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Abstract

The partDSA package (Molinaro, Lostritto, and Weston 2009) provides a novel recur-
sive partitioning tool for prediction when numerous variables jointly affect the outcome.
In such settings, piecewise constant estimation provides an intuitive approach by elucidat-
ing interactions and correlation patterns in addition to main effects. As well as generating
’and’ statements similar to previously described methods, partDSA explores and chooses
the best among all possible ’or’ statements. The immediate benefit of partDSA is the abil-
ity to build a parsimonious model with ’and’ and ’or’ conjunctions. Currently, partDSA

is capable of handling categorical and continuous explanatory variables and outcomes.
This vignette provides a guide for analysis with the partDSA package while the actual al-
gorithm is introduced and thoroughly described in Molinaro, Lostritto, and van der Laan
(2010).
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1. Introduction

Classification and Regression Trees (CART) (Breiman, Friedman, Olshen, and Stone 1984), a
binary recursive partitioning algorithm, allows one to explore the individual contributions of
various covariates as well as their interactions for the purposes of predicting outcomes. The
end product of CART is a list of ’and’ statements. For example, a CART tree is illustrated in
Figure 1. In this tree there are two variables (diagnosis age, a continuous variable, and tumor
grade, an ordered variable) and the outcome is number of positive lymph nodes, a continuous
variable. Thus, the parameter of interest is the conditional mean of the number of positive
nodes given the covariates and the chosen loss function is the squared error. The splitting
and pruning (details can be found in Breiman et al. (1984)) are based on the L2 loss function
and result in a tree with three terminal nodes. The final predictor can be read as: if a patient
is less than 50 years of age, her predicted number of positive nodes is β1; if a patient is over
50 and her tumor grade is less than or equal to 2, her predicted number of positive nodes
is β2; if a patient is over 50 and her tumor grade is greater than 2, her predicted number of
positive nodes is β3.

Although the importance of such statements is not in debate, there are settings where the ’and’
statement ordering does not accurately account for all of the observed biological phenomena.
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Figure 1: Classification and Regression Tree Example. This tree shows an example of recursive
binary partitioning using CART with the variables ’Diagnosis Age’ and ’Tumor Grade’. The
terminal nodes have predicted values β1, β2, and, β3.

Figure 2 illustrates the scenario when the number of positive nodes is similar for women under
50 years of age and those over 50 whose tumor grade is less than or equal to 2, i.e. β1 = β2.
The resulting model can be written as two partitions including an ’or’ statement as opposed
to three terminal nodes consisting of three individual ’and’ statements.

The final predictor can be read as: if a patient is less than 50 years of age OR if a patient is
over 50 and her tumor grade is less than or equal to 2, her predicted number of positive nodes
is β1; if a patient is over 50 and her tumor grade is greater than 2, her predicted number
of positive nodes is β2. This model can be drawn as shown in Figure 3. Thus, as well as
generating ’and’ statements similar to CART, partDSA explores and chooses the best among
all possible ’or’ statements. The immediate benefit of partDSA is the ability to build a stable
and parsimonious model with ’and’ and ’or’ conjunctions.

To illustrate partDSA, in Section 2 we begin by describing partDSA with observed data
and default settings and then describe the user-defined control parameters. Subsequently, in
Section 5 we detail examples.

2. partDSA

In the prediction problem, we are interested in building and evaluating the performance of
a rule or procedure fitted to n independent observations, corresponding to the n indepen-
dent subjects in a study. Accordingly, we observe a random sample of n i.i.d. observations
W1, . . . ,Wn, where W = (Y,X) contains an outcome Y and a collection of p measured ex-
planatory variables, or features, X = (X1, ..., Xp)

′. For example, in microarray experiments X
includes RNA or protein expression, chromosomal amplification and deletions, or epigenetic
changes; while in proteomic data, it includes the intensities at the mass over charge (m/z)
values. The collection of features may also contain explanatory variables measured in the
clinic and/or by histopathology such as a patient’s age or tumor stage. We denote the distri-
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Figure 2: Two terminal nodes with similar outcome.

Figure 3: Example of ’or’ statement.
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bution of the data structure W by FW . The variables which constitute X can be measured
on a continuous, ordinal, or categorical scale. Although this covariate process may contain
both time-dependent and time-independent covariates we will focus on the time-independent
X. The outcome Y may be a continuous measure such as tumor size, a categorical or ordinal
measure such as stage of disease, or a binary measure such as disease status.

For an example we will generate a training sample with a categorical outcome Y and two
continuous covariates, X1 and X2.

> y.out=as.factor(sample(c("a", "b", "c"), 50, TRUE) )

> x1=rexp(50)

> x2=runif(50)

To load the partDSA package and run the algorithm with default settings we type:

> library(partDSA)

> #model1<-partDSA(x=data.frame(x1,x2),y=y.out)

If an independent test set is available it can be provided to assess how well the model built
on the training set performs on the independent test set. For illustration we will generate a
larger test set from the same distribution as the training set:

> y.out.test=as.factor(sample(c("a", "b", "c"), 100, TRUE) )

> x1.test=rexp(100)

> x2.test=runif(100)

The independent test set is included as:

> model2<-partDSA(x=data.frame(x1,x2),y=y.out,x.test=data.frame(x1=x1.test,x2=x2.test),y.te

If x.test and y.test are not specified the default values are x and y, respectively. Case
weights can also be specified for the training set via the wt argument and for the test set
via the wt.test argument. By default both are set to vectors of 1’s of length equal to the
training and test sets, respectively.

2.1. Parallel Computing

Cross-validation is employed in order to select the best model in partDSA. To address this
added computational burden an optional cluster object can be specified via the sleigh argu-
ment which allows the cross-validation to be performed in parallel using the parallel package.
By default the cross-validation is run sequentially.

An example of running partDSA in parallel with two workers is:

library(parallel)

cl <- makeCluster(2, type='PSOCK')

cat(sprintf('Running a PSOCK cluster with %d workers\n', length(cl)))

model3<-partDSA(x=data.frame(x1,x2),y=y.out,sleigh=cl)
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3. Control Parameters

In addition to the training and test sets and corresponding weights, the user can specify
numerous parameters via the control object. The control object is created by calling the
DSA.control function.

DSA.control(vfold=10, minsplit=20, minbuck=round(minsplit/3), cut.off.growth=10, MPD=0.1,

missing="default", loss.function="default")

The default values for each of the parameters are chosen by calling DSA.control with no
arguments, i.e.

> partDSA(x=data.frame(x1,x2),y=y.out,control=DSA.control())

3.1. vfold

Cross-validation is used to select the best model among those generated (Molinaro, Simon,
and Pfeiffer 2005; Molinaro and Lostritto 2010). As such, partDSA initially splits the training
set into v-folds. For each of v times, v − 1 of the folds are used to build up to M =cut-off-

growth models (each of which is the best model for 1, · · · ,M partitions). Subsequently, the
one fold left out of model building is used to assess the performance of the associated model.
Once all v-folds have run, the cross-validated error is calculated as the average squared-error
(for a continuous outcome) or misclassification error (for a categorical outcome) over the v-
folds for each of the possible partitions, 1, · · · ,M . By default vfold = 10 and 10-fold cross
validation is performed. For a training set of size n, if vfold is set equal to n it is equivalent
to running leave-one-out cross-validation. For exploratory purposes and if no model selection
is needed, vfold can be set to 1 to avoid any cross-validation. That is, to just build a model
without cross-validation, we can specify:

> partDSA(x=data.frame(x1,x2),y=y.out,control=DSA.control(vfold=1))

3.2. minsplit

Minsplit is the minimum number of observations necessary to split one partition into two
partitions. By default minsplit is set equal to 20, to specify a minimum of 15 observations,
we can write:

> partDSA(x=data.frame(x1,x2),y=y.out,control=DSA.control(minsplit=15))

3.3. minbuck

Minbuck is the minimum number of observations that can be in a partition. In order to
split a partition into two (either via the Addition or Substitution steps), there must be at
least 2 ∗minbuck observations. By default minbuck is set equal to round(minsplit/3) = 7 as
minsplit = 20 by default. To specify a minimum of 15 observations in any terminal partition,
we should also increase minsplit from the default of 20, and we can write:
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> partDSA(x=data.frame(x1,x2),y=y.out,control=DSA.control(minsplit=40, minbuck=15))

3.4. cut-off-growth

Cut-off-growth is the maximum number of partitions that will be explored. The more par-
titions that are examined the more the computational burden and likelihood of overfitting,
thus cut-off-growth has a default value of 10. To specify a different value, we type:

> partDSA(x=data.frame(x1,x2),y=y.out,control=DSA.control(cut.off.growth=15))

3.5. MPD

Minimum percent difference, or MPD, is the smallest percentage by which the next move
(Addition, Substitution, or Deletion) must improve the current fit (i.e., the reduction in the
empirical risk). The larger the percentage is the bigger the improvement and the fewer possible
moves to consider. By defaultMPD = 0.1, or 10%. To changeMPD to 30%, we can specify:

> partDSA(x=data.frame(x1,x2),y=y.out,control=DSA.control(MPD=0.3))

3.6. Missing values

Currently, partDSA can accomodate missing values in the covariates via imputation. As
such, there are two settings for the missing value argument named missing: “no” and “im-
pute.at.split”. Missing set to ”no” indicates that there is no missing data and will create
an error if missing data is found in the dataset. By default missing = ”no”. For missing
covariate data, partDSA will employ a data imputation method similar to that in CRUISE
(Kim and Loh, 2001) withmissing = ”impute.at.split”. Where at each split, the non-missing
observations for a given variable are used to find the best split, and the missing observations
are imputed based on the mean or mode (depending on whether the variable is categorical or
continuous) of the non-missing observations in that node. Once the node assignment of the
missing observations is determined using the imputed values, the imputed values are returned
to their missing state. For missing values in the test set, the grand mean or mode from the
corresponding variables in the training set are used. Including variables which are entirely
missing will result in an error. To set missing to “impute.at.split”, we type:

> partDSA(x=data.frame(x1,x2),y=y.out,control=DSA.control(missing="impute.at.split"))

3.7. Loss Functions for Univariate Prediction

partDSA employs loss functions for two key stages of model building: separating the observed
sample into different groups (or partitions) and selecting the final prediction model. The gen-
eral purpose of the loss function L is to quantify performance. Thus, depending on the param-
eter of interest, there could be numerous loss functions from which to choose. If the outcome Y
is continuous, frequently, the parameter of interest is the conditional mean ψ0(W ) = E[Y |W ]
which has the corresponding squared error loss function, L(X,ψ) = (Y − ψ(W ))2.
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If the outcome Y is categorical, the parameter of interest involves the class conditional prob-
abilities, Pr0(y|W ). For the indicator loss function, L(X,ψ) = I(Y 6= ψ(W )), the optimal
parameter is ψ0(W ) = argmaxyPr0(y |W ), the class with maximum probability given covari-
ates W . One could also use a loss function which incorporates differential misclassification
costs. Note that in the standard CART methodology, Breiman et al. (1984) favor replacing
the indicator loss function in the splitting rule by measures of node impurity, such as the
entropy, Gini, or twoing indices (Chapter 4). The indicator loss function is still used for
pruning and performance assessment. It turns out that the entropy criterion corresponds
to the negative log-likelihood loss function, L(X,ψ) = − logψ(X), and parameter of in-
terest ψ0(X) = Pr0(Y |W ). Likewise, the Gini criterion corresponds to the loss function
L(X,ψ) = 1 − ψ(X), with parameter of interest ψ0(X) = 1 if Y = argmaxyPr0(y | W ) and
0 otherwise. At the current time partDSA is enabled for the L2 or squared error loss func-
tion (the default) for continuous outcomes and either the Gini (“gini”) or entropy (“entropy”,
the default) loss functions for categorical outcomes. The loss function can be specified in
DSA.control:

> model2<-partDSA(x=data.frame(x1,x2),y=y.out,

control=DSA.control(loss.function="gini"))

4. Output and Viewing the partitions

Once partDSA has run the outcome can be examined by using the print() statement. For
example, using the previously generated data we can run the algorithm with only up to two
partitions:

> model4<-partDSA(x=data.frame(x1,x2),y=y.out,control=DSA.control(missing="no",cut.off.grow

And then look at the results by typing:

> print(model4)

partDSA object

# partitions mean CV error sd CV error test risk

1 0.610000 0.078646 0.620000

2 0.671667 0.109446 0.560000

Outcome:

[1] c

Levels: a b c

[1] a c

Levels: a b c

Best 2 partitions

Partition 1 [of 2]:

(x2 <= 0.785791)
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Partition 2 [of 2]:

(0.785791 < x2)

Variable importance matrix:

COG=1 COG=2

x1 0 0

x2 0 2

The first item is the table summarizing the average cross-validated error over the vfolds,
the standard error for the cross-validated error, and the test set risk. Each is reported for up
to M = 2 = cut.off.growth partitions. The second item labeled ’Outcome’ is the predicted
outcome for each partition. In our example, if only one partition is chosen (i.e. all observa-
tions are together) the predicted outcome is “c”. If two partitions are chosen then the first
partition has predicted outcome “a“ and the second has predicted outcome “c“. The descrip-
tion of how the partitions are defined follows. In this example we specified a maximum of 2
partitions, thus, we only see the description for the best of 2 partitions. The final item is the
variable importance matrix. This matrix simply keeps track of how many times each variable
defines a partition. The variables are listed as rows and the partitions as columns (here COG
= cut-off-growth). For example, for COG = 1 neither of the variables define the one parti-
tion because all observations are kept in one partition with no splitting. For COG = 2, x1 is
used to define 0 of the two total partitions and x2 is used to define 2 of the two total partitions.

In order to view the partitions Java must be installed. For example to see a the two partitions
for our running example we type:

> showDSA(model4)

There are three windows in the output shown in Figure 4(a). The Node Browser, i.e.
the top-left window, lists the best of each number of allowed partitions (from 1, · · · ,M =
cut− off − growth) and allows the user to navigate through the different splits and into the
final partitions by clicking. The right window displays what is chosen in the Node Browser
window. For example, here we see that in the Node Browser window ’Best two partitions’ is
highlighted and in the right window we see the visual of those two partitions. Namely, obser-
vations with a value of x1 greater than 0.77 are assigned to the left partition with predicted
outcome “b”. Observations with an x1 value less than 0.77 are assigned to the right partition
with predicted outcome “a”.

The bottom-left window, labeled ’Selected Node’, becomes active once a final partition is
highlighted in the Node Browser window. This is shown in Figure 4(b). Now note that
in the Node Browser window the final partition labeled with the predicted outcome “b” is
highlighted and the pathway from the orignating partition to the final partition is highlighted
in the right window. The Selected Node window is now active and reports information such
as the predicted value and how many observations from the training set are contained in the
final partition and thus estimate the predicted value. Additional information such as the
section and number of sections inform the user as to if this final partition stands alone or is
part of an ’or’ statement ordering.
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5. Examples

5.1. Categorical outcome

The German Breast Cancer Study Group (GBSG2) datai is a prospective controlled clini-
cal trial on the treatment of node positive breast cancer patients (Schumacher, Hollander,
Schwarzer, and Sauerbrei 2001). The data (available within the TH.data package) contains
686 women with seven prognostic factors measured. For this analysis we will predict recur-
rence by using the censoring status (0 = uncensored, 1 = censored).

> data("GBSG2", package = "TH.data")

> mdl1<-partDSA(x=data.frame(GBSG2[,c(1:8)]),y=as.factor(GBSG2$cens),control=DSA.control(cu

> print(mdl1)

partDSA object

# partitions mean CV error sd CV error test risk

1 0.435867 0.002864 0.435860

2 0.371561 0.066371 0.362974

3 0.377271 0.058165 0.336735

4 0.389081 0.043870 0.381924

5 0.400654 0.055094 0.381924

Outcome:

[1] 0

Levels: 0 1

[1] 0 1

Levels: 0 1

[1] 0 0 1

Levels: 0 1

[1] 0 0 0 1

Levels: 0 1

[1] 0 0 0 1 0

Levels: 0 1

Best 2 partitions

Partition 1 [of 2]:

(pnodes <= 3.000000)

Partition 2 [of 2]:

(3.000000 < pnodes)

Best 3 partitions

Partition 1 [of 3]:

(pnodes <= 3.000000)

Partition 2 [of 3]:

(3.000000 < pnodes) && (21.000000 < progrec)

(tsize <= 20.000000) && (3.000000 < pnodes <= 9.000000) && (progrec <= 21.000000)

Partition 3 [of 3]:

(9.000000 < pnodes) && (progrec <= 21.000000)
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(20.000000 < tsize) && (3.000000 < pnodes <= 9.000000) && (progrec <= 21.000000)

Best 4 partitions

Partition 1 [of 4]:

(pnodes <= 3.000000) && (progrec <= 89.000000)

Partition 2 [of 4]:

(3.000000 < pnodes) && (21.000000 < progrec)

(tsize <= 20.000000) && (3.000000 < pnodes <= 9.000000) && (progrec <= 21.000000)

Partition 3 [of 4]:

(pnodes <= 3.000000) && (89.000000 < progrec)

(9.000000 < pnodes) && (progrec <= 21.000000) && (estrec <= 0.000000)

(20.000000 < tsize) && (3.000000 < pnodes <= 9.000000) && (progrec <= 21.000000)

Partition 4 [of 4]:

(9.000000 < pnodes) && (progrec <= 21.000000) && (0.000000 < estrec)

Best 5 partitions

Partition 1 [of 5]:

(pnodes <= 3.000000) && (progrec <= 89.000000)

Partition 2 [of 5]:

(3.000000 < pnodes) && (21.000000 < progrec)

(tsize <= 20.000000) && (3.000000 < pnodes <= 9.000000) && (progrec <= 21.000000)

Partition 3 [of 5]:

(horTh is no) && (pnodes <= 3.000000) && (89.000000 < progrec)

(9.000000 < pnodes) && (progrec <= 21.000000) && (estrec <= 0.000000)

(20.000000 < tsize) && (3.000000 < pnodes <= 9.000000) && (progrec <= 21.000000)

Partition 4 [of 5]:

(9.000000 < pnodes) && (progrec <= 21.000000) && (0.000000 < estrec)

Partition 5 [of 5]:

(horTh is yes) && (pnodes <= 3.000000) && (89.000000 < progrec)

Variable importance matrix:

COG=1 COG=2 COG=3 COG=4 COG=5

horTh 0 0 0 0 2

age 0 0 0 0 0

menostat 0 0 0 0 0

tsize 0 0 2 2 2

tgrade 0 0 0 0 0

pnodes 0 2 3 4 5

progrec 0 0 2 4 5

estrec 0 0 0 2 2

> showDSA(mdl1)

An example of the partDSA model is shown in Figure 5. The following can be read from the
visualization:

• If the patient has less than 3 positive nodes (pnodes) she has a predicted outcome of 0
(p1: 0).
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• If the patient has greater than 21 positive nodes (pnodes) OR between 9 and 21 positive
nodes and has estrogen receptor value less than or equal to 0 fmol (estrec) OR between
3 and 9 positive nodes and tumor size < 20 and age < 54, she has a predicted outcoem
of 0 (p2:0).

• If the patient has between 9 and 21 positive nodes (pnodes) and an estrogen receptor
value greater than 0 (estrec), she has a predicted outcome of 1 (p3:1).

• If the patient has between 3 and 9 positive nodes (pnodes) and tumor size greater than
20, she has a predicted outcome of 1 (p4:1).

References

Breiman L, Friedman JH, Olshen R, Stone CJ (1984). Classification and Regression Trees.
Wadsworth and Brooks/Cole, Monterey, CA.

Molinaro AM, Lostritto K (2010). Statistical Bioinformatics: A Guide for Life and Biomedical

Science Researchers, chapter Statistical resampling for large screening data analysis such as
classical resampling, Bootstrapping, Markov chain Monte Carlo, and statistical simulation
and validation strategies. John Wiley & Sons, Inc.

Molinaro AM, Lostritto K, van der Laan MJ (2010). “partDSA: Dele-
tion/Substitution/Addition Algorithm for Partitioning the Covariate Space in Prediction.”
Bioinformatics. Doi: 10.1093/bioinformatics/btq142.

Molinaro AM, Lostritto K, Weston S (2009). “partDSA: Partitioning using deletion, substi-
tution, and addition moves.” http://cran.r-project.org/web/packages/partDSA.

Molinaro AM, Simon R, Pfeiffer RM (2005). “Prediction error estimation: a comparison
of resampling methods.” Bioinformatics, 21(15), 3301–3307. http://bioinformatics.

oxfordjournals.org/cgi/reprint/21/15/3301.pdf, URL http://bioinformatics.

oxfordjournals.org/cgi/content/abstract/21/15/3301.

Schumacher M, Hollander N, Schwarzer G, Sauerbrei W (2001). Statistics in Oncology, chapter
Prognostic Factor Studies. Marcel Dekker.

Affiliation:

Firstname Lastname
Affiliation
Address, Country
E-mail: name@address
URL: http://link/to/webpage/

http://cran.r-project.org/web/packages/partDSA
http://bioinformatics.oxfordjournals.org/cgi/reprint/21/15/3301.pdf
http://bioinformatics.oxfordjournals.org/cgi/reprint/21/15/3301.pdf
http://bioinformatics.oxfordjournals.org/cgi/content/abstract/21/15/3301
http://bioinformatics.oxfordjournals.org/cgi/content/abstract/21/15/3301
mailto:name@address
http://link/to/webpage/


12 partDSA

(a) Visualization of Model4 with two partitions.

(b) Visualization of Model4 with two partitions and one final partition highlighted.

Figure 4: Visualization of Partitions
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Figure 5: German Breast Cancer Study Group Example
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