Package ‘pec’

April 11, 2023

Title Prediction Error Curves for Risk Prediction Models in Survival
Analysis

Version 2023.04.12

Author Thomas A. Gerds

Description Validation of risk predictions obtained from survival models and
competing risk models based on censored data using inverse weighting and
cross-validation. Most of the 'pec' functionality has been moved to 'riskRegression'.

Depends R (>=2.9.0), prodlim (>= 1.4.9)

Imports foreach (>=1.4.2), rms (>= 4.2-0), survival (>= 2.37-7),
riskRegression (>= 2020.02.05), lava (>= 1.4.1), timereg (>=
1.8.9),

Suggests party, cmprsk (>= 2.2-7), rpart, Hmisc (>= 3.14-4)
Enhances randomForestSRC

Maintainer Thomas A. Gerds <tag@biostat.ku.dk>
License GPL (>=2)

RoxygenNote 7.2.1

NeedsCompilation yes

Repository CRAN

Date/Publication 2023-04-11 12:10:02 UTC

R topics documented:

calPlot e e e 2
CINAEX o e e e e e e e e 6
COSE ot e e e e e 12
COXDOOSt e e e e 13
CIPS o o v e e e e e e e e e e e e e e e e e 14
GBSG2 . . . e e 15
IPCW & ot o e e e e e 16
Pbc3 . L e e e 18
PEC - o o e e e 20

2 calPlot
pecCforest L e e e e e e 27
PECCLIEE L e e e e e 28
PeCRpart e 29
plot.calibrationPlot L 30
plotpec 30
plotPredictEventProb 33
plotPredictSurvProb 35
predictEventProb 37
predictLifeYearsLost L 38
predictRestrictedMeanTime e 40
predictSurvProb oL 42
PrINLPEC . . . o o o e e e e e e e 45
R 46
TEClASS e e 47
resolvesplitMethod L 49
selectCOX 50
SIMCOSt . . . o o 51
Special 51
threecity e e e e e 53

Index 54

calPlot Calibration plots for right censored data

Description

Calibration plots for risk prediction models in right censored survival and competing risks data

Usage

calPlot(
object,
time,
formula,
data,
splitMethod = "none",
B =1,
M,
pseudo,
type,
showPseudo,
pseudo.col = NULL,
pseudo.pch = NULL,
method = "nne”,
round = TRUE,
bandwidth = NULL,
q =10,

calPlot

bars = FALSE,

hanging = FALSE,

names = "quantiles”,
showFrequencies = FALSE,
jack.density = 55,

plot = TRUE,
add = FALSE,
diag = l!add,
legend = 'add,
axes = ladd,
xlim = c(@, 1),
ylim = c(o, 1),
xlab,
ylab,
col,
lwd,
lty,
pch,
cause = 1,
percent = TRUE,
giveToModel = NULL,
na.action = na.fail,
cores = 1,
verbose = FALSE,
cex =1,
)
Arguments
object A named list of prediction models, where allowed entries are (1) R-objects for
which a predictSurvProb method exists (see details), (2) a call that evaluates to
such an R-object (see examples), (3) a matrix with predicted probabilities having
as many rows as data and as many columns as times. For cross-validation all
objects in this list must include their call.
time The evaluation time point at predicted event probabilities are plotted against
pseudo-observed event status.
formula A survival or event history formula. The left hand side is used to compute the
expected event status. If formula is missing, try to extract a formula from the
first element in object.
data A data frame in which to validate the prediction models and to fit the censoring
model. If data is missing, try to extract a data set from the first element in
object.
splitMethod Defines the internal validation design:

none/noPlan: Assess the models in the give data, usually either in the same
data where they are fitted, or in independent test data.

BootCv: Bootstrap cross validation. The prediction models are trained on B
bootstrap samples, that are either drawn with replacement of the same size as

pseudo

type
showPseudo
pseudo.col
pseudo.pch
method

round

bandwidth

q
bars

hanging

names

showFrequencies

jack.density

plot
add
diag
legend
axes
x1lim
ylim
xlab
ylab
col
lwd

calPlot

the original data or without replacement from data of the size M. The models
are assessed in the observations that are NOT in the bootstrap sample.

The number of cross-validation steps.
The size of the subsamples for cross-validation.

Logical. Determines the method for estimating expected event status:

TRUE: Use average pseudo-values. FALSE: Use the product-limit estimate, i.e.,
apply the Kaplan-Meier method for right censored survival and the Aalen-Johansen
method for right censored competing risks data.

Either "risk" or "survival".
If TRUE the pseudo-values are shown as dots on the plot (only when pseudo=TRUE).
Colour for pseudo-values.

Dot type (see par) for pseudo-values.

The method for estimating the calibration curve(s):

"nne”: The expected event status is obtained in the nearest neighborhood around
the predicted event probabilities.

"quantile”: The expected event status is obtained in groups defined by quan-
tiles of the predicted event probabilities.

If TRUE predicted probabilities are rounded to two digits before smoothing. This
may have a considerable effect on computing efficiency in large data sets.

The bandwidth for method="nne"
The number of quantiles for method="quantile"” and bars=TRUE.
If TRUE, use barplots to show calibration.

Barplots only. If TRUE, hang bars corresponding to observed frequencies at the
value of the corresponding prediction.

Barplots only. Names argument passed to names. arg of barplot.

Barplots only. If TRUE, show frequencies above the bars.
Gray scale for pseudo-observations.

If FALSE, do not plot the results, just return a plottable object.
If TRUE the line(s) are added to an existing plot.

If FALSE no diagonal line is drawn.

If FALSE no legend is drawn.

If FALSE no axes are drawn.

Limits of x-axis.

Limits of y-axis.

Label for y-axis.

Label for x-axis.

Vector with colors, one for each element of object. Passed to lines.

Vector with line widths, one for each element of object. Passed to 1ines.

calPlot

1ty
pch
cause

percent

giveToModel

na.action

cores

verbose

cex

Details

lwd Vector with line style, one for each element of object. Passed to lines.
Passed to points.
For competing risks models, the cause of failure or event of interest

If TRUE axes labels are multiplied by 100 and thus interpretable on a percent
scale.

List of with exactly one entry for each entry in object. Each entry names parts
of the value of the fitted models that should be extracted and added to the value.

Passed to model . frame

Number of cores for parallel computing. Passed as value of argument mc. cores
tomclapply.

if TRUE report details of the progress, e.g. count the steps in cross-validation.
Default cex used for legend and labels.

Used to control the subroutines: plot, axis, lines, barplot, legend. See SmartControl.

For method "nne" the optimal bandwidth with respect to is obtained with the function dpik from
the package KernSmooth for a box kernel function.

Value

list with elements: time, pseudoFrame and bandwidth (NULL for method quantile).

Author(s)

Thomas Alexander Gerds <tag@biostat.ku.dk>

Examples

library(prodlim)

library(lava)
library(riskRegression)
library(survival)

survival

dlearn <- SimSurv(40)

dval <- SimSurv(100)

f <- coxph(Surv(time,status)~X1+X2,data=dlearn,x=TRUE,y=TRUE)
cf=calPlot(f,time=3,data=dval)
print(cf)

plot(cf)

g <- coxph(Surv(time,status)~X2,data=dlearn,x=TRUE,y=TRUE)

cf2=calPlot(list("Cox regression X1+X2"=f,"Cox regression X2"=g),

time=3,

type="risk”,

data=dval)
print(cf2)

cindex

plot(cf2)

calPlot(f,time=3,data=dval, type="survival")
calPlot(f,time=3,data=dval,bars=TRUE, pseudo=FALSE)

calPlot(f, time=3,data=dval,bars=TRUE, type="risk",pseudo=FALSE)

show a red line which follows the hanging bars
calPlot(f,time=3,data=dval,bars=TRUE, hanging=TRUE)
a <- calPlot(f,time=3,data=dval,bars=TRUE,hanging=TRUE,abline.col=NULL)
lines(c(@,1,ceiling(a$xcoord)),
c(a$offset[1],a$offset,a$offset[length(a$offset)]),
col=2,1lwd=5, type="s")

calPlot(f, time=3,data=dval,bars=TRUE, type="risk",hanging=TRUE)

set.seed(13)
m <- crModel()
regression(m, from = "X1", to = "eventtimel”) <- 1
regression(m, from = "X2", to = "eventtimel”) <- 1
m <- addvar(m,c("X3","X4","X5"))
distribution(m, "X1") <- binomial.lvm()
distribution(m, "X4") <- binomial.lvm()
dl <- sim(m,100)
d2 <- sim(m,100)
csc <- CSC(Hist(time,event)~X1+X2+X3+X4+X5,data=d1)
fgr <- FGR(Hist(time,event)~X1+X2+X3+X4+X5,data=d1, cause=1)
if ((requireNamespace("cmprsk”,quietly=TRUE))){
predict.crr <- cmprsk:::predict.crr
cf3=calPlot(list("Cause-specific Cox"=csc,"Fine-Gray"=fgr),
time=5,
legend.x=-0.3,
legend.y=1.35,
ylab="0Observed event status”,
legend.legend=c("Cause-specific Cox regression”,"Fine-Gray regression”),
legend. xpd=NA)
print(cf3)
plot(cf3)

b1 <- calPlot(list("Fine-Gray"=fgr),time=5,bars=TRUE,hanging=FALSE)
print(b1)
plot(b1)

calPlot(fgr,time=5,bars=TRUE, hanging=TRUE)
3

cindex Concordance index for right censored survival time data

cindex

Description

In survival analysis, a pair of patients is called concordant if the risk of the event predicted by
a model is lower for the patient who experiences the event at a later timepoint. The concordance
probability (C-index) is the frequency of concordant pairs among all pairs of subjects. It can be used
to measure and compare the discriminative power of a risk prediction models. The function provides
an inverse of the probability of censoring weigthed estimate of the concordance probability to adjust
for right censoring. Cross-validation based on bootstrap resampling or bootstrap subsampling can
be applied to assess and compare the discriminative power of various regression modelling strategies

on the same set of data.

Usage

cindex(

object,
formula,
data,
eval.times,
pred.times,
cause,

1yl = FALSE,
cens.model = "marginal”,
ipcw.refit = FALSE,
ipcw.args = NULL,
ipcw.limit,

tiedPredictionsIn = TRUE,

tiedOutcomeIn = TRUE,

tiedMatchIn = TRUE,
splitMethod = "noPlan”,
B,

M,

model.args = NULL,
model.parms = NULL,
keep.models = FALSE,
keep.residuals = FALSE,
keep.pvalues = FALSE,
keep.weights = FALSE,
keep.index = FALSE,
keep.matrix = FALSE,

multiSplitTest = FALSE,
testTimes,

confInt = FALSE,
confLevel = 0.95,
verbose = TRUE,
savePath = NULL,
slaveseed = NULL,
na.action = na.fail,

8 cindex

Arguments

object A named list of prediction models, where allowed entries are (1) R-objects for
which a predictSurvProb method exists (see details), (2) a call that evaluates to
such an R-object (see examples), (3) a matrix with predicted probabilities having
as many rows as data and as many columns as times. For cross-validation all
objects in this list must include their call.

formula A survival formula. The left hand side is used to finde the status response vari-
able in data. For right censored data, the right hand side of the formula is used to
specify conditional censoring models. For example, set Surv(time, status)~x1+x2
and cens.model="cox". Then the weights are based on a Cox regression model
for the censoring times with predictors x1 and x2. Note that the usual coding is
assumed: status=0 for censored times and that each variable name that appears
in formula must be the column name in data. If there are no covariates, i.e.
formula=Surv(time,status)~1 the cens.model is coerced to "marginal”
and the Kaplan-Meier estimator for the censoring times is used to calculate the
weights. If formula is missing, try to extract a formula from the first element
in object.

data A data frame in which to validate the prediction models and to fit the censoring
model. If data is missing, try to extract a data set from the first element in
object.

eval.times A vector of timepoints for evaluating the discriminative ability. At each time-
point the c-index is computed using only those pairs where one of the event
times is known to be earlier than this timepoint. If eval. times is missing then
the largest uncensored event time is used.

pred.times A vector of timepoints for evaluating the prediction models. This should either
be exactly one timepoint used for all eval.times, or be as long as eval. times,
in which case the predicted order of risk for the jth entry of eval. times is based
on the jth entry of pred. times corresponding

cause For competing risks, the event of interest. Defaults to the first state of the re-
sponse, which is obtained by evaluating the left hand side of formula in data.

1yl If TRUE rank subjects accoring to predicted life-years-lost (See Andersen due to
this cause instead of predicted risk.

cens.model Method for estimating inverse probability of censoring weigths:

cox: A semi-parametric Cox proportional hazard model is fitted to the censoring
times

marginal: The Kaplan-Meier estimator for the censoring times

nonpar: Nonparametric extension of the Kaplan-Meier for the censoring times
using symmetric nearest neighborhoods — available for arbitrary many strata
variables on the right hand side of argument formula but at most one continuous
variable. See the documentation of the functions prodlim and neighborhood
from the prodlim package.

aalen: The nonparametric Aalen additive model fitted to the censoring times.
Requires the timereg package maintained by Thomas Scheike.

ipcw.refit If TRUE the inverse probability of censoring weigths are estimated separately in
each training set during cross-validation.

cindex 9

ipcw.args List of arguments passed to function specified by argument cens.model.
ipcw.limit Value between 0 and 1 (but no equal to 0!) used to cut for small weights in order

to stabilize the estimate at late times were few individuals are observed.
tiedPredictionsIn

If FALSE pairs with identical predictions are excluded, unless also the event times
are identical and uncensored and tiedMatchIn is set to TRUE.

tiedOutcomeIn If TRUE pairs with identical and uncensored event times are excluded, unless also
the predictions are identical and tiedMatchlIn is set to TRUE.

tiedMatchIn If TRUE then pairs with identical predictions and identical and uncensored event
times are counted as concordant pairs.
splitMethod Defines the internal validation design:

none/noPlan: Assess the models in the give data, usually either in the same
data where they are fitted, or in independent test data.

BootCv: Bootstrap cross validation. The prediction models are trained on B
bootstrap samples, that are either drawn with replacement of the same size as
the original data or without replacement from data of the size M. The models
are assessed in the observations that are NOT in the bootstrap sample.

Boot632: Linear combination of AppCindex and OutOfBagCindex using the
constant weight .632.

B Number of bootstrap samples. The default depends on argument splitMethod.
When splitMethodin c("BootCv","Boot632") the default is 100. For splitMethod="none"
B is the number of bootstrap simulations e.g. to obtain bootstrap confidence lim-
its — default is 0.

M The size of the bootstrap samples for resampling without replacement. Ignored
for resampling with replacement.

model.args List of extra arguments that can be passed to the predictSurvProb methods.
The list must have an entry for each entry in object.

model.parms Experimental. List of with exactly one entry for each entry in object. Each
entry names parts of the value of the fitted models that should be extracted and
added to the value.

keep.models Logical. If TRUE keep the models in object. Since fitted models can be large
objects the default is FALSE.

keep.residuals Experimental.
keep.pvalues Experimental.
keep.weights Experimental.

keep.index Logical. If FALSE remove the bootstrap or cross-validation index from the output
list which otherwise is included in the method part of the output list.

keep.matrix Logical. If TRUE add all B prediction error curves from bootstrapping or cross-
validation to the output.

multiSplitTest Experimental.

testTimes A vector of time points for testing differences between models in the time-point
specific Brier scores.

confInt Experimental.

10 cindex

conflLevel Experimental.

verbose if TRUE report details of the progress, e.g. count the steps in cross-validation.

savePath Place in your filesystem (directory) where training models fitted during cross-
validation are saved. If missing training models are not saved.

slaveseed Vector of seeds, as long as B, to be given to the slaves in parallel computing.

na.action Passed immediately to model.frame. Defaults to na.fail. If set otherwise most

prediction models will not work.

Not used.

Details

Pairs with identical observed times, where one is uncensored and one is censored, are always con-
sidered usuable (independent of the value of tiedOutcomeln), as it can be assumed that the event
occurs at a later timepoint for the censored observation.

For uncensored response the result equals the one obtained with the functions rcorr.cens and
rcorrcens from the Hmisc package (see examples).

Value

Estimates of the C-index.

Author(s)

Thomas A Gerds <tag@biostat.ku.dk>

References

TA Gerds, MW Kattan, M Schumacher, and C Yu. Estimating a time-dependent concordance index
for survival prediction models with covariate dependent censoring. Statistics in Medicine, Ahead
of print:to appear, 2013. DOI = 10.1002/sim.5681

Wolbers, M and Koller, MT and Witteman, JCM and Gerds, TA (2013) Concordance for prognos-
tic models with competing risks Research report 13/3. Department of Biostatistics, University of
Copenhagen

Andersen, PK (2012) A note on the decomposition of number of life years lost according to causes
of death Research report 12/2. Department of Biostatistics, University of Copenhagen

Paul Blanche, Michael W Kattan, and Thomas A Gerds. The c-index is not proper for the evaluation
of-year predicted risks. Biostatistics, 20(2): 347-357, 2018.

Examples

simulate data based on Weibull regression

library(prodlim)

set.seed(13)

dat <- SimSurv(100)

fit three different Cox models and a random survival forest
note: low number of trees for the purpose of illustration

cindex

library(survival)
cox12 <- coxph(Surv(time,status)~X1+X2,data=dat,x=TRUE, y=TRUE)
cox1 <- coxph(Surv(time,status)~X1,data=dat,x=TRUE, y=TRUE)
cox2 <- coxph(Surv(time,status)~X2,data=dat,x=TRUE,y=TRUE)
#
compute the apparent estimate of the C-index at a single time point
#
Al <- pec::cindex(list("Cox X1"=cox1),
formula=Surv(time, status)~X1+X2,

data=dat,
eval.times=10)
#
compute the apparent estimate of the C-index at different time points
#
ApparrentCindex <- pec::cindex(list("”Cox X1"=cox1,
"Cox X2"=cox2,

"Cox X1+X2"=cox12),
formula=Surv(time,status)~X1+X2,
data=dat,
eval.times=seq(1,15,1))
print(ApparrentCindex)
plot(ApparrentCindex)
#
compute the bootstrap-crossvalidation estimate of
the C-index at different time points
#
set.seed(142)
bcvCindex <- pec::cindex(list("Cox X1"=coxT,
"Cox X2"=cox2,
"Cox X1+X2"=cox12),
formula=Surv(time,status)~X1+X2,
data=dat,
splitMethod="bootcv",
B=5,
eval.times=seq(1,15,1))
print(bcvCindex)
plot(bcvCindex)
for uncensored data the results are the same
as those obtained with the function rcorr.cens from Hmisc

set.seed(16)
dat <- SimSurv(30)
dat$staus=1
fit12 <- coxph(Surv(time,status)~X1+X2,data=dat,x=TRUE, y=TRUE)
fit1l <- coxph(Surv(time,status)~X1,data=dat,x=TRUE,y=TRUE)
fit2 <- coxph(Surv(time,status)~X2,data=dat,x=TRUE,y=TRUE)
Cpec <- pec::cindex(list("Cox X1+X2"=fit12,"Cox X1"=fit1,"Cox X2"=fit2),
formula=Surv(time,status)~1,
data=dat)
p1 <- predictSurvProb(fitl,newdata=dat,times=10)
p2 <- predictSurvProb(fit2,newdata=dat,times=10)
p12 <- predictSurvProb(fit12,newdata=dat,times=10)
if (requireNamespace("Hmisc"”,quietly=TRUE)){

11

12 cost

library(Hmisc)

harrelC1 <- rcorr.cens(pl,with(dat,Surv(time,status)))
harrelC2 <- rcorr.cens(p2,with(dat,Surv(time,status)))
harrelC12 <- rcorr.cens(pl12,with(dat,Surv(time,status)))
harrelC1[["C Index"]]==Cpec$AppCindex[["Cox.X1"]]
harrelC2[["C Index"]]==Cpec$AppCindex[["Cox.X2"]1]
harrelC12[["C Index"]]==Cpec$AppCindex[["Cox.X1.X2"]1]

3

#

competing risks

#

library(riskRegression)

library(prodlim)

set.seed(30)

dcr.learn <- SimCompRisk(30)

dcr.val <- SimCompRisk(30)
pec::cindex(CSC(Hist(time,event)~X1+X2,data=dcr.learn),data=dcr.val)
fit <- CSC(Hist(time,event)~X1+X2,data=dcr.learn)

cif <- predictRisk(fit,newdata=dcr.val,times=3,cause=1)
pec::cindex(list(fit),data=dcr.val, times=3)

cost Copenhagen Stroke Study

Description

This data set contains a subset of the data from the Copenhagen stroke study.

Format
This data frame contains the observations of 518 stroke patients :

age Age of the patients in years.

sex A factor with two levels female and male.

hypTen Hypertension, a factor with two levels no and yes.

ihd History of ischemic heart disease at admission, a factor with two levels no and yes.
prevStroke History of previous strokes before admission, a factor with two levels no and yes.

othDisease History of other disabling diseases (e.g. severe dementia), a factor with two levels no
and yes.

alcohol Daily alcohol consumption, a factor with two levels no and yes.

diabetes Diabetes mellitus status indicating if the glucose level was higher than 11 mmol/L, a
factor with two levels no and yes.

smoke Daily smoking status, a factor with two levels no and yes.
atrialFib Atrial fibrillation, a factor with two levels no and yes.

hemor Hemorrhage (stroke subtype), a factor with two levels no (infarction) and yes (hemor-
rhage).

coxboost 13

strokeScore Scandinavian stroke score at admission to the hospital. Ranges from 0 (worst) to 58
(best).

cholest Cholesterol level
time Survival time (in days).

status Status (@: censored, 1: event).

References

Joergensen HS, Nakayama H, Reith J, Raaschou HO, and Olsen TS. Acute stroke with atrial fibril-
lation. The Copenhagen Stroke Study. Stroke, 27(10):1765-9, 1996.

Mogensen UB, Ishwaran H, and Gerds TA. Evaluating random forests for survival analysis using
prediction error curves. Technical Report 8, University of Copenhagen, Department of Biostatistics,
2010.

coxboost Formula interface for function CoxBoost of package CoxBoost.

Description

Formula interface for function CoxBoost of package CoxBoost.

Usage
coxboost(formula, data, cv = TRUE, cause = 1, penalty, ...)
Arguments
formula An event-history formula for competing risks of the form Hist (time, status)~sex+age
where status defines competing events and right censored data. The code for
right censored can be controlled with argument cens. code, see man page the
function Hist.
data A data.frame in which the variables of formula are defined.
cv If TRUE perform cross-validation to optimize the parameter stepno. This calls
the function cv.CoxBoost whose arguments are prefix controlled, that is cv.K=7
sets the argument K of cv.CoxBoost to 7. If FALSE use stepno.
cause The cause of interest in competing risk models.
penalty See CoxBoost.
Arguments passed to either CoxBoost via CoxBoost.arg or to cv.CoxBoost via
cv.CoxBoost.arg.
Details

See CoxBoost.

14 crps

Value

See CoxBoost.

Author(s)
Thomas Alexander Gerds <tag@biostat.ku.dk>

References

See CoxBoost.

See Also

See CoxBoost.

crps Summarizing prediction error curves

Description

Computes the cumulative prediction error curves, aka integrated Brier scores, in ranges of time.

Usage

crps(object, models, what, times, start)

Arguments
object An object with estimated prediction error curves obtained with the function pec
models Which models in object$models should be considered.
what The name of the entry in x to be cumulated. Defauls to PredErr Other choices
are AppErr, BootCvErr, Boot632, Boot632plus.
times Time points at which the integration of the prediction error curve stops.
start The time point at which the integration of the prediction error curve is started.
Details

The cumulative prediction error (continuous ranked probability score) is defined as the area under
the prediction error curve, hence the alias name, ibs, which is short for integrated Brier score.

Value

A matrix with a column for the crps (ibs) at every requested time point and a row for each model

Author(s)
Thomas A. Gerds <tag@biostat.ku.dk>

GBSG2 15

References

E. Graf et al. (1999), Assessment and comparison of prognostic classification schemes for survival
data. Statistics in Medicine, vol 18, pp= 2529-2545.

Gerds TA, Cai T & Schumacher M (2008) The performance of risk prediction models Biometrical
Journal, 50(4), 457-479

See Also

pec

Examples

set.seed(18713)

library(prodlim)

library(survival)

dat=SimSurv(100)

pmodel=coxph(Surv(time, status)~X1+X2,data=dat,x=TRUE, y=TRUE)
perror=pec(list(Cox=pmodel),Hist(time,status)~1,data=dat)

cumulative prediction error

crps(perror,times=1) # between min time and 1

same thing:

ibs(perror,times=1) # between min time and 1
crps(perror,times=1,start=0) # between @ and 1

crps(perror, times=seq(@,1,.2),start=0) # between @ and seq(0,1,.2)

GBSG2 German Breast Cancer Study Group 2

Description

A data frame containing the observations from the GBSG2 study.

Format

This data frame contains the observations of 686 women:

horTh hormonal therapy, a factor at two levels no and yes.

age of the patients in years.

menostat menopausal status, a factor at two levels pre (premenopausal) and post (postmenopausal).
tsize tumor size (in mm).

tgrade tumor grade, a ordered factor at levels I <II <III.

pnodes number of positive nodes.

progrec progesterone receptor (in fmol).

16 ipcw

estrec estrogen receptor (in fmol).
time recurrence free survival time (in days).

cens censoring indicator (0- censored, 1- event).

References

M. Schumacher, G. Basert, H. Bojar, K. Huebner, M. Olschewski, W. Sauerbrei, C. Schmoor, C.
Beyerle, R.L.A. Neumann and H.F. Rauschecker for the German Breast Cancer Study Group (1994),
Randomized 2 x 2 trial evaluating hormonal treatment and the duration of chemotherapy in node-
positive breast cancer patients. Journal of Clinical Oncology, 12, 2086-2093.

ipcw Estimation of censoring probabilities

Description

This function is used internally by the function pec to obtain inverse of the probability of censoring

weights.
Usage
ipew(
formula,
data,
method,
args,
times,
subjectTimes,
subjectTimesLag = 1,
what
)
Arguments
formula A survival formula like, Surv(time, status)~1, where as usual status=0 means
censored. The status variable is internally reversed for estimation of censoring
rather than survival probabilities. Some of the available models (see argument
model) will use predictors on the right hand side of the formula.
data The data used for fitting the censoring model
method Censoring model used for estimation of the (conditional) censoring distribution.
args A list of arguments which is passed to method
times For what="IPCW.times" a vector of times at which to compute the probabilities

of not being censored.

subjectTimes For what="IPCW.subjectTimes" a vector of individual times at which the prob-
abilities of not being censored are computed.

17

ipcw
subjectTimeslLag
If equal to 1 then obtain G(T_i-[X_1i), if equal to @ estimate the conditional
censoring distribution at the subjectTimes, i.e. (G(T_i|X_1i)).
what Decide about what to do: If equal to "IPCW. times" then weights are estimated
at given times. If equal to "IPCW.subjectTimes"” then weights are estimated
at individual subjectTimes. If missing then produce both.
Details

Inverse of the probability of censoring weights (IPCW) usually refer to the probabilities of not being
censored at certain time points. These probabilities are also the values of the conditional survival
function of the censoring time given covariates. The function ipcw estimates the conditional survival
function of the censoring times and derives the weights.

IMPORTANT: the data set should be ordered, order(time,-status) in order to get the values
IPCW. subjectTimes in the right order for some choices of method.

Value
times The times at which weights are estimated
IPCW.times Estimated weights at times

IPCW.subjectTimes

Estimated weights at individual time values subjectTimes

fit The fitted censoring model
method The method for modelling the censoring distribution
call The call

Author(s)

Thomas A. Gerds <tag@biostat.ku.dk>

See Also

pec

Examples

library(prodlim)
library(rms)
library(survival)
dat=SimSurv(30)

dat <- dat[order(dat$time),]
using the marginal Kaplan-Meier for the censoring times
WKM=ipcw(Hist(time,status)~X2,

data=dat,
method="marginal”,

18 Pbc3

times=sort(unique(dat$time)),
subjectTimes=dat$time)

plot (WKM$fit)

WKM$fit

using the Cox model for the censoring times given X2
library(survival)
WCox=ipcw(Hist(time=time,event=status)~X2,

data=dat,

method="cox",

times=sort(unique(dat$time)),

subjectTimes=dat$time)
WCox$fit

plot (WKM$fit)
lines(sort(unique(dat$time)),
1-WCox$IPCW.times[1,],
type="1",
col=2,
1ty=3,
1wd=3)
lines(sort(unique(dat$time)),
1-WCox$IPCW. times[5,1],
type="1",
col=3,
1ty=3,
1wd=3)

using the stratified Kaplan-Meier
for the censoring times given X2

WKM2=ipcw(Hist(time, status)~X2,
data=dat,
method="nonpar”,
times=sort(unique(dat$time)),
subjectTimes=dat$time)

plot (WKM2$fit,add=FALSE)

Pbc3 Pbc3 data

Description

PBC3 was a multi-centre randomized clinical trial conducted in six European hospitals. Between 1
Jan. 1983 and 1 Jan. 1987, 349 patients with the liver disease primary biliary cirrhosis (PBC) were
randomized to either treatment with Cyclosporin A (CyA, 176 patients) or placebo (173 patients).
The purpose of the trial was to study the effect of treatment on the survival time. However, during
the course of the trial an increased use of liver transplantation for patients with this disease made

Pbc3 19

the investigators redefine the main response variable to be time to “failure of medical treatment”
defined as either death or liver transplantation. Patients were then followed from randomization
until treatment failure, drop-out or 1 Jan, 1989; 61 patients died (CyA: 30, placebo: 31), another 29
were transplanted (CyA: 14, placebo: 15) and 4 patients were lost to follow-up before 1 Jan. 1989.
At entry a number of clinical, biochemical and histological variables, including serum bilirubin,
serum albumin, sex, age were recorded.

Format

A data frame with 349 observations on the following 15 variables.

ptno patient identification

unit hospital (1: Hvidovre, 2: London, 3: Copenhagen, 4: Barcelona, 5: Munich, 6: Lyon)
tment treatment (0: placebo, 1: CyA)

sex (1: males, O: females)

age age in years

stage histological stage (1, 2, 3, 4)

gibleed previous gastrointestinal bleeding (1: yes, 0: no)
crea creatinine (micromoles/L)

alb albumin (g/L)

bili bilirubin (micromoles/L)

alkph alkaline phosphatase (IU/L)

asptr aspartate transaminase (IU/L)

weight body weight (kg)

days observation time (days)

status status at observation time (0: censored, 1: liver transplantation, 2 : dead)

Source

Andersen and Skovgaard. Regression with linear predictors.

References

Andersen and Skovgaard. Regression with linear predictors. Springer, 2010.

Examples

data(Pbc3)

20

pec

pec

Prediction error curves

Description

Usage

Evaluating the performance of risk prediction models in survival analysis. The Brier score is a
weighted average of the squared distances between the observed survival status and the predicted
survival probability of a model. Roughly the weights correspond to the probabilities of not being
censored. The weights can be estimated depend on covariates. Prediction error curves are obtained
when the Brier score is followed over time. Cross-validation based on bootstrap resampling or boot-
strap subsampling can be applied to assess and compare the predictive power of various regression

modelling strategies on the same set of data.

pec(

object,

formula,

data,

traindata,

times,

cause,

start,

maxtime,

exact = TRUE,
exactness = 100,
fillChar = NA,
cens.model = "cox",
ipcw.refit = FALSE,
ipcw.args = NULL,
splitMethod = "none",
B,

M,

reference = TRUE,
model.args = NULL,
model.parms = NULL,
keep.index = FALSE,
keep.matrix = FALSE,
keep.models = FALSE,
keep.residuals = FALSE,
keep.pvalues = FALSE,
noinf.permute = FALSE,
multiSplitTest = FALSE,
testIBS,

testTimes,

confInt = FALSE,
confLevel = 0.95,

pec 21

verbose = TRUE,
savePath = NULL,
slaveseed = NULL,
na.action = na.fail,

Arguments

object A named list of prediction models, where allowed entries are (1) R-objects for
which a predictSurvProb method exists (see details), (2) a call that evaluates to
such an R-object (see examples), (3) a matrix with predicted probabilities having
as many rows as data and as many columns as times. For cross-validation all
objects in this list must include their call.

formula A survival formula as obtained either with prodlim: :Hist or survival: :Surv.
The left hand side is used to find the status response variable in data. For
right censored data, the right hand side of the formula is used to specify con-
ditional censoring models. For example, set Surv(time,status)~x1+x2 and
cens.model="cox". Then the weights are based on a Cox regression model for
the censoring times with predictors x1 and x2. Note that the usual coding is
assumed: status=0 for censored times and that each variable name that appears
in formula must be the column name in data. If there are no covariates, i.e.
formula=Surv(time,status)~1 the cens.model is coerced to "marginal”
and the Kaplan-Meier estimator for the censoring times is used to calculate the
weights. If formula is missing, try to extract a formula from the first element
in object.

data A data frame in which to validate the prediction models and to fit the censoring
model. If data is missing, try to extract a data set from the first element in
object.

traindata A data frame in which the models are trained. This argument is used only in
the absence of crossvalidation, in which case it is passed to the predictHandler
function predictSurvProb

times A vector of time points. At each time point the prediction error curves are esti-
mated. If exact==TRUE the times are merged with all the unique values of the
response variable. If times is missing and exact==TRUE all the unique values
of the response variable are used. If missing and exact==FALSE use a equidis-
tant grid of values between start and maxtime. The distance is determined by
exactness.

cause For competing risks, the event of interest. Defaults to the first state of the re-
sponse, which is obtained by evaluating the left hand side of formula in data.

start Minimal time for estimating the prediction error curves. If missing and formula
defines a Surv or Hist object then start defaults to @, otherwise to the smallest
observed value of the response variable. start is ignored if times are given.

maxtime Maximal time for estimating the prediction error curves. If missing the largest
value of the response variable is used.

22

exact

exactness

fillChar

cens.model

ipcw.refit

ipcw.args
splitMethod

pec

Logical. If TRUE estimate the prediction error curves at all the unique values of
the response variable. If times are given and exact=TRUE then the times are
merged with the unique values of the response variable.

An integer that determines how many equidistant gridpoints are used between
start and maxtime. The default is 100.

Symbol used to fill-in places where the values of the prediction error curves are
not available. The default is NA.

Method for estimating inverse probability of censoring weigths:

cox: A semi-parametric Cox proportional hazard model is fitted to the censoring
times

marginal: The Kaplan-Meier estimator for the censoring times

nonpar: Nonparametric extension of the Kaplan-Meier for the censoring times
using symmetric nearest neighborhoods — available for arbitrary many strata
variables on the right hand side of argument formula but at most one continuous
variable. See the documentation of the functions prodlim and neighborhood
from the prodlim package.

aalen: The nonparametric Aalen additive model fitted to the censoring times.
Requires the timereg package.

If TRUE the inverse probability of censoring weigths are estimated separately in
each training set during cross-validation.

List of arguments passed to function specified by argument cens.model.

SplitMethod for estimating the prediction error curves.

none/noPlan: Assess the models in the same data where they are fitted. boot:
DEPRECIATED.

cvK: K-fold cross-validation, i.e. cv10 for 10-fold cross-validation. After split-
ting the data in K subsets, the prediction models (ie those specified in object)
are evaluated on the data omitting the Kth subset (training step). The prediction
error is estimated with the Kth subset (validation step).

The random splitting is repeated B times and the estimated prediction error
curves are obtained by averaging.

BootCv: Bootstrap cross validation. The prediction models are trained on B
bootstrap samples, that are either drawn with replacement of the same size as
the original data or without replacement from data of the size M. The models
are assessed in the observations that are NOT in the bootstrap sample.
Boot632: Linear combination of AppErr and BootCvErr using the constant
weight .632.

Boot632plus: Linear combination of AppErr and BootCv using weights depen-
dent on how the models perform in permuted data.

loocv: Leave one out cross-validation.

NoInf: Assess the models in permuted data.

Number of bootstrap samples. The default depends on argument splitMethod.
When splitMethodinc("BootCv","Boot632","Boot632plus") the default is 100.
For splitMethod="cvK" B is the number of cross-validation cycles, and — de-
fault is 1. For splitMethod="none" B is the number of bootstrap simulations
e.g. to obtain bootstrap confidence limits — default is O.

pec

reference

model.args

model.parms

keep.index

keep.matrix

keep.models

keep.residuals
keep.pvalues
noinf.permute

multiSplitTest

testIBS

testTimes

confInt
conflLevel
verbose

savePath

slaveseed

na.action

Details

23

The size of the bootstrap samples for resampling without replacement. Ignored
for resampling with replacement.

Logical. If TRUE add the marginal Kaplan-Meier prediction model as a reference
to the list of models.

List of extra arguments that can be passed to the predictSurvProb methods.
The list must have an entry for each entry in object.

Experimental. List of with exactly one entry for each entry in object. Each
entry names parts of the value of the fitted models that should be extracted and
added to the value.

Logical. If FALSE remove the bootstrap or cross-validation index from the output
list which otherwise is included in the splitMethod part of the output list.

Logical. If TRUE add all B prediction error curves from bootstrapping or cross-
validation to the output.

Logical. If TRUE keep the models in object. Since fitted models can be large
objects the default is FALSE.

Logical. If TRUE keep the patient individual residuals at testTimes.
For multiSplitTest. If TRUE keep the pvalues from the single splits.
If TRUE the noinformation error is approximated using permutation.

If TRUE the test proposed by van de Wiel et al. (2009) is applied. Requires
subsampling bootstrap cross-validation, i.e. that splitMethod equals bootcv
and that M is specified.

A range of time points for testing differences between models in the integrated
Brier scores.

A vector of time points for testing differences between models in the time-point
specific Brier scores.

Experimental.
Experimental.
if TRUE report details of the progress, e.g. count the steps in cross-validation.

Place in your file system (i.e., a directory on your computer) where training
models fitted during cross-validation are saved. If missing training models are
not saved.

Vector of seeds, as long as B, to be given to the slaves in parallel computing.

Passed immediately to model.frame. Defaults to na.fail. If set otherwise most
prediction models will not work.

Not used.

Note that package riskRegression provides very similar functionality (and much more) but not yet
every feature of pec.

Missing data in the response or in the input matrix cause a failure.

The status of the continuous response variable at cutpoints (times), ie status=1 if the response value
exceeds the cutpoint and status=0 otherwise, is compared to predicted event status probabilities

24 pec

which are provided by the prediction models on the basis of covariates. The comparison is done
with the Brier score: the quadratic difference between 0-1 response status and predicted probability.

There are two different sources for bias when estimating prediction error in right censored survival
problems: censoring and high flexibility of the prediction model. The first is controlled by inverse
probability of censoring weighting, the second can be controlled by special Monte Carlo simulation.
In each step, the resampling procedures reevaluate the prediction model. Technically this is done
by replacing the argument object$call$data by the current subset or bootstrap sample of the full
data.

For each prediction model there must be a predictSurvProb method: for example, to assess a pre-
diction model which evaluates to amyclass object one defines a function called predictSurvProb.myclass
with arguments object,newdata, cutpoints,. ..

Such a function takes the object and derives a matrix with predicted event status probabilities for
each subject in newdata (rows) and each cutpoint (column) of the response variable that defines an
event status.

Currently, predictSurvProb methods are readily available for various survival models, see methods (predictSurvProb)

Value

A pec object. See also the help pages of the corresponding print, summary, and plot methods.
The object includes the following components:

PredErr The estimated prediction error according to the splitMethod. A matrix where
each column represents the estimated prediction error of a fit at the time points
in time.

AppErr The training error or apparent error obtained when the model(s) are evaluated in

the same data where they were trained. Only if splitMethod is one of "Nolnf",
"cvK", "BootCv", "Boot632" or "Boot632plus".

BootCvErr The prediction error when the model(s) are trained in the bootstrap sample and
evaluated in the data that are not in the bootstrap sample. Only if splitMethod
is one of "Boot632" or "Boot632plus". When splitMethod="BootCv" then the
BootCvErr is stored in the component PredErr.

NoInfErr The prediction error when the model(s) are evaluated in the permuted data.
Only if splitMethod is one of "BootCv", "Boot632", or "Boot632plus". For
splitMethod="NoInf" the NoInfErr is stored in the component PredErr.

weight The weight used to linear combine the AppErr and the BootCvErr Only if
splitMethod is one of "Boot632", or "Boot632plus”.
overfit Estimated overfit of the model(s). See Efron and Tibshirani (1997, Journal of

the American Statistical Association) and Gerds and Schumacher (2007, Bio-
metrics). Only if splitMethod is one of "Boot632", or "Boot632plus".

call The call that produced the object
time The time points at which the prediction error curves change.
ipcw.fit The fitted censoring model that was used for re-weighting the Brier score resid-

uals. See Gerds and Schumacher (2006, Biometrical Journal)
n.risk The number of subjects at risk for all time points.

models The prediction models fitted in their own data.

pec 25
cens.model The censoring models.
maxtime The latest timepoint where the prediction error curves are estimated.
start The earliest timepoint where the prediction error curves are estimated.
exact TRUE if the prediction error curves are estimated at all unique values of the re-
sponse in the full data.
splitMethod The splitMethod used for estimation of the overfitting bias.
Author(s)
Thomas Alexander Gerds <tag@biostat.ku.dk>
References
Gerds TA, Kattan MW. Medical Risk Prediction Models: With Ties to Machine Learning. Chapman
and Hall/CRC https://www.routledge.com/9781138384477
Ulla B. Mogensen, Hemant Ishwaran, Thomas A. Gerds (2012). Evaluating Random Forests for
Survival Analysis Using Prediction Error Curves. Journal of Statistical Software, 50(11), 1-23.
DOI 10.18637/jss.v050.111
E. Graf et al. (1999), Assessment and comparison of prognostic classification schemes for survival
data. Statistics in Medicine, vol 18, pp=2529-2545.
Efron, Tibshirani (1997) Journal of the American Statistical Association 92, 548—-560 Improvement
On Cross-Validation: The .632+ Bootstrap Method.
Gerds, Schumacher (2006), Consistent estimation of the expected Brier score in general survival
models with right-censored event times. Biometrical Journal, vol 48, 1029-1040.
Thomas A. Gerds, Martin Schumacher (2007) Efron-Type Measures of Prediction Error for Survival
Analysis Biometrics, 63(4), 1283—-1287 doi:10.1111/j.1541-0420.2007.00832.x
Martin Schumacher, Harald Binder, and Thomas Gerds. Assessment of survival prediction models
based on microarray data. Bioinformatics, 23(14):1768-74, 2007.
Mark A. van de Wiel, Johannes Berkhof, and Wessel N. van Wieringen Testing the prediction error
difference between 2 predictors Biostatistics (2009) 10(3): 550-560 doi:10.1093/biostatistics/kxp011
See Also
plot.pec, summary.pec, R2, crps
Examples

simulate an artificial data frame
with survival response and two predictors

set.seed(130971)
library(prodlim)
library(survival)
dat <- SimSurv(100)

fit some candidate Cox models and compute the Kaplan-Meier estimate

26 pec

Models <- list("Cox.X1"=coxph(Surv(time,status)~X1,data=dat,x=TRUE,y=TRUE),
"Cox.X2"=coxph(Surv(time,status)~X2,data=dat,x=TRUE,y=TRUE),
"Cox.X1.X2"=coxph(Surv(time,status)~X1+X2,data=dat,x=TRUE, y=TRUE))

compute the apparent prediction error

PredError <- pec(object=Models,
formula=Surv(time, status)~X1+X2,
data=dat,
exact=TRUE,
cens.model="marginal”,
splitMethod="none",
B=0,
verbose=TRUE)

print(PredError,times=seq(5,30,5))
summary (PredError)
plot(PredError,xlim=c(0,30))

Comparison of Weibull model and Cox model

library(survival)

library(rms)

library(pec)

data(pbc)

pbc <- pbc[sample(1:NROW(pbc),size=100),]

f1 <- psm(Surv(time,status!=0)~edema+log(bili)+age+sex+albumin,data=pbc)

f2 <- coxph(Surv(time,status!=0)~edema+log(bili)+age+sex+albumin,data=pbc,x=TRUE, y=TRUE)
3 <- cph(Surv(time,status!=0)~edema+tlog(bili)+age+sex+albumin,data=pbc,surv=TRUE)
brier <- pec(list("Weibull"=f1,"CoxPH"=f2,"CPH"=f3),data=pbc, formula=Surv(time,status!=0)~1)
print(brier)

plot(brier)

compute the .632+ estimate of the generalization error

set.seed(130971)

library(prodlim)

library(survival)

dat <- SimSurv(100)

set.seed(17100)

PredError.632plus <- pec(object=Models,
formula=Surv(time, status)~X1+X2,
data=dat,
exact=TRUE,
cens.model="marginal",
splitMethod="Boot632plus”,

B=3,
verbose=TRUE)

print(PredError.632plus, times=seq(4,12,4))
summary (PredError.632plus)
plot(PredError.632plus,xlim=c(@,30))

do the same again but now in parallel
Not run: set.seed(17100)

library(doMC)

pecCforest

registerDoMC()

PredError.632plus <- pec(object=Models,
formula=Surv(time, status)~X1+X2,
data=dat,
exact=TRUE,
cens.model="marginal”,
splitMethod="Boot632plus”,

B=3,
verbose=TRUE)

End(Not run)

assessing parametric survival models in learn/validation setting
learndat <- SimSurv(50)

testdat <- SimSurv(30)

library(survival)

library(rms)

f1 <- psm(Surv(time,status)~X1+X2,data=learndat)

f2 <- psm(Surv(time,status)~X1,data=learndat)

pf <- pec(list(f1,f2),formula=Surv(time,status)~1,data=testdat,maxtime=200)
plot(pf)

summary (pf)

library(survival)

library(riskRegression)

if (requireNamespace("cmprsk”,quietly=TRUE)){
library(cmprsk)

library(pec)

cdat <- SimCompRisk(100)

f1 <- CSC(Hist(time,event)~X1+X2,cause=2,data=cdat)
f2 <- CSC(Hist(time,event)~X1,data=cdat,cause=2)

f3 <- FGR(Hist(time,event)~X1+X2,cause=2,data=cdat)
f4 <- FGR(Hist(time,event)~X1+X2,cause=2,data=cdat)
pl <- pec(list(f1,f2,f3,f4),formula=Hist(time,event)~1,data=cdat,cause=2)

27

pecCforest S3-wrapper function for cforest from the party package

Description

S3-wrapper function for cforest from the party package

Usage

pecCforest(formula, data, ...)

28 pecCtree

Arguments
formula Passed on as is. See cforest of the party package
data Passed on as is. See cforest of the party package
Passed on as they are. See cforest of the party package
Details

See cforest of the party package.

Value

list with two elements: cforest and call

References

Ulla B. Mogensen, Hemant Ishwaran, Thomas A. Gerds (2012). Evaluating Random Forests for
Survival Analysis Using Prediction Error Curves. Journal of Statistical Software, 50(11), 1-23.
DOI 10.18637/js5.v050.i11

pecCtree S3-Wrapper for ctree.

Description

The call is added to an ctree object

Usage

pecCtree(...)

Arguments

passed to ctree

Value

list with two elements: ctree and call

Author(s)
Thomas A. Gerds <tag@biostat.ku.dk>

See Also

pecCforest

pecRpart

Examples

if (requireNamespace("party”,quietly=TRUE)){
library(prodlim)

library(survival)

set.seed(50)

d <- SimSurv(50)

nd <- data.frame(X1=c(0,1,0),X2=c(-1,0,1))

f <- pecCtree(Surv(time,status)~X1+X2,data=d)
predictSurvProb(f,newdata=nd, times=c(3,8))

3

29

pecRpart Predict survival based on rpart tree object

Description

Combines the rpart result with a stratified Kaplan-Meier (prodlim) to predict survival

Usage
pecRpart(formula, data, ...)
Arguments
formula passed to rpart
data passed to rpart
passed to rpart
Value

list with three elements: ctree and call

Examples

library(prodlim)

if (!requireNamespace("rpart"”,quietly=TRUE)){
library(rpart)

library(survival)

set.seed(50)

d <- SimSurv(50)

nd <- data.frame(X1=c(0,1,0),X2=c(-1,0,1))

f <- pecRpart(Surv(time,status)~X1+X2,data=d)
predictSurvProb(f,newdata=nd, times=c(3,8))

3

30

plot.pec

plot.calibrationPlot Plot objects obtained with calPlot

Description

Calibration plots

Usage

S3 method for class 'calibrationPlot'
plot(x, ...)

Arguments
X Object obtained with calPlot
Not used.
Value
Nothing
Author(s)

Thomas A. Gerds <tag@biostat.ku.dk>

See Also
calPlot

plot.pec Plotting prediction error curves

Description

Plotting prediction error curves for one or more prediction models.

Usage

S3 method for class 'pec'

plot(
X,
what,
models,
xlim = c(x$start, x$minmaxtime),
ylim = c(0, 0.3),

xlab = "Time",

plot.pec

ylab,

axes = TRUE,

col,
1ty,
lwd,
type,

31

smooth = FALSE,

add.refline
add = FALSE,

FALSE,

legend = ifelse(add, FALSE, TRUE),
special = FALSE,

Arguments

X

what

models

x1lim
ylim
xlab
ylab
axes

col

1ty
1wd

type
smooth

add.refline

add
legend

special

Object of class pec obtained with function pec.

The name of the entry in x. Defauls to PredErr Other choices are AppErr,
BootCvErr, Boot632, Boot632plus.

Specifies models in x$models for which the prediction error curves are drawn.
Defaults to all models.

Plotting range on the x-axis.

Plotting range on the y-axis.

Label given to the x-axis.

Label given to the y-axis.

Logical. If FALSE no axes are drawn.

Vector of colors given to the curves of models in the order determined by
models.

Vector of Ity’s given to the curves of models in the order determined by models.
Vector of lwd’s given to the curves of models in the order determined by models.
Plotting type: either "1" or "s", see lines.

Logical. If TRUE the plotting type for linesis '1' else 's"'.

Logical. If TRUE a dotted horizontal line is drawn as a symbol for the naive rule
that predicts probability .5 at all cutpoints (i.e. time points in survival analysis).

Logical. If TRUE only lines are added to an existing device

if TRUE a legend is plotted by calling the function legend. Optional arguments
of the function legend can be given in the form legend.x=val where x is the
name of the argument and val the desired value. See also Details.

Logical. If TRUE the bootstrap curves of models are plotted together with predErr
of models by invoking the function Special. Optional arguments of the func-
tion Special can be given in the form special.x=val as with legend. See also
Details.

Extra arguments that are passed to plot.

32 plot.pec

Details

From version 2.0.1 on the arguments legend.text, legend.args, lines.type, Iwd.lines, specials are ob-
solete and only available for backward compatibility. Instead arguments for the invoked functions
legend, axis, Special are simply specified as 1legend.1ty=2. The specification is not case sensi-
tive, thus Legend.1ty=2 or LEGEND. 1ty=2 will have the same effect. The function axis is called
twice, and arguments of the form axis1.labels, axis1.at are used for the time axis whereas
axis2.pos, axis1.labels, etc. are used for the y-axis.

These arguments are processed via . . . {} of plot. pec and inside by using the function resolveSmartArgs.
Documentation of these arguments can be found in the help pages of the corresponding functions.

Value

The (invisible) object.

Author(s)

Ulla B. Mogensen <ulmo@biostat.ku.dk>, Thomas A. Gerds <tag@biostat.ku.dk>

See Also

pecsummary.pecSpecialprodlim

Examples

simulate data

with a survival response and two predictors
library(prodlim)

library(survival)

set.seed(280180)

dat <- SimSurv(100)

fit some candidate Cox models and
compute the Kaplan-Meier estimate

Models <- list("Kaplan.Meier"=survfit(Surv(time,status)~1,data=dat),
"Cox.X1"=coxph(Surv(time,status)~X1,data=dat,x=TRUE,y=TRUE),
"Cox.X2"=coxph(Surv(time,status)~X2,data=dat,x=TRUE,y=TRUE),
"Cox.X1.X2"=coxph(Surv(time,status)~X1+X2,data=dat,x=TRUE, y=TRUE))

Models <- list("Cox.X1"=coxph(Surv(time,status)~X1,data=dat,x=TRUE,y=TRUE),
"Cox.X2"=coxph(Surv(time,status)~X2,data=dat,x=TRUE,y=TRUE),
"Cox.X1.X2"=coxph(Surv(time,status)~X1+X2,data=dat,x=TRUE, y=TRUE))

compute the .632+ estimate of the generalization error

set.seed(17100)

PredError.632plus <- pec(object=Models,
formula=Surv(time,status)~X1+X2,
data=dat,
exact=TRUE,

plotPredictEventProb 33

cens.model="marginal",
splitMethod="boot632plus”,
B=5,

keep.matrix=TRUE,
verbose=TRUE)

plot the .632+ estimates of the generalization error
plot(PredError.632plus,xlim=c(@,30))

plot the bootstrapped curves, .632+ estimates of the generalization error
and Apparent error for the Cox model 'Cox.X1' with the 'Cox.X2' model
as benchmark
plot(PredError.632plus,
xlim=c (0, 30),
models="Cox.X1",
special=TRUE,
special.bench="Cox.X2",
special.benchcol=2,
special.addprederr="AppErr")

plotPredictEventProb Plotting predicted survival curves.

Description

Ploting time-dependent event risk predictions.

Usage

plotPredictEventProb(
X,
newdata,
times,
cause = 1,
xlim,
ylim,
xlab,
ylab,
axes = TRUE,
col,
density,
lty,
lwd,
add = FALSE,
legend = TRUE,
percent = FALSE,

34

Arguments

X

newdata

times
cause
x1lim
ylim
xlab
ylab
axes
col
density
1ty
lwd
add
legend

percent

Details

plotPredictEventProb

Object specifying an event risk prediction model.

A data frame with the same variable names as those that were used to fit the
model x.

Vector of times at which to return the estimated probabilities.
Show predicted risk of events of this cause

Plotting range on the x-axis.

Plotting range on the y-axis.

Label given to the x-axis.

Label given to the y-axis.

Logical. If FALSE no axes are drawn.

Vector of colors given to the survival curve.

Densitiy of the color — useful for showing many (overlapping) curves.
Vector of Ity’s given to the survival curve.

Vector of lwd’s given to the survival curve.

Logical. If TRUE only lines are added to an existing device

Logical. If TRUE a legend is plotted by calling the function legend. Optional
arguments of the function legend can be given in the form legend. x=val where
x is the name of the argument and val the desired value. See also Details.
Logical. If TRUE the y-axis is labeled in percent.

Parameters that are filtered by SmartControl and then passed to the functions:
plot, axis, legend.

Arguments for the invoked functions legend and axis are simply specified as legend.1ty=2. The
specification is not case sensitive, thus Legend.1ty=2 or LEGEND. 1ty=2 will have the same effect.
The function axis is called twice, and arguments of the form axis1.labels, axis1.at are used
for the time axis whereas axis2.pos, axis1.labels, etc. are used for the y-axis.

These arguments are processed via . . . {} of plotPredictEventProb and inside by using the func-
tion SmartControl.

Value

The (invisible) object.

Author(s)

Ulla B. Mogensen <ulmo@biostat.ku.dk>, Thomas A. Gerds <tag@biostat.ku.dk>

References

Ulla B. Mogensen, Hemant Ishwaran, Thomas A. Gerds (2012). Evaluating Random Forests for
Survival Analysis Using Prediction Error Curves. Journal of Statistical Software, 50(11), 1-23.
DOI 10.18637/js5.v050.i11

plotPredictSurvProb

See Also

predictEventProbprodlim

Examples

competing risk data

library(riskRegression)

library(pec)

set.seed(9)

d=sampleData(890)

cscl <- CSC(Hist(time,event)~X1+X8, data=d)
nd=sampleData(3)

plotPredictEventProb(cscl, newdata=nd, cause=1, col=1:3)

plotPredictSurvProb Plotting predicted survival curves.

Description

Ploting prediction survival curves for one prediction model using predictSurvProb .

Usage

plotPredictSurvProb(
X,
newdata,
times,
xlim,
ylim,
xlab,
ylab,
axes = TRUE,
col,
density,
lty,
lwd,
add = FALSE,
legend = TRUE,
percent = FALSE,

36

Arguments

X

newdata

times
x1lim
ylim
xlab
ylab
axes
col
density
1ty
lwd
add
legend

percent

Details

plotPredictSurvProb

A survival prediction model including call and formula object.

A data frame with the same variable names as those that were used to fit the
model x.

Vector of times at which to return the estimated probabilities.
Plotting range on the x-axis.

Plotting range on the y-axis.

Label given to the x-axis.

Label given to the y-axis.

Logical. If FALSE no axes are drawn.

Vector of colors given to the survival curve.

Densitiy of the color — useful for showing many (overlapping) curves.
Vector of Ity’s given to the survival curve.

Vector of lwd’s given to the survival curve.

Logical. If TRUE only lines are added to an existing device

Logical. If TRUE a legend is plotted by calling the function legend. Optional
arguments of the function legend can be given in the form legend. x=val where
x is the name of the argument and val the desired value. See also Details.

Logical. If TRUE the y-axis is labeled in percent.

Parameters that are filtered by SmartControl and then passed to the functions:
plot, axis, legend.

Arguments for the invoked functions legend and axis are simply specified as legend.1ty=2. The
specification is not case sensitive, thus Legend.1ty=2 or LEGEND. 1ty=2 will have the same effect.
The function axis is called twice, and arguments of the form axis1.labels, axis1.at are used
for the time axis whereas axis2.pos, axis1.labels, etc. are used for the y-axis.

These arguments are processed via . . .{} of plotPredictSurvProb and inside by using the func-
tion SmartControl.

Value

The (invisible) object.

Author(s)

Ulla B. Mogensen <ulmo@biostat.ku.dk>, Thomas A. Gerds <tag@biostat.ku.dk>

References

Ulla B. Mogensen, Hemant Ishwaran, Thomas A. Gerds (2012). Evaluating Random Forests for
Survival Analysis Using Prediction Error Curves. Journal of Statistical Software, 50(11), 1-23.
DOI 10.18637/js5.v050.i11

predictEventProb 37

See Also

predictSurvProbprodlim

Examples

generate some survival data
library(prodlim)
d <- SimSurv(100)
then fit a Cox model
library(survival)
library(rms)
coxmodel <- cph(Surv(time,status)~X1+X2,data=d, surv=TRUE)
plot predicted survival probabilities for all time points
ttt <- sort(unique(d$time))
and for selected predictor values:
ndat <- data.frame(X1=c(0.25,0.25,-0.05,0.05),X2=c(0,1,0,1))
plotPredictSurvProb(coxmodel,newdata=ndat,times=ttt)

predictEventProb Predicting event probabilities (cumulative incidences) in competing
risk models.

Description

Function to extract event probability predictions from various modeling approaches. The most
prominent one is the combination of cause-specific Cox regression models which can be fitted with
the function cumincCox from the package compRisk.

Usage
predictEventProb(object, newdata, times, cause, ...)
Arguments
object A fitted model from which to extract predicted event probabilities
newdata A data frame containing predictor variable combinations for which to compute
predicted event probabilities.
times A vector of times in the range of the response variable, for which the cumulative
incidences event probabilities are computed.
cause Identifies the cause of interest among the competing events.

Additional arguments that are passed on to the current method.

38 predictLife YearsLost

Details

The function predictEventProb is a generic function that means it invokes specifically designed
functions depending on the ’class’ of the first argument.

See predictSurvProb.

Value

A matrix with as many rows as NROW(newdata) and as many columns as length(times). Each
entry should be a probability and in rows the values should be increasing.

Author(s)
Thomas A. Gerds <tag@biostat.ku.dk>

See Also

See predictSurvProb.

Examples

library(pec)

library(survival)

library(riskRegression)

library(prodlim)

train <- SimCompRisk(100)

test <- SimCompRisk(10)

cox.fit <- CSC(Hist(time,cause)~X1+X2,data=train)
predictEventProb(cox.fit,newdata=test, times=seq(1:10),cause=1)

with strata
cox.fit2 <- CSC(list(Hist(time,cause)~strata(X1)+X2,Hist(time,cause)~X1+X2),data=train)
predictEventProb(cox.fit2,newdata=test, times=seq(1:10),cause=1)

predictLifeYearsLost Predicting life years lost (cumulative cumulative incidences) in com-
peting risk models.

Description

Function to extract predicted life years lost from various modeling approaches. The most prominent
one is the combination of cause-specific Cox regression models which can be fitted with the function
cumincCox from the package compRisk.

Usage

predictLifeYearsLost(object, newdata, times, cause, ...)

predictLife YearsLost 39

Arguments
object A fitted model from which to extract predicted event probabilities
newdata A data frame containing predictor variable combinations for which to compute
predicted event probabilities.
times A vector of times in the range of the response variable, for which the cumulative
incidences event probabilities are computed.
cause Identifies the cause of interest among the competing events.
Additional arguments that are passed on to the current method.
Details

The function predictLife YearsLost is a generic function that means it invokes specifically designed
functions depending on the ’class’ of the first argument.

See predictSurvProb.

Value

A matrix with as many rows as NROW(newdata) and as many columns as length(times). Each
entry should be a positive value and in rows the values should be increasing.

Author(s)

Thomas A. Gerds <tag@biostat.ku.dk>

See Also

predictSurvProb, predictEventProb.

Examples

library(pec)

library(riskRegression)

library(survival)

library(prodlim)

train <- SimCompRisk(100)

test <- SimCompRisk(10)

fit <- CSC(Hist(time,cause)~X1+X2,data=train,cause=1)
predictLifeYearsLost(fit,newdata=test,times=seq(1:10),cv=FALSE,cause=1)

40

predictRestrictedMeanTime

predictRestrictedMeanTime
Predicting restricted mean time

Description

Function to extract predicted mean times from various modeling approaches.

Usage

S3 method for class 'aalen'
predictRestrictedMeanTime(object,newdata, times,...
S3 method for class 'riskRegression'
predictRestrictedMeanTime(object,newdata,times,...
S3 method for class 'cox.aalen'
predictRestrictedMeanTime(object,newdata, times,...
S3 method for class 'cph'
predictRestrictedMeanTime(object,newdata,times,...
S3 method for class 'coxph'
predictRestrictedMeanTime(object,newdata,times,...
S3 method for class 'matrix'
predictRestrictedMeanTime(object,newdata, times,...
S3 method for class 'selectCox'
predictRestrictedMeanTime(object,newdata,times,...
S3 method for class 'prodlim'
predictRestrictedMeanTime(object,newdata,times,...
S3 method for class 'psm'
predictRestrictedMeanTime(object,newdata,times,...
S3 method for class 'survfit'
predictRestrictedMeanTime(object,newdata,times,...
S3 method for class 'pecRpart'
predictRestrictedMeanTime(object,newdata, times,...

)

#' \method{predictRestrictedMeanTime}{pecCtree}(object,newdata,times,...)

Arguments
object A fitted model from which to extract predicted survival probabilities
newdata A data frame containing predictor variable combinations for which to compute
predicted survival probabilities.
times A vector of times in the range of the response variable, e.g. times when the

response is a survival object, at which to return the survival probabilities.

Additional arguments that are passed on to the current method.

predictRestrictedMeanTime 41

Details

The function predictRestrictedMeanTime is a generic function, meaning that it invokes a different
function dependent on the ’class’ of the first argument.

See also predictSurvProb.

Value

A matrix with as many rows as NROW(newdata) and as many columns as length(times). Each
entry should be a probability and in rows the values should be decreasing.

Note

In order to assess the predictive performance of a new survival model a specific predictRestrictedMeanTime
S3 method has to be written. For examples, see the bodies of the existing methods.

The performance of the assessment procedure, in particular for resampling where the model is
repeatedly evaluated, will be improved by supressing in the call to the model all the computations
that are not needed for probability prediction. For example, se. fit=FALSE can be set in the call to
cph.

Author(s)

Thomas A. Gerds <tag@biostat.ku.dk>

References

Ulla B. Mogensen, Hemant Ishwaran, Thomas A. Gerds (2012). Evaluating Random Forests for
Survival Analysis Using Prediction Error Curves. Journal of Statistical Software, 50(11), 1-23.
DOI 10.18637/jss.v050.i11

See Also

predict,survfit

Examples

generate some survival data

library(prodlim)

set.seed(100)

d <- SimSurv(100)

then fit a Cox model

library(rms)

library(survival)

coxmodel <- cph(Surv(time,status)~X1+X2,data=d, surv=TRUE)

predicted survival probabilities can be extracted

at selected time-points:

ttt <- quantile(d$time)

for selected predictor values:

ndat <- data.frame(X1=c(0.25,0.25,-0.05,0.05),X2=c(0,1,0,1))

42

predictSurvProb

as follows
predictRestrictedMeanTime (coxmodel,newdata=ndat, times=ttt)

stratified cox model
sfit <- coxph(Surv(time,status)~strata(X1)+X2,data=d,x=TRUE, y=TRUE)
predictRestrictedMeanTime(sfit,newdata=d[1:3,], times=c(1,3,5,10))

simulate some learning and some validation data

learndat <- SimSurv(100)

valdat <- SimSurv(100)

use the learning data to fit a Cox model

library(survival)

fitCox <- coxph(Surv(time,status)~X1+X2,data=learndat,x=TRUE,y=TRUE)

suppose we want to predict the survival probabilities for all patients
in the validation data at the following time points:

0, 12, 24, 36, 48, 60

psurv <- predictRestrictedMeanTime(fitCox,newdata=valdat,times=seq(0,60,12))
This is a matrix with survival probabilities

one column for each of the 5 time points

one row for each validation set individual

predictSurvProb Predicting survival probabilities

Description

Function to extract survival probability predictions from various modeling approaches. The most
prominent one is the Cox regression model which can be fitted for example with ‘coxph’ and with
‘cph’.

Usage

S3 method for class 'aalen'
predictSurvProb(object,newdata,times,...)
S3 method for class 'riskRegression'
predictSurvProb(object,newdata,times,...)
S3 method for class 'cox.aalen'
predictSurvProb(object,newdata,times,...)
S3 method for class 'cph'
predictSurvProb(object,newdata,times,...)
S3 method for class 'coxph'
predictSurvProb(object,newdata,times,...)
S3 method for class 'matrix'
predictSurvProb(object,newdata,times,...)
S3 method for class 'selectCox'
predictSurvProb(object,newdata, times,...)

S3 method for class 'pecCforest'
predictSurvProb(object,newdata,times,...)

predictSurvProb 43

S3 method for class 'prodlim'

predictSurvProb(object,newdata,times,...)
S3 method for class 'psm'
predictSurvProb(object,newdata,times,...)
S3 method for class 'survfit'
predictSurvProb(object,newdata,times,...)
S3 method for class 'pecRpart'
predictSurvProb(object,newdata, times,...)

#' \method{predictSurvProb}{pecCtree}(object,newdata,times,...)

Arguments
object A fitted model from which to extract predicted survival probabilities
newdata A data frame containing predictor variable combinations for which to compute
predicted survival probabilities.
times A vector of times in the range of the response variable, e.g. times when the
response is a survival object, at which to return the survival probabilities.
Additional arguments that are passed on to the current method.
Details

The function predictSurvProb is a generic function that means it invokes specifically designed func-
tions depending on the ’class’ of the first argument.

The function pec requires survival probabilities for each row in newdata at requested times. These
probabilities are extracted from a fitted model of class CLASS with the function predictSurvProb. CLASS.

Currently there are predictSurvProb methods for objects of class cph (library rms), coxph (library
survival), aalen (library timereg), cox.aalen (library timereg), rpart (library rpart), product.limit
(library prodlim), survfit (library survival), psm (library rms)

Value
A matrix with as many rows as NROW(newdata) and as many columns as length(times). Each
entry should be a probability and in rows the values should be decreasing.

Note

In order to assess the predictive performance of a new survival model a specific predictSurvProb
S3 method has to be written. For examples, see the bodies of the existing methods.

The performance of the assessment procedure, in particular for resampling where the model is
repeatedly evaluated, will be improved by supressing in the call to the model all the computations
that are not needed for probability prediction. For example, se.fit=FALSE can be set in the call to
cph.

Author(s)

Thomas A. Gerds <tag@biostat.ku.dk>

44 predictSurvProb

References

Ulla B. Mogensen, Hemant Ishwaran, Thomas A. Gerds (2012). Evaluating Random Forests for
Survival Analysis Using Prediction Error Curves. Journal of Statistical Software, 50(11), 1-23.
DOI 10.18637/jss.v050.111

See Also

predict,survfit

Examples

generate some survival data

library(prodlim)

set.seed(100)

d <- SimSurv(100)

then fit a Cox model

library(survival)

library(rms)

coxmodel <- cph(Surv(time,status)~X1+X2,data=d, surv=TRUE)

Extract predicted survival probabilities

at selected time-points:

ttt <- quantile(d$time)

for selected predictor values:

ndat <- data.frame(X1=c(0.25,0.25,-0.05,0.05),X2=c(0,1,0,1))
as follows
predictSurvProb(coxmodel,newdata=ndat,times=ttt)

stratified cox model
sfit <- coxph(Surv(time,status)~strata(X1)+X2,data=d, ,x=TRUE,y=TRUE)
predictSurvProb(sfit,newdata=d[1:3,], times=c(1,3,5,10))

simulate some learning and some validation data

learndat <- SimSurv(100)

valdat <- SimSurv(100)

use the learning data to fit a Cox model

library(survival)

fitCox <- coxph(Surv(time,status)~X1+X2,data=learndat,x=TRUE,y=TRUE)
suppose we want to predict the survival probabilities for all patients
in the validation data at the following time points:

0, 12, 24, 36, 48, 60

psurv <- predictSurvProb(fitCox,newdata=valdat, times=seq(0,60,12))
This is a matrix with survival probabilities

one column for each of the 5 time points

one row for each validation set individual

Cox with ridge option

f1 <- coxph(Surv(time,status)~X1+X2,data=learndat,x=TRUE,y=TRUE)

f2 <- coxph(Surv(time,status)~ridge(X1)+ridge(X2),data=learndat,x=TRUE,y=TRUE)

plot(predictSurvProb(f1,newdata=valdat,times=10),
pec:::predictSurvProb.coxph(f2,newdata=valdat, times=10),

print.pec 45

xlim=c(0,1),

ylim=c(0,1),

xlab="Unpenalized predicted survival chance at 10",
ylab="Ridge predicted survival chance at 10")

print.pec Printing a ‘pec’ (prediction error curve) object.

Description

Print the important arguments of call and the prediction error values at selected time points.

Usage
S3 method for class 'pec'
print(x, times, digits = 3, what = NULL, ...)
Arguments
X Object of class pec
times Time points at which to show the values of the prediction error curve(s)
digits Number of decimals used in tables.
what What estimate of the prediction error curve to show. Should be a string matching

an element of x. The default is determined by splitMethod.
Not used

print Set to FALSE to suppress printing.

Value

The first argument in the invisible cloak.

Author(s)

Thomas A. Gerds <tag@biostat.ku.dk>

See Also

pec

46 R2

R2 Explained variation for survival models

Description

This function computes a time-dependent $R"2$ like measure of the variation explained by a sur-
vival prediction model, by dividing the mean squared error (Brier score) of the model by the mean
squared error (Brier score) of a reference model which ignores all the covariates.

Usage

R2(object, models, what, times, reference = 1)

Arguments
object An object with estimated prediction error curves obtained with the function pec
models For which of the models in object$models should we compute $R*2(t). By
default all models are used except for the reference model.
what The name of the entry in x to be used. Defauls to PredErr Other choices are
AppErr, BootCvErr, Boot632, Boot632plus.
times Time points at which the summaries are shown.
reference Position of the model whose prediction error is used as the reference in the
denominator when constructing $R"2$
Details

In survival analysis the prediction error of the Kaplan-Meier estimator plays a similar role as the
total sum of squares in linear regression. Hence, it is a sensible reference model for $R"2$.

Value
A matrix where the first column holds the times and the following columns are the corresponding
$RA2$ values for the requested prediction models.

Author(s)

Thomas A. Gerds <tag@biostat.ku.dk>

References

E. Graf et al. (1999), Assessment and comparison of prognostic classification schemes for survival
data. Statistics in Medicine, vol 18, pp=2529-2545.

Gerds TA, Cai T and Schumacher M (2008) The performance of risk prediction models Biometrical
Journal, 50(4), 457-479

reclass

See Also

pec

Examples

set.seed(18713)
library(prodlim)
library(survival)
dat=SimSurv(100)

47

nullmodel=prodlim(Hist(time,status)~1,data=dat)
pmodell=coxph(Surv(time,status)~X1+X2,data=dat,x=TRUE,y=TRUE)
pmodel2=coxph(Surv(time,status)~X2,data=dat,x=TRUE, y=TRUE)
perror=pec(list(Cox1=pmodel1l,Cox2=pmodel2),Hist(time,status)~1,data=dat,reference=TRUE)
R2(perror,times=seq(@,1,.1),reference=1)

reclass

Retrospective risk reclassification table

Description

Retrospective table of risks predicted by two different methods, models, algorithms

Usage

reclass(
object,

reference,

formula,
data,
time,
cause,

cuts = seq(@, 100, 25),

digits =

Arguments

object

reference

formula

data

Either a list with two elements. Each element should either be a vector with
probabilities, or an object for which predictSurvProb or predictEventProb
can extract predicted risk based on data.

Reference prediction model.

A survival formula as obtained either with prodlim: :Hist or survival: :Surv
which defines the response in the data.

Used to extract the response from the data and passed on to predictEventProb
to extract predicted event probabilities.

48

reclass

time Time interest for prediction.
cause For competing risk models the cause of interest. Defaults to all available causes.
cuts Risk quantiles to group risks.

digits Number of digits to show for the predicted risks

Details

All risks are multiplied by 100 before

Value

reclassification tables: overall table and one conditional table for each cause and for subjects event
free at time interest.

Author(s)

Thomas A. Gerds <tag@biostat.ku.dk>

See Also

predictStatusProb

Examples

Not run:

library(survival)

set.seed(40)

d <- prodlim::SimSurv(400)

nd <- prodlim::SimSurv(400)

Models <- list("Cox.X2"=coxph(Surv(time,status)~X2,data=d,x=TRUE,y=TRUE),
"Cox.X1.X2"=coxph(Surv(time,status)~X1+X2,data=d,x=TRUE, y=TRUE))

rc <- reclass(Models,formula=Surv(time,status)~1,data=nd, time=5)

print(rc)

plot(rc)

set.seed(40)

library(riskRegression)

library(prodlim)

dcr <- prodlim::SimCompRisk (400)

ndcr <- prodlim::SimCompRisk(400)

crPred5 <- 1list("X2"=predictEventProb(CSC(Hist(time,event)~X2,data=dcr),newdata=ndcr,times=5),
"X1+X2"=predictEventProb(CSC(Hist(time, event)~X1+X2,data=dcr),newdata=ndcr, times=5))

rc <- reclass(crPred5,Hist(time,event)~1,data=ndcr,time=3)

print(rc)

reclass(crPred5,Hist(time,event)~1,data=ndcr,time=5,cuts=100*c(0,0.05,0.1,0.2,1))

End(Not run)

resolvesplitMethod 49

resolvesplitMethod Resolve the splitMethod for estimation of prediction performance

Description

The function computes a matrix of random indices obtained by drawing from the row numbers of a
data set either with or without replacement. The matrix can be used to repeatedly set up independent
training and validation sets.

Usage

resolvesplitMethod(splitMethod, B, N, M)

Arguments
splitMethod String that determines the splitMethod to use. Available splitMethods are none/noPlan
(no splitting), bootcv or outofbag (bootstrap cross-validation), cvK (K-fold cross-
validation, e.g. cv10 gives 10-fold), boot632, boot632plus or boot632+, loocv
(leave-one-out)
B The number of repetitions.
N The sample size
M For subsampling bootstrap the size of the subsample. Note M<N.
Value

A list with the following components

name the official name of the splitMethod

internal.name the internal name of the splitMethod

index a matrix of indices with B columns and either N or M rows, dependent on split-
Method
B the value of the argument B
N the value of the argument N
M the value of the argument M
Author(s)

Thomas Alexander Gerds <tag@biostat.ku.dk>

50 selectCox

Examples

BootstrapCrossValidation: Sampling with replacement
resolvesplitMethod(”"BootCv",N=10,B=10)

10-fold cross-validation: repeated 2 times
resolvesplitMethod("cv10" ,N=10,B=2)

leave-one-out cross-validation
resolvesplitMethod(”loocv” ,N=10)

resolvesplitMethod(”"bootcv632plus”,N=10,B=2)

selectCox Backward variable selection in the Cox regression model

Description

This is a wrapper function which first selects variables in the Cox regression model using fastbw
from the rms package and then returns a fitted Cox regression model with the selected variables.

Usage
selectCox(formula, data, rule = "aic")
Arguments
formula A formula object with a Surv object on the left-hand side and all the variables
on the right-hand side.
data Name of an data frame containing all needed variables.
rule The method for selecting variables. See fastbw for details.
Details

This function first calls cph then fastbw and finally cph again.

References

Ulla B. Mogensen, Hemant Ishwaran, Thomas A. Gerds (2012). Evaluating Random Forests for
Survival Analysis Using Prediction Error Curves. Journal of Statistical Software, 50(11), 1-23.
DOI 10.18637/js5.v050.i11

simCost 51

Examples

data(GBSG2)

library(survival)

f <- selectCox(Surv(time,cens)~horTh+tage+menostat+tsize+tgradet+pnodes+progrectestrec ,
data=GBSG2)

simCost Simulate COST alike data

Description

Simulate data alike the data from the Copenhagen stroke study (COST)

Usage

simCost (N)

Arguments

N Sample size

Details

This uses functionality of the lava package.

Value

Data frame

Author(s)

Thomas Alexander Gerds

Special Drawing bootstrapped cross-validation curves and the .632 or
.632plus error of models. The prediction error for an optional bench-
mark model can be added together with bootstrapped cross-validation
error and apparent errors.

Description

This function is invoked and controlled by plot. pec.

52 Special

Usage
Special(
X)
Y,
addprederr,
models,
bench,
benchcol,
times,
maxboot,
bootcol,
col,
lty,
lwd
)
Arguments
X an object of class "pec’ as returned by the pec function.
y Prediction error values.
addprederr Additional prediction errors. The options are bootstrap cross-validation errors
or apparent errors.
models One model also specified in pec for which the predErr in plot.pec is to be
drawn.
bench A benchmark model (also specified in pec) for which the predErr in plot.pec
is to be drawn.
benchcol Color of the benchmark curve.
times Time points at which the curves must be plotted.
maxboot Maximum number of bootstrap curves to be added. Default is all.
bootcol Color of the bootstrapped curves. Default is *gray77’.
col Color of the different error curves for models.
1ty Line type of the different error curves for models.
lwd Line width of the different error curves for models.
Details

This function should not be called directly. The arguments can be specified as Special.arg in the
call to plot.pec.

Value

Invisible object.

See Also

plot.pec

threecity 53

threecity threecity data

Description

Extracted data from a french population based cohort (Three-City cohort). The dataset includes
followup information on dementia outcome and predicted 5-year risks based on based on the subject
specific information which includes age, gender, education level and cognitive decline measured
by a psychometric test (Mini Mental State Examination). The prediction model from which the
predictions have been computed has been fitted on independent training data from the Paquid cohort,
another french population based cohort with similar design (see Reference Blanche et al. 2015 for
details) .

Format
A subsample consisting of 2000 observations on the following 3 variables.

pi 5-year absolute risk predictions of dementia.
status O=censored, 1=dementia, 2=death dementia free

time time to event (i.e., time to either dementia, death dementia free or loss of follow-up)

Source

Web-appendix of Blanche et al. (2015).

References

Blanche, P., Proust-Lima, C., Loubere, L., Berr, C., Dartigues, J. F., Jacqmin-Gadda, H. (2015).
Quantifying and comparing dynamic predictive accuracy of joint models for longitudinal marker
and time-to-event in presence of censoring and competing risks. Biometrics, 71(1), 102-113.

Examples

data(threecity)

Index

+ datasets
cost, 12
GBSG2, 15
Pbc3, 18
threecity, 53

* prediction
resolvesplitMethod, 49

* survival
calPlot, 2
cindex, 6
coxboost, 13
crps, 14
ipcw, 16
pec, 20
pecCforest, 27
plot.pec, 30
plotPredictEventProb, 33
plotPredictSurvProb, 35
predictEventProb, 37
predictLifeYearsLost, 38
predictRestrictedMeanTime, 40
predictSurvProb, 42
print.pec, 45
R2, 46
selectCox, 50

axis, 34, 36

calPlot, 2
cindex, 6
cost, 12
coxboost, 13
crps, 14,25

dpik, 5
fastbw, 50
GBSG2, 15

Hist, 13

54

ibs (crps), 14
ipcw, 16

legend, 34, 36
lines, 4, 5

mclapply, 5
model . frame, 5

Pbc3, 18

pec, 14, 15, 17,20, 31, 32, 4547
pecCforest, 27

pecCtree, 28

pecRpart, 29

plot, 31, 34, 36
plot.calibrationPlot, 30
plot.pec, 25, 30, 52
plotPredictEventProb, 33
plotPredictSurvProb, 35
points, 5

predict, 41, 44
predictEventProb, 35, 37, 39
predictLifeYearsLost, 38
predictRestrictedMeanTime, 40

predictSurvProb, 3, 8, 21, 37-39, 41, 42

print.pec, 45
prodlim, 32, 35, 37

R2, 25,46
reclass, 47
resolvesplitMethod, 49

selectCox, 50

simCost, 51
SmartControl, 5, 34, 36
Special, 32, 51
summary.pec, 25, 32
summary.pec (print.pec), 45
survfit, 41, 44

threecity, 53

	calPlot
	cindex
	cost
	coxboost
	crps
	GBSG2
	ipcw
	Pbc3
	pec
	pecCforest
	pecCtree
	pecRpart
	plot.calibrationPlot
	plot.pec
	plotPredictEventProb
	plotPredictSurvProb
	predictEventProb
	predictLifeYearsLost
	predictRestrictedMeanTime
	predictSurvProb
	print.pec
	R2
	reclass
	resolvesplitMethod
	selectCox
	simCost
	Special
	threecity
	Index

