmouse)

d <- dist.dna(woodmouse, "n")

ntl <- mst(d)

nt2 <- msn(d)

(comp <- all.equal(ntl, nt2)) # clearly different

how to use all.equal to return TRUE/FALSE:
isTRUE (comp) # FALSE

alleles2loci Build Loci Object From Matrix of Alleles

Description

These functions transform a matrix of alleles into an object of class "1oci”, or the reverse operation.

Usage

alleles2loci(x, ploidy = 2, rownames = NULL, population = NULL,
phased = FALSE)
locizalleles(x)

alleles2loci 5

Arguments
X a matrix or a data frame where each column is an allele, or an object of class
"loci”.
ploidy an integer specifying the level of ploidy.
rownames an integer giving the column number to be used as rownames of the output.
population an integer giving the column number to be used as population (if any).
phased a logical specifying whether the genotypes should be output as phased. By de-
fault, they are unphased.
Details

Genetic data matrices are often arranged with one allele in each column of the matrix (particularly
for micro-satellites), so that the number of columns is equal to the number of loci times the level of
ploidy. alleles2loci transforms such matrices into a "loci” object.

If the rownames of the input matrix are already set, they are used in the output. Alternatively, it is
possible to specify which column to use as rownames (this column will be deleted before creating
the genotypes).

If the input matrix has colnames, then the names of the first column of each genotype is used as
names of the output loci (see examples).

loci2alleles checks that all individuals have the ploidy for a given locus (if not an error occurs),
but ploidy can vary among loci.

Value

an object of class "loci” or a matrix.

Author(s)

Emmanuel Paradis

See Also

read.loci, as.loci

The vignette “ReadingFiles” explains how to read such a data set from Dryad (https://datadryad.
org/stash).

Examples

x <= matrix(c("A", "A", "A", "a"), 2)
colnames(x) <- c("Loc1”, NA)

y <- alleles2loci(x)

print(y, details = TRUE)
locizalleles(y)

https://datadryad.org/stash
https://datadryad.org/stash

6 allelicrichness

allelicrichness Allelic Richness and Rarefaction Plots

Description

These functions analyse allelic richness.

Usage
allelicrichness(x, pop = NULL, method = "extrapolation”, min.n = NULL)
rarefactionplot(x, maxn = nrow(x), type = "1", xlab = "Sample size”,
ylab = "Expected number of alleles”, plot = TRUE, ...)

rhost(x, pop = NULL, method = "extrapolation”)

Arguments

X an object of class "loci”.

pop a vector or factor giving the population assignment of each row of x, or a single
numeric value specifying which column of x to use as population indicator. By
default, the column labelled "population” is used.

method a character string which should be one of “extrapolation”, “rarefaction”, “raw”
or an unambiguous abbreviation of these.

min.n the value of n used in the rarefaction method; by default, the smallest observed
number of genotypes within a population.

maxn the largest sample size used to calculate the rarefaction curve.

type, xlab, ylab
arguments passed to plot.

plot a logical value specifying whether to do the rarefaction plot (TRUE by default).

arguments passed to and from methods.

Details

allelicrichness computes for each locus in x the estimated allelic richness. Three methods are
available: the extrapolation method (Foulley and Ollivier 2006), the rarefaction method (Hurlbert
1971), and the raw numbers of alleles.

rarefactionplot computes the rarefaction curves of the number of alleles with respect to sample
size using Hurlbert’s (1971) method. A plot is made by default.

Value

allelicrichness returns a numeric matrix.

rarefactionplot returns invisibly a list of matrices with the coordinates of the rarefaction plots
for each locus.

rhost returns a numeric vector.

amova 7

Author(s)

Emmanuel Paradis

References

El Mousadik, A. and Petit, R. J. (1996) High level of genetic differentiation for allelic richness
among populations of the argan tree [Argania spinosa (L. Skeels)] endemic to Morocco. Theoretical
and Applied Genetics, 92, 832-836.

Foulley, J. L. and Ollivier, L. (2006) Estimating allelic richness and its diversity. Livestock Science,
101, 150-158.

Hurlbert, S. H. (1971) The nonconcept of species diversity: a critique and alternative parameters.
Ecology, 52, 577-586.

Examples

data(jaguar)
rarefactionplot(jaguar)
allelicrichness(jaguar)
rhost(jaguar)

amova Analysis of Molecular Variance

Description
This function performs a hierarchical analysis of molecular variance as described in Excoffier et al.
(1992). This implementation accepts any number of hierarchical levels.

Usage

amova(formula, data = NULL, nperm = 1000, is.squared = FALSE)
S3 method for class 'amova'

print(x, ...)

getPhi(sigma2)

write.pegas.amova(x, file = "")

Arguments

formula a formula giving the AMOVA model to be fitted with the distance matrix on the
left-hand side of the ~, and the population, region, etc, levels on its right-hand
side (see details).

data an optional data frame where to find the hierarchical levels; by default they are
searched for in the user’s workspace.

nperm the number of permutations for the tests of hypotheses (1000 by default). Set

this argument to O to skip the tests and simply estimate the variance components.

is.squared a logical specifying whether the distance matrix has already been squared.

8 amova

X an object of class "amova".
sigma2 a named vector of variance components.
file a file name.

unused (here for compatibility.

Details

The formula must be of the form d ~ A/B/. .. where d is a distance object, and A, B, etc, are the hi-
erarchical levels from the highest to the lowest one. Any number of levels is accepted, so specifying
d ~ A will simply test for population differentiation.

It is assumed that the rows of the distance matrix are in the same order than the hierarchical levels
(which may be checked by the user).

The function getPhi() is a convenience function for extracting a table of hierarchical Phi-statistics
for reporting. This will be an N+1 by N matrix where N is the number of hierarchcial levels and
GLOBAL is always the first row of the matrix. The matrix can read as COLUMN in ROW.

If the variance components passed to getPhi() are not named, they will be reported as "level 1",
"level 2", etc.

Value

An object of class "amova” which is a list with a table of sums of square deviations (SSD), mean
square deviations (MSD), and the number of degrees of freedom, and a vector of variance compo-
nents.

Note

If there are more than three levels, approximate formulae are used to estimate the variance compo-
nents.

If there is an error message like this:
Error in FUN(XLL1L]], ...) : 'bin' must be numeric or a factor

it may be that the factors you use in the formula were not read correctly. You may convert them
with the function factor, or, before reading your data files, do this command (in case this option
was modified):

options(stringsAsFactors = TRUE)

Author(s)

Emmanuel Paradis, Zhian N. Kamvar, and Brian Knaus

References

Excoffier, L., Smouse, P. E. and Quattro, J. M. (1992) Analysis of molecular variance inferred from
metric distances among DNA haplotypes: application to human mitochondrial DNA restriction
data. Genetics, 131, 479-491.

as.loci 9

See Also

amova in ade4 for an implementation of the original Excoffier et al.’s model; adonis in vegan for a
general (multivariate) implementation of an ANOVA framework with distances.

Examples

#i## All examples below have 'nperm = 100' for faster execution times.
The default 'nperm = 1000' is recommended.

require(ape)

data(woodmouse)

d <- dist.dna(woodmouse)

g <- factor(c(rep("A", 7), rep("B", 8)))

p <- factor(c(rep(1, 3), rep(2, 4), rep(3, 4), rep(4, 4)))
(d_gp <- amova(d ~ g/p, nperm = 100)) # 2 levels

sig2 <- setNames(d_gp$varcomp$sigma?, rownames(d_gp$varcomp))
getPhi(sig2) # Phi table

amova(d ~ p, nperm = 100) # 1 level

amova(d ~ g, nperm = 100)

3 levels (quite slow):

Not run:

pop <- gl(64, 5, labels = paste@("pop”, 1:64))

region <- gl(16, 20, labels = paste@("region”, 1:16))

conti <- gl(4, 80, labels = paste@("conti”, 1:4))

dd <- as.dist(matrix(runif(320%2), 320))

(dd_crp <- amova(dd ~ conti/region/pop, nperm = 100))

sig2 <- setNames(dd_crp$varcomp$sigma2, rownames(dd_crp$varcomp))
getPhi(sig2)

End(Not run)

as.loci Conversion Among Allelic Data Classes

Description

These functions do conversion among different allelic data classes.

Usage

as.loci(x, ...)

S3 method for class 'genind'

as.loci(x, ...)

genind2loci(x)

S3 method for class 'data.frame'

as.loci(x, allele.sep = "/|", col.pop = NULL, col.loci = NULL, ...)
loci2genind(x, ploidy = 2, na.alleles = c("0", "."), unphase = TRUE)
S3 method for class 'factor'

as.loci(x, allele.sep = "/|", ...)

10

as.loci

S3 method for class 'character'
as.loci(x, allele.sep = "/|", ...)
loci2SnpMatrix(x, checkSNP = TRUE)

Arguments

X

allele.sep

col.pop

col.loci

ploidy
na.alleles

unphase

checkSNP

Details

an object of class "loci” or "genind”, a data frame, a factor, or a vector of
mode character.

the character(s) separating the alleles for each locus in the data file (a forward
slash by default).

specifies whether one of the column of the data file identifies the population;
default NULL, otherwise an integer or a character giving the number or the name
of the column.

a vector of integers or of characters specifying the indices or the names of the
columns that are loci. By default, all columns are taken as loci except the one
labelled "population”, if present or specified.

the ploidy level (see details).
a vector of charater strings giving the alleles to be treated as missing data.

a logical value; by default, the genotypes are unphased before conversion (this
should not be changed).

further arguments to be passed to or from other methods.

a logical value. If you are sure that all data in the "1oci"” object are SNPs, using
checkSNP = FALSE makes it faster.

The main objectives of these functions is to provide easy conversion between the data structures of
adegenet and pegas, so both packages can be used together smoothly. In addition, it is possible to
create a "loci” object directly from a data frame, a vector, or a factor.

genind2loci(x) and as.loci(x) are the same if x is of class "genind".

The ploidy level specified in loci2genind can be a vector in which case it should be of length equal
to the number of individuals and will be interpreted as giving the ploidy of each of them. Note that
this is different from getPloidy which returns the ploidy level of each locus.

Value

An object of class

c("loci”, "data.frame") for as.loci and genind2loci; an object of class

"genind” for loci2genind; an object of class "SnpMatrix"” for loci2SnpMatrix.

Author(s)

Emmanuel Paradis

See Also

read.loci, genind, df2genind for converting data frames to "genind"”, alleles2loci

bind.loci 11

Examples

x <= c("A-A", "A-a", "a-a")

as.loci(x, allele.sep = "-")

Not run:

require(adegenet)

data(nancycats)

x <- as.loci(nancycats)

y <- loci2genind(x) # back to "genind"
identical(nancycats@tab, y@tab)
identical(nancycats@pop, y@pop)

End(Not run)

bind.loci Bind Loci Objects

Description

These functions combine objects of class "loci” by binding their rows or their columns.

Usage

S3 method for class 'loci'

rbind(...)

S3 method for class 'loci'

cbind(...)
Arguments

some object(s) of class "loci”, separated with commas.

Details

These two methods call [rc]bind.data.frame and take care to respect the attribute “locicol” of
the returned object.

You can pass a data frame in the . . ., but then you should bypass the generic by calling cbind. loci
directly. Do not try to pass a vector: this will mess the “locicol” attribute. Instead, make a data frame
with this vector (see examples).

Value

An object of class "loci”.

Author(s)

Emmanuel Paradis

12 by.loci

See Also

[.loci

Examples

a <- as.loci(data.frame(x = "A/a", y = 1), col.loci = 1)
b <- as.loci(data.frame(y = 2, x = "A/A"), col.loci = 2)
rbind.loci reorders the columns if necessary:
str(rbind(a, b))

cbind sets "locicol” correctly:

str(cbind(a, b))

str(cbind(b, a))

Unexpected result...

str(cbind(a, data.frame(z = 10)))

... bypass the generic:
str(pegas:::cbind.loci(a, data.frame(z = 10)))
... or much better: a%$z <- 10

Here "locicol” is not correct...
str(pegas:::cbind.loci(z = 10, a))

... instead
str(pegas:::cbind.loci(data.frame(z = 10), a))

by.loci Summary by Population or Other Factor

Description

This is an implementation of the generic by function which applies a function to some data for a
each level of a categorical factor.

Usage

S3 method for class 'loci'

by(data, INDICES = data$population, FUN = NULL, ..., simplify = TRUE)
Arguments

data an object of class "loci”.

INDICES a vector of the same length as the number of rows in data.

FUN a function

(currently unused).

simplify (currently unused).

Details

The default FUN = NULL calculates allele frequencies for each population in data.

cophenetic.haploNet 13

Value

a list by default indexed by locus.

Author(s)

Emmanuel Paradis

See Also

by

Examples

data(jaguar)
by (jaguar)
by(na.omit(jaguar))

cophenetic.haploNet Cophenetic Matrix on Haplotype Networks

Description
This function calculates the cophenetic distance on a network. The output can be used to find nodes
with short distances to most nodes.
Usage
S3 method for class 'haploNet'
cophenetic(x)
Arguments

X an object of class "haploNet".

Details

The results of the function are likely to be approximate in most cases with reticulations in the
network. In the case of MSTs, the results are exact.

Value

a numeric matrix with colnames and rownames set to the labels of the network nodes.

Author(s)

Emmanuel Paradis

14 diffHaplo

See Also

cophenetic.phylo in ape, cophenetic for the generic function

Examples

example(mst)
coph <- cophenetic(r)
rowSums (coph)

diffHaplo Comparison Between Two Haplotypes

Description

This function compares two haplotypes and returns a summary of the differences.

Usage

diffHaplo(h, a = 1, b = 2, strict = FALSE, trailingGapsAsN = TRUE)

Arguments
h an object of class "haplotype”.
a, b two integers (or character strings) giving the indices (or labels) of the two hap-
lotypes to be compared.
strict a logical value; if TRUE, ambiguities and gaps in the sequences are ignored and
treated as separate characters.
trailingGapsAsN
a logical value; if TRUE (the default), the leading and trailing alignment gaps
are considered as unknown bases (i.e., N). This option has no effect if strict =
TRUE.
Details

The options strict and trailingGapsAsN are passed to seg.sites.

Value

a data frame with three columns named pos (position of the differences) and the labels of the two
haplotypes compared.

Author(s)

Emmanuel Paradis

See Also

haploNet, haplotype

dist.asd 15

Examples

data(woodmouse)

h <- haplotype(woodmouse)

diffHaplo(h) # compares the 1st and 2nd haplotypes
diffHaplo(h, 1, 3)

diffHaplo(h, "I", "III") # same than above but using labels

dist.asd Allelic Sharing Distance

Description

This function computes the allelic sharing distance (ASD) for diploid genotypes.

Usage

dist.asd(x, scaled = TRUE, pairwise.deletion = FALSE)

Arguments
X an object of class "loci”.
scaled a logical value specifying whether the distances should be scaled by the number

of loci.
pairwise.deletion

a logical value: whether to check for missing values for each pairwise compari-
son (see details).

Details

The ASD between two diploid genotypes is (Gao and Martin, 2009):

1 L
I > d;
j=1

where L is the number loci, d; is the value for the jth locus: 0 if both genotypes are identical, 1 if
they have one allele in common, or 2 if they have no allele in common.

dist.asd works for all diploid genotypes (phased or unphased, with two alleles or more). Note
that the required conditions are not checked by the present function: see the functions below.

The pairwise deletion is done with respect to missing values coded as NA, not on the ‘null alleles’
(‘0’ or *’). You may need to use the function nul1Alleles2NA first if your data has genotypes with
null alleles that you want to treat as missing values.

Value

an object of class "dist".

16 dist.hamming

Author(s)

Emmanuel Paradis

References

Gao, X. and Martin, E. R. (2009) Using allele sharing distance for detecting human population
stratification. Human Hederity, 68, 182-191.

See Also

is.snp, is.phased, getPloidy, nullAlleles2NA

Examples

data(jaguar)

ASD for micro-satellites:

d <- dist.asd(jaguar)

co <- rainbow(nlevels(jaguar$pop))

plot(nj(d), "u", tip.color = co[jaguar$popl, font = 2, lab4 = "a")
legend("topleft”, legend = levels(jaguar$pop), text.col = co, text.font = 2)

dist.hamming Hamming Distance

Description

This function implements a general purpose Hamming distance.

Usage

dist.hamming(x)

Arguments

X a matrix or a data frame.

Details

This function should work for a wide range of data types. A typical usage would be with an object
of class c("haplotype"”, "character”).

For objects of class c("haplotype”, "DNAbin"), it is better to use dist.dna(x, "n") to compute
the Hamming distances.

Value

an object of class "dist".

edit.loci 17

Author(s)

Emmanuel Paradis

See Also

haplotype, dist.haplotype.loci

edit.loci Edit Allelic Data with R’s Data Editor

Description

This allows to edit a data frame of class "loci” with R’s spreadsheet-like data editor.

Usage
S3 method for class 'loci'
edit(name, edit.row.names = TRUE, ...)
Arguments
name an object of class "loci”.

edit.row.names alogical specifying to allow editing the rownames, TRUE by default (by contrast
to data frames).

further arguments to be passed to or from other methods.

Details

This ‘method’ of the generic edit respects the class and the attribute "locicol” of the allelic data
frame.

Value

A data frame with class c("loci”, "data.frame").

Author(s)

Emmanuel Paradis

See Also

read.loci, summary.loci

18

F4

F4

F-Statistics From Patterson et al

Description

These functions compute the F-statistics developed by Patterson et al. (2012).

Usage

F2(x, allele.freq = NULL, population = NULL, check.data = TRUE,
pops = NULL, jackknife.block.size = 10, B = 1e4)

F3(x, allele.freq = NULL, population = NULL, check.data = TRUE,
pops = NULL, jackknife.block.size = 10, B = 1e4)

F4(x, allele.freq = NULL, population = NULL, check.data = TRUE,

pops = NULL, jackknife.block.size = 10, B = 1le4)

Arguments

X

allele.freq

population

check.data

pops

an object of class "loci”.

alternatively, a list of allele (absolute) frequencies as output by by . loci (if this
is used, x is ignored).

a column name or number giving which column of x should be treated as the
population variable. By default, the column named “population” is used.

if FALSE, it is assumed that the user checked that all loci are strict SNPs. By
default, the data are checked for the number of alleles and the non-SNP loci are
dropped with a warning.

a vector giving two, three, or four population names depending on the function.
The order of these names is important (see Patterson et al. 2012). By default,
the populations in x are taken in the order they appear, and an error is returned if
the number of populations does not match the number required by the function.

jackknife.block.size

Details

the size of the block used in the jackknife to assess the significance of the F-
statistic (this should be around one thousandth of the number of loci, or not less
than 10.

the number of replications of the bootstrap used to assess the significance of the
F-statistic.

These functions are provisional versions.

It is much better to compute the allele frequencies, and then use allele. freq with different com-

binations of pops.

Value

A vector with names.

Fst 19

Author(s)

Emmanuel Paradis

References

Patterson, N., Moorjani, P., Luo, Y., Mallick, S., Rohland, N., Zhan, Y., Genschoreck, T., Webster,
T. and Reich, D. (2012) Ancient admixture in human history. Genetics, 192, 1065-1093.

See Also

by.loci, Fst, the package admixturegraph that can draw graphs from the output of this function.

Fst F-Statistics

Description

Fst computes the Frr, Fsr and Fjg for each locus in the data. Rst computes the Rgr for mi-

crosatellites.
Usage
Fst(x, pop = NULL, quiet = TRUE, na.alleles = "")
Rst(x, pop = NULL, quiet = TRUE, na.alleles = "")
Arguments
X an object of class "loci”.
pop a vector or factor giving the population assignment of each row of x, or a single
numeric value specifying which column of x to use as population indicator. By
default, the column labelled "population” is used.
quiet a logical value: should calculations be quiet?
na.alleles by default, only genotypes coded as NA are considered as missing data. This
option is to specify if some alleles code for missing data.
Details

Fst uses the formulae in Weir and Cockerham (1984) for each allele, and then averaged within each
locus over the different alleles as suggested by these authors.

Rst uses the formulae in Slatkin (1995).

Value

A matrix with genes (loci) as rows and the three F-statistics as columns.

20 geod

Author(s)

Emmanuel Paradis

References

Slatkin, M. (1995) A measure of population subdivision based on microsatellite allele frequencies.
Genetics, 139, 457-462.

Weir, B. S. and Cockerham, C. C. (1984) Estimating F-statistics for the analysis of population
structure. Evolution, 38, 1358—1370.

Weir, B. S. and Hill, W. G. (2002) Estimating F-statistics. Annual Review of Genetics, 36, 721-750.

See Also

fstat in package hierfstat; package dirmult on CRAN that implements various estimators of the
Dirichlet-multinomial distribution, including maximum likekihood and the moments estimator of
Weir and Hill (2002); Fst in Biodem that caculates Fsp from a “kinship matrix”.

Examples

data(jaguar)
Fst(jaguar)
Rst(jaguar)

no Fst but Fit and Fis in case of single population:
jaguar_corridor <- jaguar[jaguar$population == "Green Corridor"”,]
Fst(jaguar_corridor)

geod Geodesic Distances

Description
This function calculates geodesic (or great-circle) distances between pairs of points with their lon-
gitudes and latitudes given in (decimal) degrees.

Usage
geod(lon, lat = NULL, R = 6371)

Arguments
lon either a vector of numeric values with the longitudes in degrees, or, if lat =
NULL, a matrix giving the longitudes (first column) and the latitudes (second
column).
lat a vector with the latitudes.

R the mean radius of the Earth (see details).

geoTrans 21

Details

The default value of R is the mean radius of the Earth which is slightly smaller than the radius at the
equator (6378.1 km).

Value

a numeric symmetric matrix with the distances between pairs of points in kilometres.

Author(s)

Emmanuel Paradis

References

https://en.wikipedia.org/wiki/Great-circle_distance

https://en.wikipedia.org/wiki/Earth

See Also

geoTrans, as.dist

Examples

the distance between ON QE and ON 180@E...

geod(c(0, 180), c(@, 0)) # ~ 20015.09 km

... the same using the radius of the Earth at the equator:
geod(c(@, 180), c(@, @), 6378.1) # ~ 20037.39 km

The same comparison for two points 5 degrees apart:
geod(c(Q, 5), c(@, 0)) # ~ 555.9746 km

geod(c(@, 5), c(0, @), 6378.1) # ~ 556.5942 km

geoTrans Manipulate Geographical Coordinates

Description

geoTrans transforms geographical coordinates in degrees, minutes and seconds input as characters
(or a factor) into numerical values in degrees. geoTrans2 does the reverse operation.

Usage

nan

geoTrans(x, degsym = NULL, minsym = , secsym = "\"")
geoTrans2(lon, lat = NULL, degsym = NULL, minsym = "'",
secsym = "\"" dropzero = FALSE, digits = 3,

latex = FALSE)

https://en.wikipedia.org/wiki/Great-circle_distance
https://en.wikipedia.org/wiki/Earth

22

Arguments

X

geoTrans

a vector of character strings storing geographical coordinates; this can be a factor
with the levels correctly set.

degsym, minsym, secsym

lon

lat

dropzero

digits

latex

Details

a single character giving the symbol used for degrees, minutes and seconds,
respectively.

either a vector of numeric values with the longitudes in degrees, or, if lat =
NULL, a matrix (or a data frame) giving the longitudes in the first column and the
latitudes in the second column.

a vector with the latitudes.

a logical value: if TRUE, the number of arc-seconds is dropped if it is zero;
similarly for the number of arc-minutes if the number of arc-seconds is also
Zero.

an integer used for rounding the number of arc-seconds.

a logical value: if TRUE, the returned character is formatted with LaTeX code.

geoTrans should be robust to any pattern of spacing around the values and the symbols (see exam-
ples). If the letter S, W, or O is found is the coordinate, the returned value is negative. Note that
longitude and latitude should not be mixed in the same character strings.

geoTrans?2 can be used with cat (see examples).

The default for degsym (NULL) is because the degree symbol (°) is coded differently in different
character encodings. By default, the function will use the appropriate character depending on the
system and encoding used.

Value

geoTrans returns a numeric vector with the coordinates in degrees (eventually as decimal values).

geoTrans?2 returns

Author(s)

Emmanuel Paradis

See Also

geod

Examples

coord <- c("N 43°

a character vector.

27'30\"", "N43°27'30\"", "43°27'30\"N",

"43° 27' 30\" N", "43 ° 27 ' 30 \" N",
"43°27'30\"", "43°27.5'")

cat(coord, sep =
geoTrans(coord)

n\nn)

geoTrans(”43 D 27.5'", degsym = "D")

getHaploNetOptions 23

geoTrans("43° 27' 30\" S")

XL <- ¢(100.6417, 102.9500)
YL <- ¢(11.55833, 14.51667)
cat(geoTrans2(XL, YL, dropzero = TRUE), sep = "\n")
cat(geoTrans2(XL, YL, latex = TRUE), sep = "\\\n")

getHaploNetOptions Options to Plot haploNet Objects

Description

These functions change the graphical options to plot haplotype networks.

Usage

getHaploNetOptions()
setHaploNetOptions(...)

Arguments

Details

option(s) and value(s) to be changed (separated by commas if several).

The options are listed below with their default values. Most of these values use the standard R
graphical paramters (see par).

bg = "transparent”: the background colour of the plot.

labels = TRUE: whether to show the haplotype labels.

labels.cex = 1: size of the haplotype labels.

labels.font = 2: font of the haplotype labels.

labels.color = "black": colour of the haplotype labels.

link.color = "black": colour of the links.

link.type = 1: type of line for the links.

link.type.alt = 2: type of lines for the alternative links.

link.width = 1: line width for the links.

link.width.alt = 1: line width for the alternative links.
haplotype.inner.color = "white": colour used inside the haplotype symbols.
haplotype.outer.color = "black": colour used for the border of the haplotype symbols.
mutations.cex = 1: size of the mutation annotations.

mutations.font = 1: font of the mutation annotations.

mutations.frame.background = "#0000FF4D": background colour (transparent blue).

24

Value

hap.div

mutations.frame.border = "black": colour of the frame.

mutations.text.color = 1: colour of the mutation annotations.

mutations.arrow.color = "black": colour of the arrow pointing to the link.
mutations.arrow.type = "triangle": type of the previous arrow.
mutations.sequence.color = "#BFBFBF4D": colour of the sequence (transparent grey).

mutations.sequence.end = "round": possible choices: "round”, "butt”, or "square” (or al-
ternatively 0, 1, or 2).

mutations.sequence.length = 0.3: the length of the segment showing the sequence as fraction
of the graphical window.

mutations.sequence.width = 5: thickness of this segment.

pie.outer.color = "black": colour of the circle around pie charts.

pie.inner.segments.color = "black": colour of the segments separating the shares of the pies.
pie.colors.function = rainbow: function used to define colours for the frequencies.
scale.ratio = 1: the scale ratio between links and symbol sizes.

show.mutation = 1: option used to show mutation or not (0).

getHaploNetOptions returns a list of options. The other function returns nothing.

Author(s)

Emmanuel Paradis

See Also

plot.haploNet, mutations

Examples

getHaploNetOptions()

hap.div Haplotype Diversity

Description

This function computes haplotype diversity from DNA sequences. This is a generic function.

Usage
hap.div(x, ...)
S3 method for class 'haplotype'
hap.div(x, variance = FALSE, method = "Nei", ...)

S3 method for class 'DNAbin'
hap.div(x, variance = FALSE, method = "Nei”, ...)

haploFreq 25

Arguments
X an object with DNA data.
variance a logical value specifying whether to calculate the variance of the estimated
haplotype diversity.
method (unused, see details).
further arguments passed to and from methods.
Details

Currently, only Nei and Tajima’s (1981) method is available.

Value

a numeric vector with one or two values (if variance = TRUE).

Author(s)

Emmanuel Paradis

References

Nei, M. and Tajima, F. (1981) DNA polymorphism detectable by restriction endonuclease. Genet-
ics, 97, 145-163.

See Also

nuc.div

Examples

data(woodmouse)
hap.div(woodmouse) # all haplotypes are unique

neuraminidase sequences from the 2009 HIN1 data (delivered with adegenet):
fl <- system.file("files/pdHINT1-NA.fasta", package = "adegenet")

HIN1T.NA <- read.dna(fl, "fasta")

hap.div(HINT.NA, TRUE)

haploFreq Haplotype Frequencies With a Covariate

Description

This utility function extracts the absolute frequencies of haplotypes with respect to a categorical
variable (a factor). The output is useful when ploting haplotype networks.

26

Usage
haploFreq(x, fac, split = “_", what = 2, haplo = NULL)
Arguments
X a set of DNA sequences (as an object of class "DNAbin").
fac a factor giving the categorical variable (can be missing).
split a single character (see details).
what a single integer (see details).
haplo an object of class "haplotype”.
Details

haploFreq

The frequencies of each haplotype in x are counted with respect to a factor which is either specified
with fac, or extracted from the labels of x. In the second case, these labels are split with respect to
the character specified in split and the what’th substrings are extracted and taken as the categorical
variable (see example).

If haplo is specified, the haplotype frequencies are taken from it, otherwise they are calculated from

X.

Value

a matrix of counts.

Author(s)

Klaus Schliep and Emmanuel Paradis

See Also

haplotype, haploNet

Examples

generate some artificial data from 'woodmouse':

data(woodmouse)

x <- woodmouse[sample(15, size = 50, replace = TRUE), 1]
labels IdXXX_PopXXX_LocXXX
rownames(x) <- paste("Id”, 1:50, "_Pop", 1:2, "_Loc", 1:5, sep = "")

head(labels(x))
h <- haplotype(x)

frequencies of haplotypes wrt 'Pop':
f.pop <- haploFreq(x, haplo = h)

frequencies of haplotypes wrt 'Loc':
f.loc <- haploFreq(x, what = 3, haplo = h)

nt <- haploNet(h)

fq <- attr(nt, "freq")

op <- par(mfcol =

c(1, 2))

plot(nt, size = fq, pie = f.pop, labels = FALSE)

haploNet 27

plot(nt, size = fq, pie = f.loc, labels = FALSE)
par(op)

haploNet Haplotype Networks

Description

haploNet computes a haplotype network. There is a plot method and two conversion functions
towards other packages.

Usage

haploNet(h, d = NULL, getProb = TRUE)

S3 method for class 'haploNet'
print(x, ...)
S3 method for class 'haploNet'

plot(x, size = 1, col, bg, col.link, lwd, 1lty,

shape = "circles”, pie = NULL, labels, font, cex, col.lab, scale.ratio,
asp = 1, legend = FALSE, fast = FALSE, show.mutation,
threshold = c(1, 2), xy = NULL, ...)
S3 method for class 'haploNet'
as.network(x, directed = FALSE, altlinks = TRUE, ...)
S3 method for class 'haploNet'
as.igraph(x, directed = FALSE, use.labels = TRUE,
altlinks = TRUE, ...)
S3 method for class 'haploNet'
as.phylo(x, quiet, ...)
S3 method for class 'haploNet'
as.evonet(x, ...)
Arguments
h an object of class "haplotype”.
d an object giving the distances among haplotypes (see details).
getProb a logical specifying whether to calculate Templeton’s probabilities (see details).
X an object of class "haploNet".
size a numeric vector giving the diameter of the circles representing the haplotypes:
this is in the same unit than the links and eventually recycled.
col a character vector specifying the colours of the circles; eventually recycled.
bg a character vector (or a function) specifying either the colours of the background
of the symbols (if pie = NULL), or the colours of the slices of the pies (could be
a function); eventually recycled.
col.link a character vector specifying the colours of the links; eventually recycled.
lwd a numeric vector giving the width of the links; eventually recycled.

28

1ty

shape

pie

labels

font

cex
col.lab
scale.ratio

asp

legend

fast

show.mutation

threshold

directed
use.labels

altlinks

quiet

Xy

Details

haploNet

idem for the line types.

the symbol shape used for the haplotypes (eventually recycled): "circles”,
"squares”, "diamonds"” (can be abbreviated).

a matrix used to draw pie charts for each haplotype; its number of rows must be
equal to the number of haplotypes.

a logical specifying whether to identify the haplotypes with their labels (the
default).

the font used for these labels (bold by default); must be an integer between 1
and 4.

a numerical specifying the character expansion of the labels.
the color of the labels.

the ratio of the scale of the links representing the number of steps on the scale of
the circles representing the haplotypes. It may be needed to give a value greater
than one to avoid overlapping circles.

the aspect ratio of the plot. Do not change the default unless you want to distort
your network.

a logical specifying whether to draw the legend, or a vector of length two giving
the coordinates where to draw the legend; FALSE by default. If TRUE, the user is
asked to click where to draw the legend.

a logical specifying whether to optimize the spacing of the circles; FALSE by
default.

an integer value: if 0, nothing is drawn on the links; if 1, the mutations are
shown with small segments on the links; if 2, they are shown with small dots; if
3, the number of mutations are printed on the links.

a numeric vector with two values (or 0) giving the lower and upper numbers
of mutations for alternative links to be displayed. If threshold = @, alternative
links are not drawn at all.

a logical specifying whether the network is directed (FALSE by default).
a logical specifying whether to use the original labels in the returned network.

whether to output the alternative links when converting to another class; TRUE
by default.

whether to give a warning when reticulations are dropped when converting a
network into a tree.

the coordinates of the nodes (see replot).

further arguments passed to plot.

By default, the haplotype network is built using an infinite site model (i.e., uncorrected or Hamming
distance) of DNA sequences and pairwise deletion of missing data (see dist.dna). Users may
specify their own distance with the argument d. There is no check of labels, so the user must make
sure that the distances are ordered in the same way than the haplotypes.

haploNet 29

The probabilities calculated with Templeton et al.’s (1992) method may give non-finite values with
very divergent sequences, resulting in an error from haploNet. If this happens, it may be better to
use getProb = FALSE.

If two haplotypes are very different, haploNet will likely fail (error during integration due to non-
finite values).

Value

haploNet returns an object of class "haploNet” which is a matrix where each row represents a
link in the network, the first and second columns give the numbers of the linked haplotypes, the
third column, named "step”, gives the number of steps in this link, and the fourth column, named
"Prob”, gives the probability of a parsimonious link as given by Templeton et al. (1992). There
are three additional attributes: "freq", the absolute frequencies of each haplotype, "labels”, their
labels, and "alter.links", the alternative links of the network.

as.network and as. igraph return objects of the appropriate class.

Note

Plotting haplotype networks is a difficult task. There is a vignette in pegas (see vignette("PlotHaploNet"))
giving some information on this isseu. You may also see two posts on r-sig-genetics (July 2022)

that give some tricks in the situation when one haplotype is abundant and the others are in low
frequencies (the symbols are likely to overlap a lot by default):

https://stat.ethz.ch/pipermail/r-sig-genetics/2022-July/000237.html
https://stat.ethz.ch/pipermail/r-sig-genetics/2022-July/000238.html

The first post explains how to use the package network in combination with pegas, and the second
one gives a trick that works with pegas only for a similar result.

Author(s)

Emmanuel Paradis, Klaus Schliep

References

Templeton, A. R., Crandall, K. A. and Sing, C. F. (1992) A cladistic analysis of phenotypic associ-
ation with haplotypes inferred from restriction endonuclease mapping and DNA sequence data. III.
Cladogram estimation. Genetics, 132, 619-635.

See Also

haplotype, haploFreq, replot, diffHaplo, mst, mjn

Examples

generate some artificial data from 'woodmouse':
data(woodmouse)

x <- woodmouse[sample(15, size = 110, replace = TRUE),]
h <- haplotype(x)

(net <- haploNet(h))

plot(net)

https://stat.ethz.ch/pipermail/r-sig-genetics/2022-July/000237.html
https://stat.ethz.ch/pipermail/r-sig-genetics/2022-July/000238.html

30

haplotype

symbol sizes equal to haplotype sizes:

plot(net, size = attr(net, "freq"), fast = TRUE)

plot(net, size = attr(net, "freq"))

plot(net, size = attr(net, "freq"), scale.ratio = 2, cex = 0.8)

haplotype Haplotype Extraction and Frequencies

Description

haplotype extracts the haplotypes from a set of DNA sequences. The result can be plotted with the
appropriate function.

Usage

haplotype(x, ...)

S3 method for class 'DNAbin'

haplotype(x, labels = NULL, strict = FALSE,

trailingGapsAsN = TRUE, ...)

S3 method for class 'character'

haplotype(x, labels = NULL, ...)

S3 method for class 'numeric'

haplotype(x, labels = NULL, ...)

S3 method for class 'haplotype'

plot(x, xlab = "Haplotype”, ylab = "Number”, ...)

S3 method for class 'haplotype'

print(x, ...)

S3 method for class 'haplotype'

summary (object, ...)

S3 method for class 'haplotype'

sort(x,
decreasing = ifelse(what == "frequencies”, TRUE, FALSE),
what = "frequencies"”, ...)

S3 method for class 'haplotype'

x[...]

Arguments

X a set of DNA sequences (as an object of class "DNAbin"), or an object of class
"haplotype”.

object an object of class "haplotype"”.

labels a vector of character strings used as names for the rows of the returned object.
By default, Roman numerals are given.

strict a logical value; if TRUE, ambiguities and gaps in the sequences are ignored and
treated as separate characters.

haplotype 31

trailingGapsAsN
a logical value; if TRUE (the default), the leading and trailing alignment gaps
are considered as unknown bases (i.e., N). This option has no effect if strict =
TRUE.

xlab, ylab labels for the x- and x-axes.
further arguments passed to barplot (unused in print and sort).

decreasing a logical value specifying in which order to sort the haplotypes; by default this
depends on the value of what.

what a character specifying on what feature the haplotypes should be sorted: this must
be "frequencies” or "labels”, or an unambiguous abbreviation of these.

Details
The way ambiguities in the sequences are taken into account is explained in a post to r-sig-phylo
(see the examples below):
https://www.mail-archive.com/r-sig-phylo@r-project.org/msg@5541.html

The sort method sorts the haplotypes in decreasing frequencies (the default) or in alphabetical
order of their labels (if what = "1abels"). Note that if these labels are Roman numerals (as assigned
by haplotype), their alphabetical order may not be their numerical one (e.g., IX is alphabetically
before VIII).

From pegas 0.7, haplotype extracts haplotypes taking into account base ambiguities (see Note
below).

Value

haplotype returns an object of class c("haplotype”, "DNAbin") which is an object of class
"DNAbin" with two additional attributes: "index"” identifying the index of each observation that
share the same haplotype, and "from” giving the name of the original data.

sort returns an object of the same class respecting its attributes.

Note

The presence of ambiguous bases and/or alignment gaps in DNA sequences can make the interpre-
tation of haplotypes difficult. It is recommended to check their distributions with image.DNAbin
and base. freq (using the options in both functions).

Comparing the results obtained playing with the options strict and trailingGapsAsN of haplotype.DNAbin
may be useful. Note that the ape function seg.sites has the same two options (as from ape 5.4)
which may be useful to find the relevant sites in the sequence alignment.

Note

There are cases where the algorithm that pools the different sequences into haplotypes has diffi-
culties, although it seems to require a specific configuration of missing/ambiguous data. The last
example below is one of them.

Author(s)

Emmanuel Paradis

https://www.mail-archive.com/r-sig-phylo@r-project.org/msg05541.html

32 haplotype

See Also

haploNet, haploFreq, subset.haplotype, DNAbin for manipulation of DNA sequences in R.

The haplotype method for objects of class "loci” is documented separately: haplotype.loci.

Examples

generate some artificial data from 'woodmouse':
data(woodmouse)

x <- woodmouse[sample(15, size = 110, replace = TRUE),]

(h <- haplotype(x))

the indices of the individuals belonging to the 1st haplotype:
attr(h, "index")[[1]]

plot(sort(h))

get the frequencies in a named vector:
setNames(lengths(attr(h, "index")), labels(h))

data posted by Hirra Farooq on r-sig-phylo (see link above):

cat(">[AJ\NCCCGATTTTATATCAACATTTATTT------ "
">[DI\NCCCGATTTT======== === mmmmmm e "
">[BI\NCCCGATTTTATATCAACATTTATTT------ "
">[CI\NCCCGATTTTATATCACCATTTATTTTGATTT",
file = "x.fas"”, sep = "\n")

x <- read.dna("x.fas”, "f")

unlink("x.fas")

show the sequences and the distances:
alview(x)
dist.dna(x, "N", p = TRUE)

by default there are 3 haplotypes with a warning about ambiguity:
haplotype(x)

the same 3 haplotypes without warning:
haplotype(x, strict = TRUE)

if we remove the last sequence there is, by default, a single haplotype:
haplotype(x[-4, 1)

to get two haplotypes separately as with the complete data:
haplotype(x[-4, 1, strict = TRUE)

a simpler example:

y <- as.DNAbin(matrix(c("A", "A", "A", "A", "R", "=-"), 3))
haplotype(y) # 1 haplotype

haplotype(y, strict = TRUE) # 3 haplotypes

haplotype(y, trailingGapsAsN = FALSE) # 2 haplotypes

a tricky example with 4 sequences and 1 site:
z <- as.DNAbin(matrix(c("Y", "A", "R", "N"), 4))
alview(z, showpos = FALSE)

a single haplotype is identified:

haplotype.loci 33

haplotype(z)

'Y' has zero-distance with (and only with) 'N', so they are pooled
together; at a later iteration of this pooling step, 'N' has

zero-distance with 'R' (and ultimately with 'A') so they are pooled

if the sequences are ordered differently, 'Y' and 'A' are separated:
haplotype(z[c(4, 1:3), 1)

haplotype.loci Haplotype Extraction and Frequencies From Allelic Data

Description

This function extracts haplotypes from phased genotypes.

Usage

S3 method for class 'loci'
haplotype(x, locus = 1:2, quiet = FALSE, compress = TRUE,

check.phase = TRUE, ...)
S3 method for class 'haplotype.loci'
plot(x, ...)

dist.haplotype.loci(x)

Arguments
X an object of class "loci” or of class "haplotype.loci”.
locus a vector of integers giving the loci to analyse.
quiet a logical value specifying whether to not print the progress of the analysis
(FALSE by default).
compress by default only the unique haplotypes are returned with their frequencies. If
compress = FALSE, a matrix with all observed haplotypes is returned (with the
number of columns equals to the number of individuals times the ploidy level).
check.phase alogical value specifying whether to check if the individual genotypes are phased.
arguments passed to and from methods.
Details

The individuals with at least one unphased genotype are ignored with a warning.

dist.haplotype.loci computes pairwise distances among haplotypes by counting the number of
different alleles.

Checking whether the genotypes are phased can be time consuming with very big data sets. It may
be useful to set check.phase = FALSE if several analyses are done on the same data and no warning
was issued after the first scan, or you are sure that the genotypes are phased.

34 heterozygosity

Value

haplotype returns a matrix of mode character with the loci as rows and the haplotypes as columns.
The attribute "freq"” gives the counts of each haplotype and the class is "haplotype.loci”.

dist.haplotype.loci returns an object of class "dist".

Note

haplotype is a generic function with methods for objects of class "DNAbin" and of class "loci”.
Note that the class returned by these methods is different: c("haplotype”, "DNAbin") and "haplotype.loci”,
respectively. This and other details are likely to change in the future.

Author(s)

Emmanuel Paradis

See Also

haplotype, LD

heterozygosity Heterozygosity at a Locus Using Gene Frequencies

Description

Thes functions compute the mean heterozygosity(ies) from gene frequencies, and return optionally
the associated variance(s).

Usage
H(x, ...)
S3 method for class 'loci'
H(x, variance = FALSE, observed = FALSE, ...)
Default S3 method:
H(x, variance = FALSE, ...)

heterozygosity(x, variance = FALSE)

Arguments
X an object of class "loci”, or vector or a factor.
variance a logical indicating whether the variance of the estimated heterozygosity should
be returned (TRUE), the default being FALSE.
observed a logical specifying whether to calculate the observed heterozygosity.

unused.

heterozygosity 35

Details

The argument x can be either a factor or a vector. If itis a factor, then it is taken to give the individual
alleles in the population. If it is a numeric vector, then its values are taken to be the numbers of each
allele in the population. If it is a non-numeric vector, it is a coerced as a factor.

The mean heterozygosity is estimated with:

k
N n
H= 175 2
n—1< i1p1>

where n is the number of genes in the sample, k is the number of alleles, and p; is the observed
(relative) frequency of the ¢th allele.

Value

For the default method: a numeric vector of length one with the estimated mean heterozygosity (the
default), or of length two if the variance is returned.

For the "loci” method: a numeric matrix with one, two, or three columns with a row for each locus
and the values of heterozygosity as columns.

Author(s)

Emmanuel Paradis

References

Nei, M. (1987) Molecular evolutionary genetics. New York: Columbia University Press.

See Also

theta.s

Examples

data(jaguar)

H(jaguar, TRUE, TRUE)

use the (old) default method:

convert the data and compute frequencies:

S <- summary(jaguar)

compute H for all loci:

sapply(S, function(x) H(x$allele))

... and its variance

sapply(S, function(x) H(x$allele, variance = TRUE))

36 hw.test

hw. test Test of Hardy—Weinberg Equilibrium

Description

This function tests, for a series of loci, the hypothesis that genotype frequencies follow the Hardy—
Weinberg equilibrium. hw. test is a generic with methods for the classes "loci” and genind. Note
that the latter replaces HWE. test. genind in the adegenet package.

Usage
hw.test(x, B = 1000, ...)
S3 method for class 'loci'
hw.test(x, B = 1000, ...)
S3 method for class 'genind'
hw.test(x, B = 1000, ...)
Arguments
X an object of class "loci” or genind.
B the number of replicates for the Monte Carlo procedure; for the regular HW test,
set B = 0 (see details).
further arguments to be passed.
Details

This test can be performed with any level of ploidy. Two versions of the test are available: the
classical y2-test based on the expected genotype frequencies calculated from the allelic frequencies,
and an exact test based on Monte Carlo permutations of alleles (Guo and Thompson 1992). For the
moment, the latter version is available only for diploids. Set B = @ if you want to skip the second
test.

Value

A matrix with three or four columns with the X2-Value, the number of degrees of freedom, the
associated P-value, and possibly the P-value from the Monte Carlo test. The rows of this matrix are
the different loci in x.

Author(s)

Main code by Emmanuel Paradis; wrapper for genind objects by Thibaut Jombart.

References

Guo, S. W. and Thompson, E. A. (1992) Performing the exact test of Hardy—Weinberg proportion
for multiple alleles. Biometrics, 48, 361-372.

Jjaguar 37

Examples

Not run:
require(adegenet)

load data
data(nancycats)

test on genind object, no permutation
hw. test(nancycats, B=0)

test on loci object
x <- as.loci(nancycats)
hw. test(x)

End(Not run)
data(jaguar)
hw.test(jaguar)

jaguar Jaguar Micro-Satellites

Description

Fifty nine jaguars (Panthera onca) from four populations genotyped at thirteen micro-satellites by
Haag et al. (2010).

Usage

data(jaguar)

Format

An object of class "loci” with 59 rows and 14 columns.

Source

Haag, T., Santos, A. S., Sana, D. A., Morato, R. G., Cullen, Jr., L., Crawshaw, Jr., P. G., De Angelo,
C., Di Bitetti, M. S., Salzano, F. M. and Eizirik, E. (2010) The effect of habitat fragmentation on
the genetic structure of a top predator: loss of diversity and high differentiation among remnant
populations of Atlantic Forest jaguars (Panthera onca). Molecular Ecology, 22, 4906-4921.

Haag, T., Santos, A. S., Sana, D. A., Morato, R. G., Cullen, Jr., L., Crawshaw, Jr., P. G., De
Angelo, C., Di Bitetti, M. S., Salzano, F. M. and Eizirik, E. (2010) Data from: The effect of habitat
fragmentation on the genetic structure of a top predator: loss of diversity and high differentiation

among remnant populations of Atlantic Forest jaguars (Panthera onca). Dryad Digital Repository.
doi:10.5061/dryad.1884

https://doi.org/10.5061/dryad.1884

38 LD

See Also

loci, alleles2loci

The vignette “ReadingFiles” explains how to read data like these from Dryad (https://datadryad.
org/stash).

Examples

data(jaguar)

str(jaguar)

s <- summary(jaguar)

Not run:

works if the device is large enough:
plot(s, layout = 30, las = 2)

End(Not run)

LD Linkage Disequilibrium

Description
These two functions analyse linkage disequilibrium in the case of phased (LD) or unphased (LD2)
genotypes.

Usage

LD(x, locus = c(1, 2), details = TRUE)
LD2(x, locus = c(1, 2), details = TRUE)

Arguments

X an object of class "loci”.

locus a vector of two integers giving the loci to analyse.

details a logical value indicating whether to print the correlation matrix among alleles.
Details

These functions consider a pair of loci and compute the correlations among pairs of alleles.

LD first scans the data for unphased genotypes: all individuals with at least one unphased genotype
are dropped with a warning. It is based on the observed frequencies of haplotypes (Zaykin et al.
2008). LD2 is based on the observed frequencies of different genotypes (Schaid 2004).

Both functions accept any number of alleles. LD can work with any level of ploidy; LD2 works with
diploid data.

The present version does not test the significance of the 75 test (Zaykin et al. 2008) with permuta-
tions. These authors present simulation results suggesting that the chi-squared approximation has
similar type I error rates and power than the test based on permutations even for small sample sizes.
Furthermore, this test has better statistical properties than alternatives such as those reported here
(LRT and Pearson’s test).

https://datadryad.org/stash
https://datadryad.org/stash

LD 39

Value

For both functions, if details = FALSE, only the T2 test is returned.

For LD: if details = TRUE, a named list with the following elements:

Observed frequencies
the counts of haplotypes in the data.

Expected frequencies
the expected frequencies of haplotypes computed from the observed proportions
of alleles under the assumption of no linkage disequilibrium.

Correlations among alleles
the observed correlations among alleles from both loci.

LRT (G-squared)
the likelihood-ratio test of the null hypothesis of no linkage disequilibrium.

Pearson’s test (chi-squared)
the chi-squared test based on haplotypes counts.

T2 the T test with its number of degrees of freedom (df).

For LD2: if details = TRUE, a named list with two elements:

Delta the correlations among alleles (denoted Delta in Schaid 2004).
T2 the 75 test with its number of degrees of freedom (df).
Author(s)

Emmanuel Paradis

References

Schaid, D. J. (2004) Linkage disequilibrium testing when linkage phase is unknown. Genetics, 166,
505-512.

Zaykin, D. V., Pudovkin, A. and Weir, B. S. (2008) Correlation-based inference for linkage dise-
quilibrium with multiple alleles. Genetics, 180, 533-545.

See Also

haplotype.loci, is.phased, LDscan

Examples

data(jaguar)
LD2(jaguar, details = FALSE)
LD2(jaguar, locus = 8:9, details = FALSE)

40 LDscan

LDscan Multi-Locus Linkage Disequilibrium

Description

LDscan computes a matrix of pairwise linkage disequilibrium (LD) coefficients (|r|) from a set
of loci (which must be bi-allelic; if not, the results are not guaranteed to be meaningful). The
genotypes must be phased.

LDmap plots a matrix of LD coefficients, optionally with the positions of the loci.

Usage
LDscan(x, ...)

S3 method for class 'DNAbin'
LDscan(x, quiet = FALSE, what = c("r", "Dprime"), ...)
S3 method for class 'loci'
LDscan(x, depth = NULL, quiet = FALSE,
what = c("r", "Dprime"), ...)

LDmap(d, POS = NULL, breaks = NULL, col = NULL, border = NA,

angle = @, asp = 1, cex = 1, scale.legend = 0.8, ...)
Arguments

X an object of class "loci” with phased genotypes.

depth a vector of integers giving the the depth(s) (or lags) at which the r’s are calcu-
lated. By default, all possible depths are considered.

quiet a logical: should the progress of the operation be printed?

what the quantity to be computed. Two choices are possible: "r" (the default) for the
absolute value of the correlation between alleles and "Dprime” for the (scaled)
coefficients.

d a correlation matrix (can be an object of class "dist").

POS an optional vector of locus positions (e.g., from a VCF file; see examples).

breaks a vector of break intervals to count the values in d; by default, ten equally-sized
intervals are used.

col an optional vector of colours; a scale from lightyellow to red is used by default.

border the border of the rectangles: the default is to have no border (this is not the same
than default in rect; see examples).

angle value (in degrees) to rotate the graphic.

asp the aspect ratio of the graphic; one by default so the elements are squares (not
rectangles).

cex the scaling of the labels and text.

scale.legend the scaling of the legend rectangles.
further arguments passed to methods (LDscan) or to plot.default (LDmap).

LDscan 41

Details
The LD coefficient r is well defined when the two loci have only two alleles. In other cases, LD is
well defined (see LD) but the definition of r is not clear.
All levels of ploidy are accepted, but all loci should have the same ploidy level.

If depth is used, the r’s are calculated only for the pairs of loci that are distant by these values in x,
but necessarily on the chromosome. The returned list has names set with the values of depth.

The value returned is actually || (not r2).

Value

LDscan returns an object of class "dist"” by default, or a list if depth is used.

Author(s)

Emmanuel Paradis

See Also

LD, read.vcf

Examples

data(woodmouse)
d <- LDscan(woodmouse)
LDmap(d, seg.sites(woodmouse), seq(@, 1, .1))

Not run:
Download the VCF file from Dryad:
https://doi.org/10.5061/dryad.446sv.2

the VCF file should have this name:
fl <- "global.pop.GATK.SNP.hard.filters.V3.phased_all.pop.maf.@5.recode.vcf.gz"

info.fly <- VCFloci(fl)

LD map from the first 100 loci:

x <- read.vcf(fl, to = 100) # read only 100 loci

res <- LDscan(x)

bks <- seq(0, 1, 0.2)

LDmap(res, info.fly$POS[1:100], bks, scale.legend = 3)

check the chromosomes:
table(info.fly$CHROM)

LD map from 100 loci randomly distributed on the chromosome:
s <- ceiling(seq(1, 224253, length.out = 100))

xs <- read.vcf(fl, which.loci = s)

res2 <- LDscan(xs)

LDmap(res2, info.fly$POS[s], bks, scale.legend = 3)

42 mjn

something simpler with 10 loci:

x10 <- x[, 1:10]

the VCF file has no locus IDs, so we give some here:
names(x10) <- paste@("Loc"”, 1:10)

res1@ <- LDscan(x10, quiet = TRUE)

LDmap(res1@, angle = 45, border = NULL)

End(Not run)

mjn Median-Joining Network

Description

This function computes the median-joining network (MJN) as described by Bandelt et al. (1999).

Usage

mjn(x, epsilon = @, max.n.cost = 10000, prefix = "median.vector_"
quiet = FALSE)
S3 method for class 'mjn'

’

plot(x, shape = c("circles”, "diamonds"),
bg = c("green”, "slategrey”), labels = FALSE, ...)
Arguments
X a matrix (or data frame) of DNA sequences or binary 0/1 data; an object of class
"mjn" for plot.
epsilon tolerance parameter.
max.n.cost the maximum number of costs to be computed.
prefix the prefix used to label the median vectors.
quiet a logical value; by default, the progress of the calculatins is printed.
shape, bg the default shapes and colours for observed haplotypes and median vectors.
labels by default, the labels of the haplotypes are printed.

other arguments passed to plot.haploNet.

Details

MIJN is a network method where unobserved sequences (the median vectors) are reconstructed
and included in the final network. Unlike mst, rmst, and msn, mjn works with the original se-
quences, the distances being calculated internally using a Hamming distance method (with dist(x,
"manhattan”) for binary data or dist.dna(x, "N") for DNA sequences).

The parameter epsilon controls how the search for new median vectors is performed: the larger
this parameter, the wider the search (see the example with binary data).

mjn 43

If the sequences are very divergent, the search for new median vectors can take a very long time.
The argument max.n.cost controls how many such vectors are added to the network (the default
value should avoid the function to run endlessly).

The arguments shape and bg must be of length two (unlike in plot.haploNet). It is possible to
have more flexibility when plotting the MIN by changing its class, for instance with the output in
the examples below: class(nt@) <- "haplotNet".

Value
an object of class c("mjn", "haploNet") with an extra attribute (data) containing the original data
together with the median vectors.

Note

Since pegas 1.0, mjn is expected to run in reasonable times (less than 15 sec with 100 sequences).
Bandelt et al. (1999) reported long computing times because of the need to compute a lot of median
vectors. Running times also depend on the level of polymorphism in the data (see above).

Author(s)

Emmanuel Paradis

References
Bandelt, H. J., Forster, P. and Rohl, A. (1999) Median-joining networks for inferring intraspecific
phylogenies. Molecular Biology and Evolution, 16, 37-48.

See Also

haploNet, mst

Examples
data in Table 1 of Bandelt et al. (1999):
x <- c(0, 0, 0, 0, 0, 0, 0, 0, 0,
1, 1,1, 1, 0, o, 0, 0, 0,
1, @, 0, 0, 1, 1, 1, @, 0,
e, 1, 1,1, 1, 1,0, 1, 1)

x <- matrix(x, 4, 9, byrow = TRUE)
rownames(x) <- LETTERS[1:4]

(nt@ <- mjn(x))

(nt1 <= mjn(x, 1))

(nt2 <- mjn(x, 2))

plot(nt@)

Not run:
same like in Fig. 4 of Bandelt et al. (1999):
plotNetMDS(nt2, dist(attr(nt2, "data”), "manhattan"), 3)

End(Not run)

44 MMD
data in Table 2 of Bandelt et al. (1999):
z <= list(c("g”, "a”, "a", "a”, "a", "a" "a”, "a", "a" "a", "a" "a")
c("a”, "g”, "g”, "a”, "a”, "a”, "a”, "a”, "a”, "a”, "a”, "a"),
C(“a"’ Hall’ Ila”, Ilgll’ Ial), “a"’ Hall’ Ia”, Ilall’ Ila”, “g"’ Hgll)’
c("a”, "a", "a”, "a, "gh tgh. nah ngn mgn ngn mgn mgny
c("a”, "a”, "a”, "a”, "a”, "a”, "a”, "a”, "g", "g", "c”, "c"),
C(”a"’ Hall’ Ila”, Ilall’ Ila”, llall’ Hgll’ Ilg”, Igll’ Ilg”, llall’ Hall))
names(z) <- c("A1", "A2", "B1", "B2”, "C", "D")
z <- as.matrix(as.DNAbin(z))
(ntz <- mjn(z, 2))
Not run:
same like in Fig. 5 of Bandelt et al. (1999):
plotNetMDS(ntz, dist.dna(attr(ntz, "data"), "N"), 3)
End(Not run)
MMD Mismatch Distribution
Description
This function draws a histogram of the frequencies of pairwise distances from a set of DNA se-
quences.
Usage
MMD(x, xlab = "Distance”, main = "", rug = TRUE, legend = TRUE,
lcol = c("blue”, "red"), lty = c(1, 1), bw =2, ...)
Arguments
X a set of DNA sequences (object of class "DNAbin").
xlab the label for the x-axis.
main the title (none by default).
rug a logical specifying whether to add a rug of the pairwise distances on the hori-
zontal axis (see rug).
legend a logical specifying whether to draw a legend.
lcol the colours used for the curves.
1ty the line types for the curves
bw the bandwidth used for the empirical density curve (passed to density).
further arguments passed to hist.
Details

The histogram shows the observed distribution of pairwise distances. The lines show an empir-
ical density estimate (in blue) and the expected distribution under stable population (Rogers and

Harpending 1992).

mst 45

Value
an invisible list with three elements:

histogram the output of the hist call.
empirical.density

the empirical density as estimated by density.
expected.curve:

the values of the curve expected under stable population.

Author(s)

Emmanuel Paradis and David Winter

References

Rogers, A. R. and Harpending, H. (1992) Population growth makes waves in the distribution of
pairwise genetic-differences. Molecular Biology and Evolution, 9, 552-569.

Examples

data(woodmouse)

mmd . woodm <- MMD(woodmouse)

str(mmd.woodm)

MMD (woodmouse, breaks = 20, legend = FALSE)

MMD (woodmouse, 1ty = 1:2, 1lcol = rep("black”, 2), col = "lightgrey")

mst Minimum Spanning Tree and Network

Description

Computes a minimum spanning tree using Kruskal’s algorithm, the minimum spanning network
using Bandelt et al.’s algorithm, or the randomized minimum spanning tree (Paradis 2018).

Usage

mst(d)

msn(d)

rmst(d, B = NULL, stop.criterion = NULL, iter.lim = 1000,
quiet = FALSE)

Arguments
d a distance matrix, either as an object of class "dist"”, or a (square symmetric)
matrix.
B number of randomizations.

stop.criterion the stopping criterion if B is not given (see details).
iter.lim the maximum number of iterations.

quiet a logical value specifying whether to indicate progress of calculations.

46 mst

Details

For the RMST, the calculations stop when no new links are found after a number of successive
iterations specified by stop.criterion. By default, this number is ceiling(sqrt(n)) where n is the
number of observations. This criterion is ignored if B is given, or if n < 6 in which case complete
enumeration is done. In all cases, no more than iter.1lim iterations are done.

Value

an object of class "haploNet".

Note

ape has a function named mst which is older (and used by other packages) and returns its results
in a different form. The present version is more efficient. If you want to use the older version after
loading pegas, use ape: :mst since ape will certainly always be loaded before pegas.

Author(s)

Emmanuel Paradis

References

Bandelt, H. J., Forster, P. and Rohl, A. (1999) Median-joining networks for inferring intraspecific
phylogenies. Molecular Biology and Evolution, 16, 37-48.

Kruskal, J. B., Jr. (1956) On the shortest spanning subtree of a graph and the traveling salesman
problem. Proceedings of the American Mathematical Society, 7, 48-50.

Paradis, E. (2018) Analysis of haplotype networks: the randomized minimum spanning tree method.
Methods in Ecology and Evolution, 9, 1308—1317. DOI: 10.1111/2041-210X.12969.

See Also

haploNet, mjn

Examples

data(woodmouse)

d <- dist.dna(woodmouse, "n")
(r <= mst(d))

plot(r)

a case where the RMST and the MJIN are identical:

X <= c(">A", "TAAGTGCAT", ">B", "TAAATGCAT", ">C", "TAGGTGCAT", ">D", "TAAGTACAT",
"SE", "TAAGTGTAT", ">F", "TAAGTACAC”, ">G", "TAAGTACGT”, ">H", "CAAGTACAC",
">I", "CAAGCACAC", ">J", "CAAGTACAT", ">K", "CGAGTACAT", ">L", "TAAGTACGC",
">M" | "CAAGCACAT")

fl <- tempfile()

cat(x, file = f1, sep = "\n")

x <- read.dna(fl, "f")

tr <- rmst(dist.dna(x, "n"))

ts <- mjn(x)

mutations 47

stopifnot(all.equal(tr, ts))
unlink(f1)

mutations Plot Mutations on Networks

Description

mutations draws annotations about mutations related to the link of a haplotype network.

Usage
mutations(haploNet, link, x, y, data = NULL, style = "table"”, POS, SEQLEN, ...)
Arguments
haploNet an object of class "haploNet"” which should be plotted beforehand.
link the link number; can be left missing in which case the list of links in the network
is printed and the function exits.
X,y the coordinates where to draw the annotations; can be left missing: the user is
then asked to click where to draw them and the chosen coordinates are printed.
data the sequence data; can be left missing if the data are attached to the network (for
a MIJN network output by mjn.)
style the type annotations. There two possible choices: "table"” (default) and "sequence”
(can be abbreviated).
POS, SEQLEN a vector of genomic positions and the sequence length in case data is of class
"haplotype.loci”.
options
Details

The easiest way to use this function is with an output from mjn since the data are attached to the
network. In other cases, the sequence data must given to the argument data or attached to the
network as an attribute named "data”.

Value

none

Author(s)

Emmanuel Paradis

See Also

plot.haploNet, haplotype.loci

48 na.omit.loci

Examples

simple example
X <- as.DNAbin(matrix(c("a", "g"), 2, 1))

rownames(x) <- paste("Ind", 1:2, sep = "_")
nt <- mst(dist.dna(x, "N"))
plot(nt)

mutations(nt, link =1, x = 2, y = 2, data = x)

example(mjn)

plot(ntz, xlim = c(-5, 20))
mutations(ntz, 6, 10, @, style = "s")
mutations(ntz, 8, 10, -2, style = "s")

na.omit.loci Missing Allelic Data

Description

The first function is a method of the generic function na.omit.

nullAlleles2NA changes all genotypes with at least one ‘null’ allele (that is among the values in
na.alleles) into NA.

Usage
S3 method for class 'loci'
na.omit(object, na.alleles = c("0", "."), ...)
nullAlleles2NA(object, na.alleles = c("0", "."))
Arguments
object an object of class "loci”.
na.alleles a vector of character strings giving the alleles to be treated as missing data.
(unused)
Details

The side effect of na.omit is to drop the rows (individuals) with unclearly identified genotypes,
i.e., with at least one allele among na.alleles.

Other variables in the data table are eventually checked and levels with no observation (e.g., popu-
lation) are dropped.

nullAlleles2NA does not remove any observation but changes these genotypes into NA.

Value

an object of class "loci”.

nuc.div 49

Author(s)

Emmanuel Paradis

Examples

data(jaguar)

nrow(jaguar)
nrow(na.omit(jaguar))
nrow(nullAlleles2NA(jaguar))

nuc.div Nucleotide Diversity

Description

This function computes the nucleotide diversity from a sample of DNA sequences or a set of hap-
lotypes.

Usage
nuc.div(x, ...)
S3 method for class 'DNAbin'
nuc.div(x, variance = FALSE, pairwise.deletion = FALSE, ...)

S3 method for class 'haplotype'

nuc.div(x, variance = FALSE, pairwise.deletion = FALSE, ...)
Arguments
X a matrix or a list which contains the DNA sequences.
variance a logical indicating whether to compute the variance of the estimated nucleotide

diversity.

pairwise.deletion
a logical indicating whether to delete the sites with missing data in a pairwise
way. The default is to delete the sites with at least one missing data for all
sequences.

further arguments to be passed.

Details

This is a generic function with methods for classes "DNAbin" and "haplotype”. The first method
uses the sum of the number of differences between pairs of sequences divided by the number of
comparisons (i.e. n(n — 1)/2, where n is the number of sequences). The second method uses
haplotype frequencies. It could be that both methods give (slightly) different results because of
missing or ambiguous nucleotides: this is generally solved by setting pairwise.deletion = TRUE.

The variance of the estimated diversity uses formula (10.9) from Nei (1987). This applies only if all
sequences are of the same lengths, and cannot be used if pairwise.deletion = TRUE. A bootstrap
estimate may be in order if you insist on using the latter option.

50 plotNetMDS

Value

A numeric vector with one or two values if variance = TRUE.

Author(s)

Emmanuel Paradis

References

Nei, M. (1987) Molecular evolutionary genetics. New York: Columbia University Press.

See Also

base.freq, GC.content, theta.s, seg.sites

Examples

data(woodmouse)
nuc.div(woodmouse)
nuc.div(woodmouse, TRUE)
nuc.div(woodmouse, FALSE, TRUE)

plotNetMDS Plot Networks With MDS Layout

Description
This function plots a haplotype network using a layout calculated from an MDS performed on the
pairwise distance matrix. The haplotypes have always the same positions for different networks.
Usage
plotNetMDS(net, d, k = 2, show.mutation = FALSE, col = NULL, font = 2, cex = 1)

Arguments
net an object of class "haploNet".
d an object of class "dist” (or a matrix).
k the number of dimensions of the plot (2 or 3).

show.mutation alogical value: if TRUE, the number of steps is printed on the links.

col the colours of the links; by default, semi-transparent green.
font the font used to print the labels; bold by default.
cex the character expansion of the labels.

Value

NULL

R2.test 51

Author(s)

Emmanuel Paradis

References
Paradis, E. (2017) Analysis of haplotype networks: the randomized minimum spanning tree method.
Manuscript.

See Also

haploNet

Examples

data(woodmouse)

d <- dist.dna(woodmouse, "n")
net <- rmst(d)
plotNetMDS(net, d)

R2.test Ramos-Onsins—Rozas Test of Neutrality

Description

This function computes Ramos-Onsins and Rozas’s test of neutrality for a set of DNA sequences.

Usage
R2.test(x, B = 1000, theta = 1, plot = TRUE, quiet = FALSE, ...)
Arguments
X a DNA matrix (object of class "DNAbin").
B the number of replicates used for the simulation procedure.
theta the value of the 6 population parameter used in the simulation.
plot a logical value specifying whether to plot the results (TRUE by default).
quiet a logical value specifying whether to not display the progress of the simulations.
The default is FALSE meaning that a progress bar is displayed by default.
further arguments passed to hist.
Value

a list with two elements: R2 the value of the test statistic Ro, and P.val the associated P-value. If
B = @ a single value, the test statistic, is returned

52 read.gtx

Note
The simulation procedure probably needs to be tested and improved. However the results make
sense so far.

Author(s)

Emmanuel Paradis

References

Ramos-Onsins, R. and Rozas, R. (2002) Statistical properties of new neutrality tests against popu-
lation growth. Molecular Biology and Evolution, 19, 2092-2100.

Sano, J. and Tachida, G. (2005) Gene genealogy and properties of test statistics of neutrality under
population growth. Genetics, 169, 1687-1697.
See Also

read.dna, dist.dna

Examples

data(woodmouse)
R2.test(woodmouse, quiet = TRUE)

read.gtx Read Genetix Data Files

Description

This function reads allelic data from a Genetix file (.gtx).

Usage
read.gtx(file)

Arguments

file a file name specified by either a variable of mode character or a quoted string.

Value

A data frame with class c("loci”, "data.frame").

Note

The package adegenet has a similar function, read.genetix, but it returns an object of class
"genind".

read.loci 53

Author(s)

Emmanuel Paradis

References

Belkhir, K., Borsa, P., Chikhi, L., Raufaste, N. and Bonhomme, F. (1996-2004) GENETIX 4.05,
logiciel sous Windows(TM) pour la genetique des populations. Laboratoire Genome, Populations,
Interactions, CNRS UMR 5000, Universite de Montpellier II, Montpellier (France). https://
kimura.univ-montp2.fr/genetix/

See Also

read.loci,write.loci, read.vcf, read.genetix

Examples

require(adegenet)
(X <- read.gtx(system.file("files/nancycats.gtx", package = "adegenet")))
compare with the example in ?read.genetix

read.loci Read Allelic Data Files

Description

This function reads allelic data from a text file: rows are individuals, and columns are loci and
optional variables. By default, the first line of the file gives the locus names. If one column is
labelled ‘population’, it is taken as a population variable.

Usage
read.loci(file, header = TRUE, loci.sep = "", allele.sep = "/|",
col.pop = NULL, col.loci = NULL, ...)
Arguments
file a file name specified by either a variable of mode character, or a quoted string.
header a logical specifying whether the first line of the data file gives the names of the
loci (TRUE by default).
loci.sep the character(s) separating the loci (columns) in the data file (a white space by
default).
allele.sep the character(s) separating the alleles for each locus in the data file (a forward
slash by default).
col.pop specifies whether one of the column of the data file identifies the population. By

default, if one column is labelled ‘population’ (case-insensitive), it is taken as
the population variable; otherwise an integer giving the number of the column
or a character string giving its name. It is eventually renamed ‘population’ and
transformed as a factor.

https://kimura.univ-montp2.fr/genetix/
https://kimura.univ-montp2.fr/genetix/

54 read.vcf

col.loci a vector of integers or characters specifying the indices or the names of the
columns that are loci. By default, all columns are taken as loci except the popu-
lation one, if present or specified.

further arguments passed to read. table (e.g., row.names).

Details

The rownames of the returned object identify the individual genotypes; they are either taken from
the data file if present, or given the values "1", "2", ... Similarly for the colnames: if absent in the
file (in which case header = FALSE must be set), they are given the values "V1", "V2", ...

In the returned genotypes, alleles are separated by "/", even if it is not the case in the data file.

The vignette “Reading Genetic Data Files Into R with adegenet and pegas” explains how to read
various file formats including Excel files (type vignette("ReadingFiles"”) in R).

Value

A data frame with class c("loci”, "data.frame"). It is a data frame with an attribute "locicol”
specifying the columns that must be treated as loci. The latter are factors. The other columns can
be of any type.

Details on the structure can be found in https://emmanuelparadis.github.io/pegas/DefinitionDataClassesPegas.
pdf

Author(s)

Emmanuel Paradis

See Also

read.gtx, read.vcf,write.loci, summary.loci

read.vcf Read Variant Calling Format Files

Description

read. vcf reads allelic data from VCF (variant calling format) files.

write.vcf writes allelic data from an object of class "loci” into a VCF file.

Usage

read.vcf(file, from = 1, to = 10000, which.loci = NULL, quiet = FALSE)
write.vcf(x, file, CHROM = NULL, POS = NULL, quiet = FALSE)

https://emmanuelparadis.github.io/pegas/DefinitionDataClassesPegas.pdf
https://emmanuelparadis.github.io/pegas/DefinitionDataClassesPegas.pdf

read.vcf

Arguments
file
from, to

which.loci

quiet
X

CHROM, POS

Details

55

a file name specified by either a variable of mode character, or a quoted string.
the loci to read; by default, the first 10,000.

an alternative way to specify which loci to read is to give their indices (see
link{VCFloci} how to obtain them).

a logical: should the progress of the operation be printed?
an object of class "loci”.

two vectors giving the chromosomes and (genomic) positions of the loci (typi-
cally from the output of VCFloci).

The VCEF file can be compressed (*.gz) or not. Since pegas 0.11, compressed remote files can be
read (see examples).

A TABIX file is not required (and will be ignored if present).

In the VCF standard, missing data are represented by a dot and these are read “as is” by the present
function without trying to substitute by NA.

Value

an object of class c("loci”, "data.frame").

Note

Like for VCFloci, the present function can read either compressed (*.gz) or uncompressed files.
There should be no difference in performance between both types of files if they are relatively small
(less than 1 Gb as uncompressed, equivalent to ~50 Mb when compressed). For bigger files, it is
more efficient to uncompress them (if disk space is sufficient), especially if they have to be accessed
several times during the same session.

Author(s)

Emmanuel Paradis

References

https://www.internationalgenome.org/wiki/Analysis/vcf4.0

https://github.com/samtools/hts-specs

See Also

VCFloci, read. loci, read.gtx, write.loci

https://www.internationalgenome.org/wiki/Analysis/vcf4.0
https://github.com/samtools/hts-specs

56

Examples

Not run:
Chr Y from the 1000 Genomes:

a <- "https://ftp-trace.ncbi.nih.gov/1000genomes/ftp/release/20130502"

b <- "ALL.chrY.phase3_integrated_v1b.20130502.genotypes.vcf.gz"
WARNING: the name of the file above may change
url <- paste(a, b, sep = "/")

Solution 1: download first

download.file(url, "chrY.vcf.gz")

no need to uncompress:

(info <- VCFloci("chrY.vcf.gz"))

str(info) # show the modes of the columns

Solution 2: read remotely (since pegas 0.11)
info2 <- VCFloci(url)

identical(info, info2)

rm(info2)

SNP <- is.snp(info)

table(SNP) # how many loci are SNPs?
compare with:

table(getINFO(info, "VT"))

op <- par(mfcol = c(4, 1), xpd = TRUE)
lim <- c(2.65e6, 2.95e6)
distribution of SNP and non-SNP mutations along the Y chr:

plot(info$P0S, !SNP, "h", col = "red”, main = "non-SNP mutations”,

xlab = "Position”, ylab = "", yaxt = "n")
rect(lim[1], -0.1, lim[2], 1.1, 1wd = 2, 1ty = 2)
plot(info$P0S, SNP, "h", col = "blue”, main = "SNP mutations”,
xlab = "Position”, ylab = "", yaxt = "n")

rect(1lim[1], -0.1, 1lim[2], 1.1, lwd = 2, 1ty = 2)
par(xpd = FALSE)
same focusing on a smaller portion of the chromosome:

plot(info$P0S, !SNP, "h", col = "red”, xlim = lim, xlab = "Position"”,

ylab = "", yaxt = "n")

plot(info$P0S, SNP, "h", col = "blue”, xlim = lim, xlab = "Position",
ylab = "", yaxt = "n")

par (op)

read both types of mutations separately:
X.SNP <- read.vcf("chrY.vcf.gz", which.loci = which(SNP))
X.other <- read.vcf("chrY.vcf.gz", which.loci = which(!SNP))

identical (rownames(X.SNP), VCFlabels("chrY.vcf.gz")) # TRUE
cat(VCFheader("chrY.vcf.gz"))

get haplotypes for the first 10 loci:
h <- haplotype(X.SNP, 1:10)

plot their frequencies:

op <- par(mar = c(3, 10, 1, 1))

plot(h, horiz=TRUE, las = 1)

par(op)

read.vcf

replot 57

End(Not run)

replot Edit the Layout of a Haplotype Network

Description

This function makes possible to change the layout of a haplotype network interactively or with
specified coordinates.

Usage
replot(xy = NULL, col.identifier = "purple”, ...)
Arguments
Xy an optional list with vectors names x and y (or xx and yy) giving the coordinates

of the nodes.
col.identifier the colour used to identify the node to be moved.

further arguments passed to plot.

Details

This function can be used in two ways. By default (i.e., replot()), the user can edit a plotted
haplotype network by clicking with the mouse on the graphical window: a message is printed
asking to click once close to the node to move and then clicking again where this node should be
placed (careful: two separate single clicks). Editing is stopped with a right click.

The second possible use is to specify the new coordinates of the nodes with the argument xy,
typically, from a previous call to replot (see examples).

Since pegas 1.0, these coordinates can be used directly in plot.haploNet making possible to
combine networks with other graphics (which not possible with replot because the network is
replotted).

Value

a named list with two numeric vertors (x and y).

Note

For users of RStudio: the function does not work within this application. It seems the best is to run
R from a shell (or maybe opening a new graphical device with X11).

Author(s)

Emmanuel Paradis

58 IT.test

See Also

haploNet, haploFreq

Examples

a non-interactive example:
example(mjn)
layout(matrix(1:2, 1))
plot(ntz, labels = TRUE)
it is possible plot this network with no line-crossing
with these coordinates:
xy <- list(x = c(3.2, -2.6, -6.6, -7.2, 0, 3.5, 2.6, -2.9, -0.3, 3.4, -3.4),
y = c(3.4, 4.4, 1.3, -3.9, -5.5, -10.9, 0.1, -0.8, -2.3, -7.9, -8.1))
replot(ntz, xy = xy) # or plot(ntz, xy = xy, labels = TRUE)
layout (1)

an interactive example:

Not run:

data(woodmouse)

net <- haploNet(haplotype(woodmouse))

plot(net)

o <- replot() # interactive

click to rearrange the network at will...

then do a different plot using the same coordinates:
plot(net, bg = "red”, labels = FALSE, show.mutation = 2)
replot(o) # not interactive

End(Not run)

rr.test Tajima Relative Rate Test of Molecular Clock

Description

This function tests the hypothesis of a molecular evolutionary clock (i.e., a constant rate of molecu-
lar evolution) between two samples using an outgroup sample. It can be applied to both nucleotide
and amino acid sequences.

Usage

rr.test(x, y, out)

Arguments

X,y a single DNA sequence (object class "DNAbin").

out a single DNA sequence to be used as outgroup.

site.spectrum 59

Value

a list with two numeric values: Chi (Chi-squared statistic) and Pval (the P-value).

Author(s)

Alastair Potts <potts.a@gmail.com>

References

Tajima, F. (1993) Simple methods for testing molecular clock hypothesis. Genetics, 135, 599-607.
(Equation 4)

Examples

require(ape)
data(woodmouse)
rr.test(x = woodmouse[2,], y = woodmouse[3,], out = woodmouse[1, 1)

Test all pairs in a sample:

outgroup <- woodmouse[1, 1]

n <- nrow(woodmouse)

cc <- combn(2:n, 2)

FUN <- function(x)
rr.test(woodmouse[x[1], 1, woodmouse[x[2], 1, outgroup)$Pval

OUT <- apply(cc, 2, FUN)

two ways to arrange the output:

RES <- matrix(NA, n -1, n - 1)

RES[row(RES) > col(RES)] <- OUT

RES <- t(RES)

RESLCrow(RES) > col(RES)] <- OUT

RES <- t(RES)

dimnames(RES) <- list(2:n, 2:n)

RES <- as.dist(RES)

2nd method:

class(OUT) <- "dist”

attr(OUT, "Labels") <- as.character(2:15)

attr(OUT, "Size") <- n - 1L

attr(OUT, "Diag") <- attr(OUT, "Upper") <- FALSE

they are the same:

all(OUT == RES)

site.spectrum Site Frequency Spectrum

Description

site.spectrum computes the (un)folded site frequency spectrum of a set of aligned DNA se-
quences or SNPs.

60

site.spectrum

Usage
site.spectrum(x, ...)
S3 method for class 'DNAbin'
site.spectrum(x, folded = TRUE, outgroup =1, ...)
S3 method for class 'loci'
site.spectrum(x, folded = TRUE, ancestral = NULL, ...)
S3 method for class 'spectrum'
plot(x, col = "red”, main = NULL, ...)
Arguments
X a set of DNA sequences (as an object of class "DNAbin™), or an object of class
"spectrum”.
folded a logical specifying whether to compute the folded site frequency spectrum (the
default), or the unfolded spectrum if folded = FALSE.
outgroup a single integer value giving which sequence is ancestral; ignored if folded =
TRUE.
ancestral a vector of ancestral alleles (required if folded = FALSE), typically from an out-
put of VCFloci.
col the colour of the barplot (red by default).
main a character string for the title of the plot; a generic title is given by default (use
main ="" to have no title).
further arguments passed to barplot, or to other mehods.
Details

Under the infinite sites model of mutation, mutations occur on distinct sites, so every segregating
(polymorphic) site defines a partition of the n sequences (see Wakeley, 2009). The site frequency
spectrum is a series of values where the ¢th element is the number of segregating sites defining a
partition of ¢ and n — ¢ sequences. The unfolded version requires to define an ancestral state with an
external (outgroup) sequence, so ¢ varies between 1 and n — 1. If no ancestral state can be defined,
the folded version is computed, so i varies between 1 and n/2 or (n — 1)/2, for n even or odd,
respectively.

If folded = TRUE, sites with more than two states are ignored and a warning is returned giving how
many were found.

If folded = FALSE, sites with an ambiguous state at the external sequence are ignored and a warning
is returned giving how many were found. Note that it is not checked if some sites have more than
two states.

If x is an object of class "loci”, the loci which are not biallelic (e.g., SNPs) are dropped with a
warning.

Value

site.spectrum returns an object of class "spectrum” which is a vector of integers (some values
may be equal to zero) with the attributes "sample.size"” and "folded” (alogical value) indicating
which version of the spectrum has been computed.

stairway 61

Author(s)

Emmanuel Paradis

References
Wakeley, J. (2009) Coalescent Theory: An Introduction. Greenwood Village, CO: Roberts and
Company Publishers.

See Also

DNAbin for manipulation of DNA sequences in R, haplotype

Examples

require(ape)

data(woodmouse)

(sp <- site.spectrum(woodmouse))
plot(sp)

stairway The Stairway Plot

Description

This function fits a model of population change using the site frequency spectrum (SFS). The default
assumes © = 1. A model of population change estimates the temporal changes in © with respect
to the value of this parameter at present time. The model is specified by the user with the option
epoch.

Usage

stairway(x, epoch = NULL, step.min = 1e-6, step.max = le-3)
S3 method for class 'stairway'
plot(x, type = "S", xlab = "Coalescent intervals”,

ylab = expression(Theta), ...)
S3 method for class 'stairway'
lines(x, type = "S", ...)
Arguments
X an object of class site.spectrum or of class stairway.
epoch an optional vector of integers giving the periods of time (or epochs) with distinct
O.
step.min a single numeric value giving the smallest step size used during optimization.
step.max id. for the largest step size (see nlminb).
type the type of lines.
xlab, ylab the default labels on the axes.

further arguments passed to other methods.

62 subset.haplotype

Details

The basic method implemented in this function is similar to Polanski and Kimmel (2003). The
temporal model with “epochs” is from Liu and Fu (2015).

Value

By default, a single numeric value with the null deviance. If epoch is used, a list with the following

components:
estimates the maximum likelihood estimates.
deviance the deviance of the fitted model.

null.deviance the deviance of the null model.

LRT the likelihood-ratio test comparing the null and the fitted models.
AIC the Akaike information criterion of the fitted model.
Author(s)

Emmanuel Paradis

References

Liu, X. M. and Fu, Y. X. (2015) Exploring population size changes using SNP frequency spectra.
Nature Genetics, 47, 555-559.

Polanski, A. and Kimmel, M. (2003) New explicit expressions for relative frequencies of single-
nucleotide polymorphisms with application to statistical inference on population growth. Genetics,
165, 427-436.

See Also

site.spectrum, nlminb

Examples

data(woodmouse)
sp <- site.spectrum(woodmouse)
stairway(sp, c(1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2))

subset.haplotype Subsetting and Filtering Haplotypes

Description

This function selects haplotypes based on their (absolute) frequencies and/or proportions of missing
nucleotides.

subset.haplotype 63

Usage

S3 method for class 'haplotype'

subset(x, minfreq = 1, maxfreq = Inf, maxna = Inf, na = c("N", "?"), ...)
Arguments

X an object of class c("haplotype”, "DNAbin").

minfreq, maxfreq
the lower and upper limits of (absolute) haplotype frequencies. By default, all
haplotypes are selected whatever their frequency.

maxna the maximum frequency (absolute or relative; see details) of missing nucleotides
within a given haplotype.

na a vector of mode character specifying which nucleotide symbols should be treated
as missing data; by default, unknown nucleotide (N) and completely unknown
site (?) (can be lower- or uppercase). There are two shortcuts: see details.

unused.

Details

The value of maxna can be either less than one, or greater or equal to one. In the former case, it
is taken as specifying the maximum proportion (relative frequency) of missing data within a given
haplotype. In the latter case, it is taken as the maximum number (absolute frequency).

na = "all" is a shortcut for all ambiguous nucleotides (including N) plus alignment gaps and com-
pletely unknown site (?).

na = "ambiguous” is a shortcut for only ambiguous nucleotides (including N).

Value

an object of class c("haplotype”, "DNAbin").

Author(s)

Emmanuel Paradis

See Also

haplotype

Examples

data(woodmouse)

h <- haplotype(woodmouse)

subset(h, maxna = 20)

subset(h, maxna = 20/ncol(h)) # same thing than above

64 summary.loci

summary.loci Print and Summaries of Loci Objects

Description

These functions print and summarize table of alleles and loci (objects of class "loci").

Usage
S3 method for class 'loci'
print(x, details = FALSE, ...)
S3 method for class 'loci'
summary (object, ...)
S3 method for class 'summary.loci'
print(x, ...)

S3 method for class 'loci'
x[i, j, drop = FALSE]
S3 method for class 'summary.loci'

plot(x, loci, what = "both", layout = 1, col = c("blue”, "red"), ...)
Arguments

X, object an object of class "loci” or "summary.loci”.

details a logical value: if TRUE the data are printed as a data frame; the default is FALSE.

i, J indices of the rows and/or columns to select or to drop. They may be numeric,
logical, or character (in the same way than for standard R objects).

drop a logical specifying whether to returned an object of the smallest dimension
possible, i.e., may return a vector or a factor if drop = TRUE (this is not the
default).

loci the loci (genes) to be plotted. By default, all loci are plotted.

what the frequencies to be plotted. Three choices are possible: "alleles”, "genotypes”,
and "both"” (the default), or any unambiguous abbreviations.

layout the number of graphs to be plotted simultaneously.

col the colours used for the barplots.

further arguments to be passed to or from other methods.

Details

Genotypes not observed in the data frame are not counted.

When using the [method, if only one column is extracted and the option drop = TRUE, or if the
returned data frame has no ‘locus’ column, then the class "loci” is dropped. The option drop =
FALSE (default) keeps the class (see examples).

An object of class "loci” can be edited in the R data editor with, e.g., fix(x) or x <- edit(x).

summary.loci computes the absolute frequencies (counts); see the examples on how to compute
the relative frequencies (proportions).

sSW 65

Value

summary . loci returns a list with the genes as names and each element made a list with two vectors
"genotype” and "allele” with the frequencies (numbers) of genotypes and alleles, respectively.
The names of these two vectors are the observed genotypes and alleles.

print and plot methods return NULL.

Author(s)

Emmanuel Paradis

See Also

read.loci, getAlleles, edit.loci

Examples

data(jaguar)

s <- summary(jaguar)

Not run:

works if the device is large enough:
plot(s, layout = 30, las = 2)

layout (1)

End(Not run)
compute the relative frequencies:

rapply(s, function(x) x/sum(x), how = "replace")
extract a single locus:
jaguar[, 1]
jaguar[, 1, drop = TRUE] # returns a vector
jaguar[[11] # also returns a vector
SW Sliding Windows
Description

Applies a function over a matrix or a vector using sliding windows. sw is a generic function with a
method for "DNAbin" matrices.

Usage

sw(x, width, step, ...)
Default S3 method:
sw(x, width = 100, step = 50, POS = NULL,
FUN = mean, out.of.pos = NA_real_, na.rm = TRUE, L = NULL, ...)
S3 method for class 'DNAbin'
sw(x, width = 100, step = 50, FUN = GC.content,
rowAverage = FALSE, quiet = TRUE, ...)

sSw

S3 method for class 'sw'
plot(x, type = "1", xlab = "Position”, x.scaling =1,

show. ranges

col.ranges, 1lty.

Details

show.ranges = FALSE, col.ranges = "blue”,
lty.ranges = 1, lwd.ranges =1, ...)
Arguments
X a vector or a matrix.
width an integer giving the window width.
step an integer giving the step separating successive windows.
POS a numeric vector giving the positions of the sites.
FUN the function to be applied to the windows.
rowAverage a logical value: if TRUE, FUN is applied over all rows of x; if FALSE (the default)
FUN is applied to each row of x.
out.of.pos the values used for the sites which are not in POS.
na.rm option passed to FUN.
L the length of the chromosome (or sequence). If not given, this is largest value in
POS or the length of x if POS is not given.
quiet a logical value: if FALSE, the progress of the calculations is printed.
type the type of plotting (see plot.default).
xlab the label under the x-axis.
x.scaling the scaling of the x-axis.

a logical value specifying whether to show the ranges of the windows with hor-
izontal segments (ignored with a warning if x is a matrix).

ranges, lwd.ranges
arguments to modify the appearance of the above segments (see segments).

further arguments passed to and from methods.

FUN should return a single value.

x should be a matrix for the "DNAbin"” method, or a vector for the default one.

For the default method, the vector x is expanded into a vector of length L (see above on how this
value is found) and the positions which are not in POS are filled with the value given in out . of . pos.
The resulting vector is then analysed with the function FUN which must have an option na. rm. If the
function you want to use does not have this option, you can use something like FUN = function(x,
na.rm=TRUE) foo(x[!is.na(x)]), replacing ‘foo’ by the name of your function. You may also
include more control on the handling of missing data.

Value

a matrix or a vector (if rowAverage = TRUE).

tajima.test 67

Author(s)

Emmanuel Paradis

Examples

data(woodmouse)

sw(woodmouse)

sw(woodmouse, 200, 200)

sw(woodmouse, 200, 200, rowAverage = TRUE)

to get the proportions of G:
foo <- function(x) base.freq(x)["g"]
sw(woodmouse, 200, 200, FUN = foo, rowAverage = TRUE)

a simulated example with the default method:

X <= runif(100)

pos <- sort(sample(le6, 100))

resx <- sw(x, w = 2e4, s = 5e3, POS = pos, L = 1e6)

plot(resx, show.ranges = TRUE, x.scaling = 1e6, xlab = "Position (Mb)")

tajima.test Test of the Neutral Mutation Hypothesis

Description

This function tests the neutral mutation hypothesis with Tajima’s D.

Usage

tajima.test(x)

Arguments

X a set of DNA sequences (object of class "DNAbin").

Value

A list with three numeric values:

D Tajima’s D statistic.

Pval.normal the p-value assuming that D follows a normal distribution with mean zero and
variance one.

Pval.beta the p-value assuming that D follows a beta distribution after rescaling on [0, 1]
(Tajima, 1989).

Note

Alignment gaps in the sequences are ignored when calculating pairwise distances.

68 theta.h

Author(s)

Emmanuel Paradis

References

Tajima, F. (1989) Statistical method for testing the neutral mutation hypothesis by DNA polymor-
phism. Genetics, 123, 595-595.

Examples

require(ape)
data(woodmouse)
tajima. test(woodmouse)

theta.h Population Parameter THETA using Homozygosity

Description
This function computes the population parameter THETA using the homozygosity (or mean het-
erozygosity) from gene frequencies.

Usage

theta.h(x, standard.error = FALSE)

Arguments

X a vector or a factor.

standard.error alogical indicating whether the standard error of the estimated theta should be
returned (TRUE), the default being FALSE.
Details

The argument x can be either a factor or a vector. If it is a factor, then it is taken to give the individual
alleles in the population. If it is a numeric vector, then its values are taken to be the numbers of each
allele in the population. If it is a non-numeric vector, it is a coerced as a factor.

The standard error is computed with an approximation due to Chakraborty and Weiss (1991).

Value

A numeric vector of length one with the estimated theta (the default), or of length two if the standard
error is returned (standard.error = TRUE).

Author(s)

Emmanuel Paradis

theta.k 69

References

Zouros, E. (1979) Mutation rates, population sizes and amounts of electrophoretic variation at en-
zyme loci in natural populations. Genetics, 92, 623-646.

Chakraborty, R. and Weiss, K. M. (1991) Genetic variation of the mitochondrial DNA genome in
American Indians is at mutation-drift equilibrium. American Journal of Physical Anthropology, 86,
497-506.

See Also

heterozygosity, theta.s, theta.k, theta.tree

Examples

data(jaguar)

compute frequencies:

S <- summary(jaguar)

compute THETA for all loci:

sapply(S, function(x) theta.h(x$allele))

theta.k Population Parameter THETA using Expected Number of Alleles

Description

This function computes the population parameter THETA using the expected number of alleles.

Usage
theta.k(x, n = NULL, k = NULL)

Arguments

X a vector or a factor.

n a numeric giving the sample size.

k a numeric giving the number of alleles.
Details

This function can be used in two ways: either with a vector giving the individual genotypes from
which the sample size and number of alleles are derived (e.g., theta.k(x)), or giving directly these
two quantities (e.g., theta.k(n =50, k =5)).

The argument x can be either a factor or a vector. If itis a factor, then it is taken to give the individual
alleles in the population. If it is a numeric vector, then its values are taken to be the numbers of each
allele in the population. If it is a non-numeric vector, it is a coerced as a factor.

Both arguments n and k must be single numeric values.

70 theta.msat

Value

A numeric vector of length one with the estimated theta.

Note

For the moment, no standard-error or confidence interval is computed.

Author(s)

Emmanuel Paradis

References

Ewens, W. J. (1972) The sampling theory of selectively neutral alleles. Theoretical Population
Biology, 3, 87-112.

See Also

theta.h, theta.s, theta.tree

Examples

data(jaguar)

compute frequencies:

S <- summary(jaguar)

compute THETA for all loci:

sapply(S, function(x) theta.k(x$allele))

theta.msat Population Parameter THETA From Micro-Satellites

Description

This function estimates the population parameter 6 using micro-satellite data with three different
estimators.

Usage

theta.msat (x)

Arguments

X an object of class "loci”.

theta.s 71

Details

The three estimators are based on (i) the variance of the number of repeats, (ii) the expected ho-
mozygosity (both described in Kimmel et al., 1998), and (iii) the mean allele frequencies (Haasl
and Payseur, 2010).

The data must be micro-satellites, so the allele names must be the allele sizes (see the example). If
the data are expressed in repeat counts, then only the first estimator is affected.

Value

a numeric matrix with loci as rows and the three estimates of 6 as columns.

Author(s)

Emmanuel Paradis

References

Kimmel, M., Chakraborty, R., King, J. P., Bamshad, M., Watkins, W. S. and Jorde, L. B. (1998)
Signatures of population expansion in microsatellite repeat data. Genetics, 148, 1921-1930.

Haasl, R. J. and Payseur, B. A. (2010) The number of alleles at a microsatellite defines the allele
frequency spectrum and facilitates fast accurate estimation of 8. Molecular Biology and Evolution,
27,2702-2715.

See Also

theta.h, theta. tree

Examples

data(jaguar)
theta.msat(jaguar)

theta.s Population Parameter THETA using Segregating Sites

Description

This function computes the population parameter THETA using the number of segregating sites s
in a sample of n DNA sequences.

Usage
theta.s(x, ...)
S3 method for class 'DNAbin'
theta.s(x, variance = FALSE, ...)

Default S3 method:
theta.s(x, n, variance = FALSE, ...)

72 theta.tree

Arguments
X a numeric giving the number of segregating sites.
n a numeric giving the number of sequences.
variance a logical indicating whether the variance of the estimated THETA should be
returned (TRUE), the default being FALSE.
arguments passed to methods.
Value

A numeric vector of length one with the estimated theta (the default), or of length two if the standard
error is returned (variance = TRUE).

Author(s)

Emmanuel Paradis

References

Watterson, G. A. (1975) On the number of segragating sites in genetical models without recombi-
nation. Theoretical Population Biology, 7, 256-276.

Tajima, F. (1989) Statistical method for testing the neutral mutation hypothesis by DNA polymor-
phism. Genetics, 123, 585-595.

See Also

theta.h, theta.k, seg.sites, nuc.div, theta. tree

Examples

data(woodmouse)

theta.s(woodmouse)
theta.s(woodmouse, variance = TRUE)
using the default:

s <- length(seg.sites(woodmouse))

n <- nrow(woodmouse)

theta.s(s, n)

theta.tree Population Parameter THETA Using Genealogy

Description

These functions estimate the population parameter © from a genealogy (coded a as phylogenetic
tree) under the coalescent.

theta.tree 73

Usage

theta.tree(phy, theta, fixed = FALSE, analytical = TRUE, log = TRUE)

theta.tree.hetero(phy, theta, fixed = FALSE, log = TRUE)
Arguments
phy an object of class "phylo”.
theta a numeric vector.
fixed a logical specifying whether to estimate theta (the default), or to return the
likelihoods for all values in theta.
analytical a logical specifying whether to use analytical formulae to estimate theta and its
standard-error. If FALSE, a numerical optimisation of the likelihood is performed
(this option is ignored if fixed = TRUE)
log a logical specifying whether to return the likelihoods on a log scale (the default);
ignored if fixed = FALSE.
Details

With theta. tree, the tree phy is considered as a genealogy with contemporaneous samples, and
therefore should be ultrametric. With theta. tree.hetero, the samples may be heterochronous so
phy can be non-ultrametric. If phy is ultrametric, both functions return the same results.

By default, € is estimated by maximum likelihood and the value given in theta is used as starting
value for the minimisation function (if several values are given as a vector the first one is used). If
fixed = TRUE, then the [log-]likelihood values are returned corresponding to each value in theta.

The present implementation does a numerical optimisation of the log-likelihood function (with
nlminb) with the first partial derivative as gradient. It is possible to solve the latter and have a direct
analytical MLE of @ (and its standard-error), but this does not seem to be faster.

Value

If fixed = FALSE, a list with two elements:

theta the maximum likelihood estimate of ©;

loglik the log-likelihood at its maximum.

If fixed = TRUE, a numeric vector with the [log-]likelihood values.

Author(s)

Emmanuel Paradis

74 utilities

References

Kingman, J. F. C. (1982) The coalescent. Stochastic Processes and their Applications, 13, 235-248.

Kingman, J. F. C. (1982) On the genealogy of large populations. Journal of Applied Probability,
19A, 27-43.

Wakeley, J. (2009) Coalescent Theory: An Introduction. Greenwood Village, CO: Roberts and
Company Publishers.

See Also

theta.h, theta.s, theta.k

Examples

tr <- rcoal(50)
(o <- theta.tree(tr))
theta.tree(tr, 10, analytical = FALSE) # uses nlminb()
profile log-likelihood:
THETA <- seq(@.5, 2, 0.01)
loglikelihood <- theta.tree(tr, THETA, fixed = TRUE)
plot(THETA, loglLikelihood, type = "1")
xx <- seq(o$theta - 1.96 x o$se, o$theta + 1.96 * o$se, 0.01)
yy <- theta.tree(tr, xx, fixed = TRUE)
polygon(c(xx, rev(xx)), c(yy, rep(@, length(xx))),
border = NA, col = "lightblue")
segments(o$theta, @, o$theta, o$loglLik, col = "blue")
abline(v = 1, 1ty = 3)
legend("topright”, legend = expression("log-likelihood"”,
"True " * theta, hat(theta) *x " (MLE)", "95%\ conf. interv."),
1ty = c(1, 3, 1, 1), lwd = c(1, 1, 1, 15),
col = c("black”, "black”, "blue"”, "lightblue"))

utilities Utily Functions for pegas

Description

The first three functions extract information on loci, expand.genotype creates a table of all pos-
sible genotypes given a set of alleles, proba.genotype calculates expected probabilities of geno-
types under Hardy—Weinberg equilibrium, is. snp tests whether a locus is a SNP, is.phased tests
whether a gentotype is phased, and unphase unphase phased genotypes.

Usage

getPloidy(x)

getAlleles(x)

getGenotypes(x)

expand.genotype(n, alleles = NULL, ploidy = 2, matrix = FALSE)
proba.genotype(alleles = c("1", "2"), p, ploidy = 2)

utilities 75

is.snp(x)

S3 method for class 'loci'

is.snp(x)

is.phased(x)

unphase(x)
Arguments

X an object of class "loci”.

n an integer giving how many alleles to consider (ignored if alleles is used).

alleles the allele names as a vector of mode character.

ploidy an integer giving the ploidy level (either 2 or 4 for the moment).

matrix a logical specifying whether to return the genotypes in a matrix or as a character

vector.

p a vector of allele probabilities; if missing, equal probabilities are assumed.

Details

expand.genotype and proba.genotype accept any level of ploidy and any number of alleles.

For is.snp, a locus is defined as a SNP if it has two alleles and their labels are made of a single
character (e.g., A and T, or 1 and 2, but not A and AT).

Value

getPloidy returns the ploidy level of all genotypes as a matrix of integers with rownames and
colnames taken from x.

getAlleles and getGenotypes return the alleles and genotypes, respectively, observed in all loci
in an object of class "loci” as a list.

expand. genotype returns a character vector (the default) or a matrix where the rows are the geno-
types and the columns are the alleles. The matrix is numeric by default, or character if the argument
alleles is given.

proba.genotype returns a numeric vector with names set as the genotypes.
is.snp returns a logical vector specifying whether each locus is a SNP.

is.phased returns a matrix of the same size than the original data specifying whether each genotype
is phased or not.

unphase unphases the genotypes and eventually pools those that become identical once unphased
(e.g., AIT and TIA).

Author(s)

Emmanuel Paradis

76 VCFloci

Examples

data(jaguar)

X <- jaguar[, 1:2]

getAlleles(X)

getGenotypes(X)

expand. genotype(2)

expand.genotype(2, LETTERS[1:3])

expand.genotype(3, ploidy = 4)

proba.genotype() # classical HWE with 2 alleles

an octoploid with a six-allele locus (1287 possible genotypes):
length(p <- proba.genotype(alleles = LETTERS[1:6], ploidy = 8))
max(p) # ~ 0.006

back to the jaguar data:

s <- summary(X)

allele counts from the first locus:

p <- s[[1]]%allele

expected probabilities for the 136 possible genotypes...
proba.genotype(names(p), p/sum(p))

... to be compared with s[[1]]$genotype
VCFloci Information From VCF Files
Description

These functions help to extract information from VCF files and to select which loci to read with
read.vcf.

Usage

VCFloci(file, what = "all", chunk.size = 1e9, quiet = FALSE)
S3 method for class 'VCFinfo'

print(x, ...)

VCFheader(file)

VCFlabels(file)

S3 method for class 'VCFinfo'

is.snp(x)

rangeP0S(x, from, to)

selectQUAL(x, threshold = 20)

getINFO(x, what = "DP", as.is = FALSE)

Arguments
file file name of the VCF file.
what a character specifying the information to be extracted (see details).
chunk.size the size of data in bytes read at once.

quiet a logical: should the progress of the operation be printed?

VCFiloci 77

X an object of class "VCFinfo".

from, to integer values giving the range of position values.

threshold a numerical value indicating the minimum value of quality for selecting loci.
as.is alogical. By default, getINFO tries to convert its output as numeric: if too many

NA’s are produced, the output is returned as character. Use as.is = TRUE to
force the output to be in character mode.

further arguments passed to and from other methods.

Details

The variant call format (VCF) is described in details in the References. Roughly, a VCF file is
made of two parts: the header and the genotypes. The last line of the header gives the labels of
the genotypes: the first nine columns give information for each locus and are (always) "CHROM",
"POS", "ID", "REF", "ALT", "QUAL", "FILTER", "INFO", and "FORMAT". The subsequent
columns give the labels (identifiers) of the individuals; these may be missing if the file records only
the variants. Note that the data are arranged as the transpose of the usual way: the individuals are
as columns and the loci are as rows.

VCFloci is the main function documented here: it reads the information relative to each locus. The
option what specifies which column(s) to read. By default, all of them are read. If the user is
interested in only the locus positions, the option what = "POS"” would be used.

Since VCEF files can be very big, the data are read in portions of chunk.size bytes. The default (1
Gb) should be appropriate in most situations. This value should not exceed 2e9.

VCFheader returns the header of the VCF file (excluding the line of labels). VCFlabels returns the
individual labels.

The output of VCFloci is a data frame with as many rows as there are loci in the VCF file and
storing the requested information. The other functions help to extract specific information from this
data frame: their outputs may then be used to select which loci to read with read. vcf.

is.snp tests whether each locus is a SNP (i.e., the reference allele, REF, is a single charater and the
alternative allele, ALT, also). It returns a logical vector with as many values as there are loci. Note
that some VCF files have the information VT (variant type) in the INFO column.

rangeP0S and selectQUAL select some loci with respect to values of position or quality. They
return the indices (i.e., row numbers) of the loci satisfying the conditions.

getINFO extracts a specific information from the INFO column. By default, these are the total
depths (DP) which can be changed with the option what. The meaning of these information should
be described in the header of the VCEF file.

Value

VCFloci returns an object of class "VCFinfo" which is a data frame with a specific print method.
VCFheader returns a single character string which can be printed nicely with cat.

VCFlabels returns a vector of mode character.

is.snp returns a vector of mode logical.

rangeP0S and selectQUAL return a vector of mode numeric.

getINFO returns a vector of mode character or numeric (see above).

78 write.loci
Note
VCFloci is able to read either compressed (*.gz) or uncompressed files.
Author(s)
Emmanuel Paradis
References
https://www.internationalgenome.org/wiki/Analysis/vcf4.0
https://github.com/samtools/hts-specs
See Also
read.vcf
Examples
see ?read.vcf
write.loci Write Allelic Data Files
Description
This function writes allelic data into a text file.
Usage
write.loci(x, file = "", loci.sep = " ", allele.sep = "/|",
Arguments
X an object of class "loci”.
file a file name specified by either a variable of mode character, or a quoted string.
By default, the data are printed on the console.
loci.sep the character(s) use to separate the loci (columns) in the file (a space by default).
allele.sep the character(s) used to separate the alleles for each locus in the file (a slash by
default).
further arguments passed to write. table.
Value

NULL

https://www.internationalgenome.org/wiki/Analysis/vcf4.0
https://github.com/samtools/hts-specs

write.loci

Author(s)

Emmanuel Paradis

See Also

read.loci, write.table for all its options

Examples

data(jaguar)

X <- jaguar[1:10, 1:3] # take a small subset

write.loci(x)

use of '..."':

write.loci(x, loci.sep = "\t", quote = FALSE, col.names = FALSE)

Index

* 10 geod, 20
alleles?loci, 4 geoTrans, 21
as.loci, 9 hap.div, 24
edit.loci, 17 haploFreq, 25
read.gtx, 52 haplotype, 30
read.loci, 53 haplotype.loci, 33
read.vcf, 54 heterozygosity, 34
VCFloci, 76 na.omit.loci, 48
write.loci, 78 nuc.div, 49

* cluster site.spectrum, 59
dist.asd, 15 subset.haplotype, 62

* datasets summary.loci, 64
jaguar, 37 sw, 65

* hplot theta.h, 68
allelicrichness, 6 theta.k, 69
getHaploNetOptions, 23 theta.s, 71
haploNet, 27 utilities, 74
haplotype, 30 VCFloci, 76
MMD, 44 +* models
plotNetMDS, 50 all.equal.haploNet, 3
replot, 57 amova, 7
site.spectrum, 59 haploNet, 27
summary.loci, 64 LD, 38

* htest LDscan, 40
F4, 18 mjn, 42
Fst, 19 mst, 45
hw. test, 36 stairway, 61
R2.test, 51 theta.msat, 70
rr.test, 58 theta.tree, 72
tajima. test, 67 * model

+ Iplot dist.hamming, 16
getHaploNetOptions, 23 +* multivariate
mutations, 47 dist.asd, 15

* manip * package
bind.loci, 11 pegas-package, 3
by.loci, 12 * univar
cophenetic.haploNet, 13 heterozygosity, 34
diffHaplo, 14 nuc.div, 49
dist.asd, 15 theta.h, 68

80

INDEX

theta.k, 69

theta.s, 71
[.haplotype (haplotype), 30
[.loci (summary.loci), 64

all.equal, 4
all.equal.haploNet, 3
alleles?loci, 4, 10, 38
allelicrichness, 6

amova, 7

as.dist, 2/

as.evonet.haploNet (haploNet), 27
as.igraph.haploNet (haploNet), 27
as.loci, 5,9

as.network.haploNet (haploNet), 27
as.phylo.haploNet (haploNet), 27

barplot, 31, 60
base.freq, 31, 50
bind.loci, 11

by, 12, 13
by.loci, 12,18, 19

cat, 22

cbind.loci (bind.loci), 11
cophenetic, /4
cophenetic.haploNet, 13
cophenetic.phylo, /4

density, 44, 45

df2genind, 10

diffHaplo, 14, 29

dist.asd, 15

dist.dna, 28, 52

dist.hamming, 16
dist.haplotype.loci, 17
dist.haplotype.loci (haplotype.loci), 33
DNAbin, 32, 61

edit.loci, 17, 65
expand.genotype (utilities), 74

F2 (F4), 18
F3(F4), 18
F4,18

Fst, 19, 19

GC.content, 50
genind, 10
genind2loci (as.loci), 9

81

geod, 20, 22

geoTrans, 21,21

geoTrans2 (geoTrans), 21
getAlleles, 65

getAlleles (utilities), 74
getGenotypes (utilities), 74
getHaploNetOptions, 23
getINFO (VCFloci), 76
getPhi (amova), 7
getPloidy, 10, 16
getPloidy (utilities), 74

H (heterozygosity), 34

hap.div, 24

haploFreq, 25, 29, 32, 58

haploNet, 4, 14, 26, 27, 32,43, 46, 51, 58
haplotype, 14, 17, 26, 29, 30, 34, 61, 63
haplotype.loci, 32, 33, 39,47
heterozygosity, 34, 69

hist, 44, 45

hw. test, 36

image.DNAbin, 3/
is.phased, 16, 39

is.phased (utilities), 74
is.snp, 16

is.snp (utilities), 74
is.snp.VCFinfo (VCFloci), 76

jaguar, 37

LD, 34, 38, 41

LD2 (LD), 38

LDmap (LDscan), 40
LDscan, 39, 40

lines.stairway (stairway), 61
loci, 36, 38

loci (read.loci), 53
loci2alleles (alleles2loci), 4
loci2genind (as.loci), 9
loci2SnpMatrix (as.loci), 9

mjn, 29,42, 46, 47
MMD, 44

msn (mst), 45

mst, 4, 29,42, 43,45
mutations, 24, 47

NA, 15, 19,48
na.omit, 48

82

na.omit.loci, 48
nlminb, 61, 62, 73
nuc.div, 25, 49, 72
nullAlleles2NA, 15, 16
nullAlleles2NA (na.omit.loci), 48

par, 23

pegas (pegas-package), 3
pegas-package, 3

plot.default, 66
plot.haploNet, 24, 42, 43,47, 57
plot.haploNet (haploNet), 27
plot.haplotype (haplotype), 30
plot.haplotype.loci (haplotype.loci), 33
plot.mjn (mjn), 42
plot.spectrum(site.spectrum), 59
plot.stairway (stairway), 61
plot.summary.loci (summary.loci), 64
plot.sw (sw), 65

plotNetMDS, 50

print.amova (amova), 7
print.haploNet (haploNet), 27
print.haplotype (haplotype), 30
print.loci (summary.loci), 64
print.summary.loci (summary.loci), 64
print.VCFinfo (VCFloci), 76
proba.genotype (utilities), 74

R2.test, 51

rangeP0S (VCFloci), 76
rarefactionplot (allelicrichness), 6
rbind.loci (bind.loci), 11
read.dna, 52

read.genetix, 52, 53
read.gtx, 52, 54, 55
read.loci, 5, 10, 17, 53, 53, 55, 65, 79
read.vcf, 41, 53, 54, 54, 76-78
rect, 40

replot, 28, 29, 57

rhost (allelicrichness), 6

rmst (mst), 45

rr.test, 58

Rst (Fst), 19

rug, 44

seg.sites, 14,31, 50, 72
segments, 66
selectQUAL (VCFloci), 76

INDEX

setHaploNetOptions
(getHaploNetOptions), 23

site.spectrum, 59, 61, 62

sort.haplotype (haplotype), 30

stairway, 61

subset.haplotype, 32, 62

summary . haplotype (haplotype), 30

summary.loci, 17, 54, 64

sw, 65

tajima.test, 67
theta.h, 68, 70-72, 74
theta.k, 69, 69, 72, 74
theta.msat, 70
theta.s, 35, 50, 69, 70,71, 74
theta.tree, 69-72, 72

unphase (utilities), 74
utilities, 74

VCFheader (VCFloci), 76
VCFlabels (VCFloci), 76
VCFloci, 55, 60, 76

write.loci, 53-55,78
write.pegas.amova (amova), 7
write.table, 79

write.vcf (read.vcf), 54

X11, 57

	pegas-package
	all.equal.haploNet
	alleles2loci
	allelicrichness
	amova
	as.loci
	bind.loci
	by.loci
	cophenetic.haploNet
	diffHaplo
	dist.asd
	dist.hamming
	edit.loci
	F4
	Fst
	geod
	geoTrans
	getHaploNetOptions
	hap.div
	haploFreq
	haploNet
	haplotype
	haplotype.loci
	heterozygosity
	hw.test
	jaguar
	LD
	LDscan
	mjn
	MMD
	mst
	mutations
	na.omit.loci
	nuc.div
	plotNetMDS
	R2.test
	read.gtx
	read.loci
	read.vcf
	replot
	rr.test
	site.spectrum
	stairway
	subset.haplotype
	summary.loci
	sw
	tajima.test
	theta.h
	theta.k
	theta.msat
	theta.s
	theta.tree
	utilities
	VCFloci
	write.loci
	Index

