Package ‘particles’

December 3, 2024
Type Package
Title A Graph Based Particle Simulator Based on D3-Force
Version 0.2.4
Maintainer Thomas Lin Pedersen <thomasp85@gmail.com>

Description Simulating particle movement in 2D space has many
application. The 'particles' package implements a particle simulator
based on the ideas behind the 'd3-force' 'JavaScript' library.
'particles’ implements all forces defined in 'd3-force' as well as
others such as vector fields, traps, and attractors.

License MIT + file LICENSE
URL https://github.com/thomasp85/particles

BugReports https://github.com/thomasp85/particles/issues
Imports digest, dplyr, igraph, mgcv, rlang, stats, tidygraph

Suggests covr, ggraph, knitr, rmarkdown

LinkingTo cppll

VignetteBuilder knitr

Encoding UTF-8

RoxygenNote 7.3.2

Config/build/compilation-database true

NeedsCompilation yes

Author Thomas Lin Pedersen [aut, cre]
(<https://orcid.org/0000-0002-5147-4711>),
Andrei Kashcha [ctb]

Repository CRAN
Date/Publication 2024-12-03 09:10:02 UTC

https://github.com/thomasp85/particles
https://github.com/thomasp85/particles/issues
https://orcid.org/0000-0002-5147-4711

2 center_force

Contents
center_force L. L e e e e 2
collision_force e 3
dominator_COnStraint e e e e 3
EVOLVE . . . e 4
field_force e 5
GEMESIS .+ v v v e 6
IMPOSE .+ ¢ v v ot e e e e e e e e e e e 7
infinity_constraint L e 8
link_force e 9
manybody_force 9
map_force e e e e e e e 10
mean_force L. L e e e 11
path_constraint L. e e e e e 11
polygon_constraint 12
random_force L e 12
reset_force. e e 13
simulate e e e e e e 13
simulation_modification e 15
trap_force 16
velocity_constraint L. 17
X_CONSLIAINT o v v o o e e e e e e e e e 18
x_force ... e e e e 18
V_CONSIAINt L v vt bt et e e e e e e e e e e e e e e e e 19
y_force . ..o 19

Index 20

center_force Center all particles around the origin without affecting velocity
Description

This force repositions the particles at each generation so they are centered around (0,0). It does not
affect the velocity of the particles and are thus mainly a guard against the whole body of particles
drifting off.

Training parameters
The following parameters defines the training of the force and can be passed along a call towield()

* x : The x position to center around (tidy eval)
* y: The y position to center around (tidy eval)

See Also

Other forces: collision_force, field_force, link_force, manybody_force, map_force, mean_force,
random_force, reset_force, trap_force, x_force, y_force

collision_force 3

collision_force Models particles as circles with a given radius and pushes overlapping
particles apart

Description

This force pushes overlapping particles apart by assigning a radius to each particle, treating them
as circles, and searches for overlaps through an optimised quad tree algorithm.

Training parameters
The following parameters defines the training of the force and can be passed along a call towield()

* strength : A dampening of the repulsion between overlapping circles. This allows the force
to iterate towards the optimal solution through iterative relaxation. Should be a number be-
tween 0 and 1. Defaults to 0.7

* radius : The radius of each particle. Defaults to 1 (tidy eval)

* n_iter : The number of iterations to perform in the iterative relaxation. Defaults to 1.

See Also

Other forces: center_force, field_force, link_force, manybody_force, map_force, mean_force,
random_force, reset_force, trap_force, x_force, y_force

dominator_constraint Restrict child position based on parent position

Description

This constraint requires children to be positioned at a certain side of their parent and with a certain
distance. It can be used to enforce a layering of particles for e.g. DAG and tree layouts.

Training parameters

The following parameters defines the training of the constraint and can be passed along a call to
impose()

e distance : The minimum orthogonal distance to the parent. Default to @, meaning that
children are only required to be positioned to the specific side of their parent. (tidy eval)

* angle : The direction the children should be enforced to be relative to their parent. Defaults
to -pi/2 which is equivalent to down. (tidy eval)
See Also

Other constraints: infinity_constraint, path_constraint, polygon_constraint, velocity_constraint,
x_constraint, y_constraint

4 evolve
evolve Move the simulation forward one or more steps
Description
This is the function that move the simulation forward in time. It is possible to either specify the
number of steps that should be simulated or let the simulation terminate as alpha_min is reached.
Note that some values of alpha and alpha_target does not allow alpha to converge to alpha_min
so letting the simulation self-terminate can result in an infinite loop. The default settings will result
in alpha_min being reached in 300 generations.
Usage
evolve(simulation, steps = NULL, on_generation = NULL, ...)
Arguments
simulation A simulation object
steps The number of generations to progress or a function getting the simulation object
and returns TRUE if the simulation should proceed and FALSE if it should stop. If
NULL the simulation will run until alpha_min has been reached.
on_generation A function to be called after each generation has been progressed. The function
will get the current state of the simulation as the first argument. If the function
returns a simulation object it will replace the current simulation from the next
generation. In the case of any other return type the return will be discarded and
the function will have no effect outside its side-effects.
Additional arguments to on_generation
Details
Each generation in the simulation progress in the following manner:
1. Check whether the specified number of generations has been reached
2. Check whether alpha_min has been reached
3. If either 1. or 2. is true, terminate the simulation
4. Apply the forces on the current particle positions and velocities in the order they have been
added
5. Reduce the velocity according to the given velocity_decay
6. Update the position and velocity based on any provided constraints
7. Calculate the new particle positions based on the new velocity
8. If given, call the on_generation function.
Value

A simulation object with updated positions and velocities

field_force 5

Examples

graph <- tidygraph::create_notable('folkman")
sim <- graph |>

simulate() |>

wield(link_force) |>

wield(manybody_force)

Take 5 steps and tell about it
sim |> evolve(5, function(sim) {
cat('Generation: ', evolutions(sim), '\n', sep = ''")

b

Run evolution until alpha_min is reached
sim |> evolve(NULL)

field_force Apply a vector field to particles

Description

This force adjusts the velocity of particles based on a supplied vector field. The vector field can
either be specified using x and y velocities, or angle and magnitude. Velocity adjustments are
calculated based on a bilinear interpolation.

Training parameters

The following parameters defines the training of the force and can be passed along a call towield()

* x : A matrix giving the velocity in the x direction at each grid point
* y: A matrix giving the velocity in the y direction at each grid point

* angle : A matrix giving the direction of the velocity at each grid point. Will only be consid-
ered if x and y are missing.

* vel : A single numeric or a matrix of the same dimensions as angle giving the magnitude of
velocity at each grid point.

* x1lim: The coordinate span of the vector field in the x direction.

e ylim: The coordinate span of the vector field in the y direction.

See Also

Other forces: center_force, collision_force, link_force, manybody_force, map_force, mean_force,
random_force, reset_force, trap_force, x_force, y_force

6 genesis

genesis Particle initialisation

Description

These functions are passed to the simulation and defines how the position and velocity of the parti-
cles are initiated. The default is to lay out the nodes in a phyllotactic arrangement (think sunflower
seeds) and with no velocity, which is also the default in d3-force.

Usage
phyllotactic_genesis(radius = 10, angle = pi * (3 - sqrt(5)))

predefined_genesis(x, y, x_vel = 0, y_vel = 0)
bigbang_genesis(vel_min = @, vel_max = 1)
aquarium_genesis(width = 10, height = 10, vel_min = @, vel_max = 1)

petridish_genesis(max_radius = 10, vel_min = @, vel_max = 1)

Arguments
radius The radius modifier (will be multiplied by the square root of the index of the
particle)
angle The angular difference between two adjacent particles
X,y The columns holding (or value of) the position coordinates
x_vel,y_vel The columns holding (or value of) the velocity verlets

vel_min, vel_max
The bounds of the uniformly distributed velocities

width, height The size of the rectangle holding the particles

max_radius The size of the disc.

Value

A function that takes the particle graph and returns a list with a position and velocity element, each
holding a matrix with two columns and a row for each particle giving the x and y position and
velocity respectively.

Functions
* phyllotactic_genesis(): Initiates particles in a phyllotactic arrangement with zero veloc-
ity
* predefined_genesis(): Uses information from the node data to set position and velocity.

* bigbang_genesis(): Initiates particles at center position and a random velocity

impose 7

e aquarium_genesis(): Places particles randomly in a rectangle and gives them a random
velocity

* petridish_genesis(): Places particles randomly on a disc and gives them a random velocity

Examples

A contrieved example

graph <- tidygraph::create_notable('bull')
genesis <- phyllotactic_genesis()
genesis(graph)

Usually used as an argument to simulate
graph |>
simulate(setup = phyllotactic_genesis())

impose Assign a force or constraint to a simulation

Description

This function adds a new force/constraint to the simulation and trains the it on the current particle
graph. The parameters passed on to the training are using tidy evaluation from the rlang package.
Depending on the force/constraint the data getting referenced is either the node or the edge data of
the particle graph. Both forces and constraints manipulate position and velocity of the particles but
they differ in when the are applied during a generation. First forces are applied sequentially and the
resulting velocity is added to the resulting position after velocity_decay has been applied. After
this operation any constraint is imposed on the results. In general, forces tends to calculate velocity
adjustments, while constraints modify position and velocity directly, but this difference is not in any
way enforced.

Usage
impose(simulation, constraint, ..., name, include = TRUE)
reimpose(simulation, name, ...)

unimpose(simulation, name)
wield(simulation, force, ..., name, include = TRUE)
rewield(simulation, name, ...)

unwield(simulation, name)

8 infinity_constraint

Arguments
simulation A simulation object
constraint A constraint object
Parameters passed on to the training of the force or constraint
name The name of the force. For use when accessing the force at a later stage. If no
name is given the force is accessible by its index in the stack.
include The particles to be affected by this force. Defaults to every particle in the simu-
lation (tidy eval)
force A force object
Details

wield() and impose() adds forces and constraints to the simulation respectively. unwield() and
unimpose () removes forces and constraints based on name or index. rewield() and reimpose()
modifies existing forces and constraints based on name or index and retrains them.

Value

A simulation with the force or constraint added

Examples

graph <- tidygraph::create_notable('folkman')
graph |>

simulate() |>

wield(link_force)

infinity_constraint Reposition particles outside a canvas so they wrap around

Description

This constraint keeps particles inside of a defined area by positioning exiting particles on the other
side of the area. In effect this makes particles that moves outside the upper bound reenter at the
lower bound and vice versa.

Training parameters

The following parameters defines the training of the constraint and can be passed along a call to
impose()

e x1lim: The left and right bound of the area

e ylim: The upper and lower bound of the area

link_force 9

See Also

Other constraints: dominator_constraint, path_constraint, polygon_constraint, velocity_constraint,
x_constraint, y_constraint

link_force Attract or repel linked particles

Description

This force works between linked particles and either attracts or repel them from each other depend-
ing on the value of the strength and distance parameters. The force is stronger the longer the linked
particles are from each other, mimicking the mechanics of a rubber band.

Training parameters

The following parameters defines the training of the force and can be passed along a call towield()
* strength : The attractive force between the linked particles. The default weighs edges from
low-degree particles higher (strength =1 / (min(degree(from), degree(to)))). (tidy eval)
* distance : The desired distance between linked particles. Defaults to 30 (tidy eval)

e n_iter : The number of iteration towards the optimal solution per generation. Higher values
leads to faster convergence (measured in number of generations) at the expense of longer
computation time per generation. Defaults to 1.

See Also

Other forces: center_force, collision_force, field_force, manybody_force, map_force,
mean_force, random_force, reset_force, trap_force, x_force, y_force

manybody_force Model attraction or repulsion between all particles in the system

Description

This force implements a n-body simulation using the Barnes-Hut approximation for improved per-
formance. An n-body simulation calculates attraction or repulsion between all particles in a system
based on their relative distances and each particles capacity and can thus mimick gravity or electro-
static repulsion.

10 map_force

Training parameters
The following parameters defines the training of the force and can be passed along a call towield()
* strength : The attractive or repulsive force of the particles. If positive the particle attracts, if
negative the particle repulses. The default is -30. (tidy eval)

* theta : The Barnes-Hut criterion governing the precision of the approximation. If 0, no
approximation is made. Defaults to 0.9.

* min_dist : A lower distance threshold below which the forces will be damped, in order to
avoid explosive forces when two particles gets very near each other.

» max_dist : A distance threshold above which the forces between particles are ignored. Using
this will result in more local changes.
See Also

Other forces: center_force, collision_force, field_force, link_force, map_force, mean_force,
random_force, reset_force, trap_force, x_force, y_force

map_force Apply a map to particles

Description

In mathematics, maps are a functions that translates its input into new values. In the context of
particles a map is a translation function that translates the current particle positions to a new one

Details

Normally a map has no notion of velocity — it simply translates positions. In particles it is possible
to decide whether positions should be modified directly or whether the translation magnitude should
be added to the velocity verlet using the fixed parameter.

Training parameters

The following parameters defines the training of the force and can be passed along a call towield()

* map : A function that accepts the particle position matrix and returns the new positions in the
same format.

» fixed : Logical. Should position be modified directly (TRUE) or should the translation be
added to the velocity verlet (FALSE)
See Also

Other forces: center_force, collision_force, field_force, link_force, manybody_force,
mean_force, random_force, reset_force, trap_force, x_force, y_force

mean_force 11

mean_force Apply the mean velocity of all the neighbors to a particle

Description
This force takes the mean of all the neighbors (in the graph sense) of a particle (and optionally
itself) and applies it to itself.

Training parameters
The following parameters defines the training of the force and can be passed along a call towield()

* include_self : Should the velocity of itself be included in the mean calculation

* mode : How should neighbors be found? 'all' uses all edges. 'out' only uses outbound
edges, and 'in' only uses inbound edges. Ignored for undirected particle graphs
See Also

Other forces: center_force, collision_force, field_force, link_force, manybody_force,
map_force, random_force, reset_force, trap_force, x_force, y_force

path_constraint Limit particle position to be along a path or outline

Description
This constraint repositions particles to their closest point along a given path and sets their velocity
to zero.

Training parameters

The following parameters defines the training of the constraint and can be passed along a call to
impose()

* path: A two column matrix giving the path, or a list of matrices to use multiple disconnected
paths.

* closed : Should the path close on itself. Defaults to FALSE

See Also

Other constraints: dominator_constraint, infinity_constraint, polygon_constraint, velocity_constraint,
x_constraint, y_constraint

12 random_force

polygon_constraint Fixes particles to be inside a polygon

Description

This constraint prevents particles from moving outside of one or more polygons. If a particle ven-
tures outside it will be moved back to its closest point inside the specified polygon(s) and have its
velocity set to zero.

Training parameters

The following parameters defines the training of the constraint and can be passed along a call to
impose()

* polygon : A two column matrix giving the polygon, or a list of matrices to use multiple
polygons. Overlapping polygons will be subtracted from each other so it is possible to define
polygons with holes.

See Also

Other constraints: dominator_constraint, infinity_constraint, path_constraint, velocity_constraint,
x_constraint, y_constraint

random_force Modify the velocity randomly at each step

Description
This force applies a random velocity modification to all particles. The modification is uniformly
distributed and bound be the parameters provided during initialisation.

Training parameters
The following parameters defines the training of the force and can be passed along a call towield()

e xmin, xmax : The bounds of the modification in the horizontal direction
e ymin, ymax : The bounds of the modification in the vertical direction

See Also

Other forces: center_force, collision_force, field_force, link_force, manybody_force,
map_force, mean_force, reset_force, trap_force, x_force, y_force

reset_force 13

reset_force Reset the velocity verlet of particles to a fixed value

Description

This force resets the velocity of particles at each generation. It can be used if each generation should
start from the same foundation rather than accumulate as the simulation evolve. Particles where the
parameters evaluates to NA will ignore this force.

Training parameters

The following parameters defines the training of the force and can be passed along a call towield()

» xvel : The x-velocity to reset to at each generation (fidy eval)

* yvel : The y-velocity to reset to at each generation (fidy eval)

See Also

Other forces: center_force, collision_force, field_force, link_force, manybody_force,
map_force, mean_force, random_force, trap_force, x_force, y_force

simulate Start a simulation based on a graph

Description

This function initiates a simulation based on the provided graph and parameters. Any graph struc-
ture with a tidygraph::as_tbl_graph() method is supported as input. This function does not
start the simulation but merely sets it up.

Usage

simulate(
graph,
alpha = 1,
alpha_min = 0.001,
alpha_decay = 1 - alpha_min*(1/300),
alpha_target = 0,
velocity_decay = 0.4,
setup = phyllotactic_genesis(),

)

is.simulation(x)

14 simulate

record(simulation, ...)
clear_history(simulation)
get_history(simulation, age = -1)
history_length(simulation)
reheat(simulation, alpha)
particles(simulation)
position(simulation)
velocity(simulation)

evolutions(simulation)

Arguments
graph A graph in a format supported by tidygraph
alpha The starting alpha value. See Details.
alpha_min The minimum alpha value after which the simulation is terminated. See Details.

alpha_decay The speed at which the alpha value decreases. See Details.
alpha_target The alpha value that alpha drifts towards. See Details.

velocity_decay The dampening factor of the system. See Details.

setup A function that takes the particle graph and returns a start position and velocity
to each particle. particles provides a range of genesis functions to choose
from.

Additional parameters for the simulation (currently ignored)
X, simulation A simulation object

age The version to retrieve. Positive numbers count from the beginning, while neg-
ative numbers counts backwards from current version. Defaults to -1.

Details

A simulation in the context of the particles package is a series of equidistant steps where the velocity
and position of each particle is updated. A few global rules applies to this cycle irrespectively of the
forces added to the simulation. Once a simulation is initiated an alpha value is defined (defaults
to 1). At each step this alpha value is decreased according to its distance to the alpha_target
(defaults to @) and alpha_decay (defaults to ~@.023). Once the alpha value gets below alpha_min
(defaults to @.001) the simulation seizes to take additional steps. The default values is adapted from
the d3-force implementation and corresponds to 300 steps. Conceptually the alpha progression can
be seen as a cooling off of the system as the value decreases quickly in the beginning and then
slowly reach the target value. If it is not intended to have a system that cools off, simply set the
alpha_target value to the same as alpha. At each step, after the new particle velocities has been

simulation_modification 15

calculated but before they have been applied to the positions, a dampening factor (velocity_decay)
is applied in order to simulate the gradual loss of momentum. If this is not intended for the simula-
tion, simply set the value to 0.

Value

A simulation object

Functions

* record(): Save the current state in the simulation’s history

e clear_history(): Clear the current history from the simulation

* get_history(): Retrieve a simulation from the history

* history_length(): Get the number of versions stored in the history of the simulation
* reheat(): set the cooling of the simulation to a new value

* particles(): Extract the particle graph from a simulation

* position(): Extract the position coordinates from a simulation

* velocity(): Extract the velocity verlets from a simulation

* evolutions(): Get the number of generations the simulation has undergone

Examples

graph <- tidygraph::create_notable('folkman')
graph |>
simulate()

simulation_modification
Modify the particles in a simulation

Description

The particles that are modelled in a simulation are encoded as a tb1_graph, giving support for the
particles as well as their interactions (nodes and edges in graph parlor). A simulation supports a
subset of the tidygraph/dplyr verbs in order to allow modification of the particles after they have
been included in the simulation. In general it is possible to add and remove particles and interactions
as well as modify the metadata associated with them. The API follows the tidygraph API where
activate() is used to select either particles or interactions and subsequent operations are thus
related to the last activated datatype. The simulation is automatically retrained after modifying the
state of the particles and their interactions.

16 trap_force

Usage

add_particles(.data, ..., interactions = NULL, setup = NULL)

replace_particles(.data, particles, setup = NULL)

add_interaction(.data, ...)
Arguments
.data A simulation object

Parameters passed on to the main verbs in tidygraph/dplyr
interactions A data.frame of interactions/edges to add along with the particles

setup A function to calculate the starting conditions for the particles. It receives all
particles with the current position and velocity encoded in the x, y, x_vel, and
y_vel columns. New particle will have NA. The function must return a position
and velocity for all particles even though the values for the current particles will
be discarded. If NULL it will use the genesis function used when creating the
simulation.

particles A tbl_graph or an object coercible to one

Value

A simulation object

See Also

dplyr::mutate(), dplyr: :mutate_at(),dplyr::mutate_all(),dplyr::filter(), dplyr::slice(),
tidygraph::activate(), tidygraph: :bind_nodes(), tidygraph: :bind_edges()

trap_force Attract and trap particles within polygons

Description

This force creates a trap based on any type of polygon that attracts particles as long as they are
outside the polygon, while leaving particles inside the polygon unaffected. The trap as such has
no walls and particles are allowed to leave it, but they will be pulled back as soon as they exits the

polygon.
Training parameters
The following parameters defines the training of the force and can be passed along a call towield()

e polygon : A two column matrix giving the corners of the polygon, or a list of matrices to use
multiple polygons. If multiple polygons are overlapping it is considered a hole.

velocity_constraint 17

* strength : The attractive force applied to the particle. Particles are attracted towards the
closest part of the polygon, rather than the center, and the attraction is stronger for particles
moving away from the polygon than for those moving towards it. (tidy eval)

* min_dist : A lower distance threshold below which the strength is not increased. The attrac-
tion of the trap falls of with the square of the distance to the particle, so particles close by can
get an enormous attraction unless this threshold is set (so much that the shoot out of the other
side of the trap).

e distance_falloff : How should the attractive force deteriorate with the distance between
the polygon and the particle. Defaults to 2 (quadratic falloff) (tidy eval)

See Also

Other forces: center_force, collision_force, field_force, link_force, manybody_force,
map_force, mean_force, random_force, reset_force, x_force, y_force

velocity_constraint Limits particles to a specific velocity range

Description

This constraint puts bounds on the magnitude of velocity a particle can have. Particles where either
end of the bound is NA ignores the constraint. If a particle with no velocity is forced to have a
velocity the direction will be random.

Training parameters

The following parameters defines the training of the constraint and can be passed along a call to
impose()

* v : The velocity allowed for the particle. (tidy eval)
* vmin : The lowest permissible velocity. If NULL then v will be used. (fidy eval)

» vmax : The highest permissible velocity. If NULL then v will be used. (tidy eval)

See Also

Other constraints: dominator_constraint, infinity_constraint, path_constraint, polygon_constraint,
x_constraint, y_constraint

18 x_force

x_constraint Fixes particles to a horizontal position

Description

This constraint simply prevents particles from moving in the x direction. For particles where the
constraint evaluates to NA this constraint is ignored. If the constraint is enforced the velocity in the
x direction will be set to @.

Training parameters

The following parameters defines the training of the constraint and can be passed along a call to
impose()

* x : The position on the x-axis to fix to. (tidy eval)
* xmin : The lowest permissible x-value. If NULL then x will be used. (tidy eval)

» xmax : The highest permissible x-value. If NULL then x will be used. (tidy eval)

See Also

Other constraints: dominator_constraint, infinity_constraint, path_constraint, polygon_constraint,
velocity_constraint, y_constraint

x_force Attract particles towards a horizontal position

Description

This force simply pulls particles towards a fixed position on the x-axis.

Training parameters

The following parameters defines the training of the force and can be passed along a call towield()

* strength : The strength with which the attraction occurs (tidy eval)

* x : The position on the x-axis to pull towards. (tidy eval)

See Also

Other forces: center_force, collision_force, field_force, link_force, manybody_force,
map_force, mean_force, random_force, reset_force, trap_force, y_force

y_constraint 19

y_constraint Fixes particles to a vertical position

Description

This constraint simply prevents particles from moving in the y direction. For particles where the
constraint evaluates to NA this constraint is ignored. If the constraint is enforced the velocity in the
y direction will be set to 0.

Training parameters

The following parameters defines the training of the constraint and can be passed along a call to
impose ()

* y : The position on the y-axis to fix to. (tidy eval)
* ymin : The lowest permissible y-value. If NULL then y will be used. (tidy eval)
 ymax : The highest permissible y-value. If NULL then y will be used. (tidy eval)

See Also

Other constraints: dominator_constraint, infinity_constraint, path_constraint, polygon_constraint,
velocity_constraint, x_constraint

y_force Attract particles towards a vertical position

Description

This force simply pulls particles towards a fixed position on the y-axis.

Training parameters
The following parameters defines the training of the force and can be passed along a call towield()

* strength : The strength with which the attraction occurs (tidy eval)
* y : The position on the y-axis to pull towards. (tidy eval)

See Also

Other forces: center_force, collision_force, field_force, link_force, manybody_force,
map_force, mean_force, random_force, reset_force, trap_force, x_force

Index

* constraints

dominator_constraint, 3
infinity_constraint, 8
path_constraint, 11
polygon_constraint, 12
velocity_constraint, 17
x_constraint, 18
y_constraint, 19

x datasets

center_force, 2
collision_force, 3
dominator_constraint, 3
field_force, 5
infinity_constraint, 8
link_force, 9
manybody_force, 9
map_force, 10
mean_force, 11
path_constraint, 11
polygon_constraint, 12
random_force, 12
reset_force, 13
trap_force, 16
velocity_constraint, 17
x_constraint, 18
x_force, 18
y_constraint, 19
y_force, 19

x forces

center_force, 2
collision_force, 3
field_force, 5
link_force, 9
manybody_force, 9
map_force, 10
mean_force, 11
random_force, 12
reset_force, 13
trap_force, 16

20

x_force, 18
y_force, 19

add_interaction
(simulation_modification), 15

add_particles
(simulation_modification), 15

aquarium_genesis (genesis), 6

bigbang_genesis (genesis), 6

center_force, 2, 3,5, 9-13, 17-19
clear_history (simulate), 13
collision_force, 2,3, 5,913, 17-19

dominator_constraint, 3,9, 11, 12, 17-19
dplyr::filter(), 16
dplyr::mutate(), 16
dplyr::mutate_all(), 16
dplyr::mutate_at(), 16
dplyr::slice(), 16

evolutions (simulate), 13
evolve, 4

field_force, 2, 3,5, 9-13, 17-19

genesis, 6, 14
get_history (simulate), 13

history_length (simulate), 13

impose, 7

impose(), 3,8, 11, 12, 17-19
infinity_constraint, 3,8, 11, 12, 17-19
is.simulation (simulate), 13

link_force, 2, 3, 5,9, 10-13, 17-19

manybody_force, 2, 3,5, 9,9, 10-13, 17-19
map_force, 2, 3,5, 9, 10,10, 11-13, 17-19
mean_force, 2, 3,5,9, 10,11, 12, 13, 17-19

INDEX 21

particles (simulate), 13
path_constraint, 3,9, 11, 12, 17-19
petridish_genesis (genesis), 6
phyllotactic_genesis (genesis), 6
polygon_constraint, 3,9, 11,12, 17-19
position (simulate), 13
predefined_genesis (genesis), 6

random_force, 2, 3,5,9-11,12, 13, 17-19

record (simulate), 13

reheat (simulate), 13

reimpose (impose), 7

replace_particles
(simulation_modification), 15

reset_force, 2, 3,5,9-12,13, 17-19

rewield (impose), 7

simulate, 13
simulation (simulate), 13
simulation_modification, 15

tidygraph::activate(), 16
tidygraph::as_tbl_graph(), I3
tidygraph: :bind_edges(), 16
tidygraph: :bind_nodes(), 16
trap_force, 2, 3, 5,9-13, 16, 18, 19

unimpose (impose), 7
unwield (impose), 7

velocity (simulate), 13
velocity_constraint, 3,9, 11, 12,17, 18, 19

wield (impose), 7
wield(), 2, 3,5,9-13,16, 18, 19

x_constraint, 3,9, 11, 12,17, 18, 19
x_force, 2, 3,5,9-13,17,18, 19

y_constraint, 3,9, 11, 12,17, 18, 19
y_force, 2, 3,5,9-13,17, 18, 19

	center_force
	collision_force
	dominator_constraint
	evolve
	field_force
	genesis
	impose
	infinity_constraint
	link_force
	manybody_force
	map_force
	mean_force
	path_constraint
	polygon_constraint
	random_force
	reset_force
	simulate
	simulation_modification
	trap_force
	velocity_constraint
	x_constraint
	x_force
	y_constraint
	y_force
	Index

