Package ‘pacotest’

November 4, 2022

Type Package

Title Testing for Partial Copulas and the Simplifying Assumption in
Vine Copulas

Version 0.4.2
Maintainer Malte S. Kurz <mkurz-software@gmx.de>

Description Routines for two different test types, the Constant Conditional Correla-
tion (CCC) test and the Vectorial Independence (VI) test are provided (Kurz and Span-
hel (2022) <doi:10.1214/22-EJS2051>). The tests can be applied to check whether a condi-
tional copula coincides with its partial copula. Functions to test whether a regular vine cop-
ula satisfies the so-called simplifying assumption or to test a single copula within a regu-
lar vine copula to be a (j-1)-th order partial copula are available. The CCC test comes with a de-
cision tree approach to allow testing in high-dimensional settings.

License MIT + file LICENSE

Imports Rcpp (>=0.11.4), VineCopula (>= 2.0.5), numDeriv, ggplot2(>=
2.0.0), gridExtra, methods

LinkingTo Rcpp, ReppArmadillo
Suggests testthat, covr

BugReports https://github.com/MalteKurz/pacotest/issues
NeedsCompilation yes

Author Malte S. Kurz [aut, cre]

Repository CRAN

Date/Publication 2022-11-04 17:40:02 UTC

R topics documented:

pacotest-package L e e e e 2
PaCOLeSt e 3
pacotestRvineSeq 6
pacotestRvineSingleCopula oL 8
PACOLESISEL o o i e e e e e e e e e e 10
Index 13

https://doi.org/10.1214/22-EJS2051
https://github.com/MalteKurz/pacotest/issues

2 pacotest-package

pacotest-package Testing for Partial Copulas and the Simplifying Assumption in Vine
Copulas

Description

The pacotest package provides functions, which allow to test for partial copulas and the simplifying
assumption in vine copulas. The package consists of two different test types, the Constant Condi-
tional Correlation (CCC) test and the Vectorial Independence (V]) test. The function pacotestset
can be used to create and alter pacotest options lists and the function pacotest can be used to test
for the partial copula and the simplifying assumption for a single bivariate conditional copula.

The function pacotestRvineSeq can be used with a RVineMatrix from the VineCopula-package

to test all pair-copulas being building blocks in a R-vine copula to be (j-1)-th order partial copulas,
which is equivalent to testing the simplifying assumption. A single building blog of a R-vine copula

could be tested to be a (j-1)-th order partial copula by applying the function pacotestRvineSingleCopula
to a RVineMatrix from the VineCopula-package.

Author(s)

Malte S. Kurz

References

Hobaek-Haff, 1., K. Aas and A. Frigessi (2010), "On the simplified pair-copula construction — Sim-
ply useful or too simplistic?", Journal of Multivariate Analysis 101(5), pp. 1296-1310.

Kojadinovic, I. and M. Holmes (2009), "Tests of independence among continuous random vectors
based on Cramer-von Mises functionals of the empirical copula process”, Journal of Multivariate
Analysis 100(6), pp. 1137-1154.

Kurz, M. S. and F. Spanhel (2022), "Testing the simplifying assumption in high-dimensional vine
copulas”, Electronic Journal of Statistics 16 (2), pp. 5226-5276.

Quessy, J.-F. (2010), "Applications and asymptotic power of marginal-free tests of stochastic vec-
torial independence”, Journal of Statistical Planning and Inference 140(11), pp. 3058-3075.

Spanhel, F. and M. S. Kurz (2019), "Simplified vine copula models: Approximations based on the
simplifying assumption"”, Electronic Journal of Statistics 13 (1), pp. 1254-1291.

Spanhel, F. and M. S. Kurz (2016), "The partial copula: Properties and associated dependence
measures", Statistics & Probability Letters 119, pp. 76-83.

See Also

Development for pacotest can be followed via the GitHub repository at https://github.com/
MalteKurz/pacotest.

https://github.com/MalteKurz/pacotest
https://github.com/MalteKurz/pacotest

pacotest 3

pacotest Testing for the Partial Copula and the Simplifying Assumption for a
Single Bivariate Conditional Copula

Description

The function can be used to test for the partial copula and the simplifying assumption for a bivariate
conditional copula using different tests. Two different test types, the Constant Conditional Corre-
lation (CCC) test and the Vectorial Independence (VI) test are implemented. For all tests different
options can be set by generating a pacotest options list using the pacotestset function.

Arguments

U A (n x 2) matrix of [0,1] data (probability integral transforms), which are the ar-
guments of the conditional copula of (Y,Z)IW for which the simplifying assump-
tion should be tested. The first column is given by the conditional distribution
function of YIW evaluated at the observed values of Y and W. Analogously, the
second column is defined as the conditional distribution function of ZIW eval-
uated at the observed values of Z and W. If the probability integral transforms
are obtained from the partial vine copula (PVC), i.e., partial probability integral
transforms (PPITs) are used, the function can be used to test for (j-1)-th order
partial copulas.

W A (n x K) matrix of observed values for the vector of random variables on which
the conditioning is done.
pacotestOptions

A options list generated by the pacotestset function or the test type as a string,
i.e., CCC or VI.

Details

Applying a test with default options (cf. pacotestset) and with known (i.e., not estimated) PITs
(probability integral transforms) in U.

out = pacotest(U,W, 'CCC")

out = pacotest(U,W,'VI"')

Applying a test with options specified in pacotestOptions
out = pacotest(U,W,pacotestOptions)

Note that when calling pacotest(U,W, 'CCC'), the default options for the CCC test are used
(cf. pacotestset), but the two parameters withEstUncert = FALSE and estUncertWithRanks
= FALSE are altered. In contrast when calling pacotestOptions = pacotestset('CCC"), the two
parameters are set to withEstUncert = TRUE and estUncertWithRanks = TRUE. For the CCC test,
under the default setting, it is assumed that estimated PPITs are provided and the test statistic is

4 pacotest

computed under consideration of estimation uncertainty of the probability integral transforms, i.e.,
withEstUncert = TRUE and estUncertWithRanks = TRUE. To apply pacotest withwithEstUncert
= TRUE, three additional inputs have to be provided (data, svcmDataFrame and cPitData).

In the vine copula context, PPITs are usually estimated and not known. Therefore, in the vine copula
context it is recommended to use the functions pacotestRvineSeq or pacotestRvineSingleCopula
instead of pacotest. These functions automatically pass through the additional arguments data,
svcmDataFrame, cPitData to the function pacotest and the CCC test can be applied in its de-
fault setting with consideration of estimation uncertainty of the probability integral transformes, i.e.,
withEstUncert = TRUE and estUncertWithRanks = TRUE.

Value
A list which can, depending on the chosen test, consist of the following elements:

pValue The p-value of the test.
testStat The value of the test statistic.

decisionTree The decision tree used to partition the support Lambda0O of the conditioning
variable W. It is provided as a list consisting of three nodes (CentralNode,
LeftNode and RightNode) represented as lists and the variable LeavesForFinalComparison.
Each node consists of the Variable used to perform the split, the corresponding
Quantile and Threshold.

S The bootstrapped values of the test statistic (only for the test type VI).

Author(s)
Malte S. Kurz

References

Kurz, M. S. and F. Spanhel (2022), "Testing the simplifying assumption in high-dimensional vine
copulas”, Electronic Journal of Statistics 16 (2), pp. 5226-5276.

Spanhel, F. and M. S. Kurz (2019), "Simplified vine copula models: Approximations based on the
simplifying assumption", Electronic Journal of Statistics 13 (1), pp. 1254-1291.

Spanhel, F. and M. S. Kurz (2016), "The partial copula: Properties and associated dependence
measures", Statistics & Probability Letters 119, pp. 76-83.

See Also

pacotest-package, pacotestset, pacotestRvineSeq, pacotestRvineSingleCopula

Examples

HHHHHHHEEEEE

Generate an options list, e.g., the constant conditional correlation (CCC)

test with default options. We use known PITs and don't estimate the parameters

in the lower trees of the vine copulas and therefore additionally alter the

two parameters withEstUncert and estUncertWithRanks to FALSE.
pacotestOptions=pacotestset(testType='CCC', withEstUncert = FALSE, estUncertWithRanks = FALSE)

pacotest 5

SHEHHEHHHEHEHEEEREEE
Use the specified options to test for the simplifying assumption

#it### Example 1: Non-simplified three-dim. C-Vine ###t##

Simulate from a three-dimensional C-Vine copula with C_12 and C_13
being product copulas and C_23|1 being a Frank copula with

functional parameter theta(x_{1}) = (4x_{1}-2)"3

N = 500

X = matrix(runif(3*N),N,3)

theta = (4%X[,1]1-2)"3

etheta = expml(-theta);
X[,3] = -1/thetaxlog(1+etheta/(exp(-thetaxX[,21)*(1/X[,3]1-1)+1));

Result = pacotest(X[,c(2,3)],X[,1],pacotestOptions)
Result$pValue

#it#t## Example 2: Non-simplified three-dim. C-Vine #i#i###

Simulate from a three-dimensional C-Vine copula with C_12 and C_13
being product copulas and C_23|1 being a Frank copula with

functional parameter theta(x_{1}) = 12 + 8xsin(0.4(3x_{1}+2)*2)

X = matrix(runif(3*N),N,3)

theta = 12 + 8*%sin(0@.4x(3*X[,1]+2)*2)

etheta = expml(-theta);
X[,3] = -1/thetaxlog(1+etheta/(exp(-theta*X[,2]1)*(1/X[,3]1-1)+1));

Result = pacotest(X[,c(2,3)],X[,1],pacotestOptions)
Result$pValue

#it### Example 3: Simplified three-dim. C-Vine #i#i#t##

Simulate from a three-dimensional C-Vine copula with C_12 and C_13

being Clayton copulas with parameter theta and C_23|1 being a Clayton copula with
functional parameter theta(x_{1}) = theta / (1+theta)

W = matrix(runif(3*N),N,3)

X = matrix(NA,N, 3)

theta = 2

X[,11 = WL,1]
X[,2] = (WL,1]1*(-theta)*x(WL,2]1*((-theta)/(1+theta))-1)+1)*(-1/theta);
theta_23_1 = theta /(1+theta)

X[,31 = (WL,2]*(-theta_23_1)*(WL[,31*((-theta_23_1)/(1+theta_23_1))-1)+1)*(-1/theta_23_1);
X[,31 = (WL,11*(-theta)*(X[,3]1*((-theta)/(1+theta))-1)+1)*(-1/theta);

Get pseudo-observations from the conditional copula C_23]|1

U = matrix(NA,N,2)

UL,1] = (X[,1]1*thetax(X[,2]1*(-theta)-1)+1)*(-(1+theta)/theta);
UL,2]1 = (X[,1]*thetax(X[,3]1*(-theta)-1)+1)*(-(1+theta)/theta);
Result = pacotest(U,X[,1],pacotestOptions)

Result$pValue

pacotestRvineSeq

pacotestRvineSeq

Sequentially Testing the Simplifying Assumption for R-Vine Copulas

Description

The function can be used to test the simplifying assumption for R-vine copulas in a sequential
manner. Each pair-copula from the second tree on is tested to be a (j-1)-th order partial copula. To
apply the function one needs to provide the data and a specified/estimated R-vine copula model in
form of a RVineMatrix from the VineCopula-package. Additionally, a pacotest options list, which
can be generated with the pacotestset function, needs to be provided.

Usage

pacotestRvineSeq(data, RVM, pacotestOptions,

level = 0.05,

Arguments

data
RVM

pacotestOptions

level

illustration

stopIfRejected

Value

illustration = 2, stopIfRejected = TRUE)

A (n x d) matrix (or data frame) of [0,1] data (i.e. uniform margins).

An RVineMatrix object (VineCopula-package) which includes the structure, the
pair-copula families and parameters of an R-vine copula.

A options list generated by the pacotestset function or the test type as string,
i.e., CCC or VI.

The level of the test.

Either 1 or 2. If illustration = 1, the p-value for each test for a (j-1)-th order
partial copula is displayed. If illustration = 2, a progress information is dis-
played for each tree. It consists of the individual test level and the number of HO
rejections.

A logical variable indicating whether the sequential test procedure should be
stopped in the first tree where an HO for one of the conditional copulas is re-
jected.

A list consisting of the following elements:

pacotestResultLists

A matrix in the same structure like the Matrix, family, par, etc. entries in
the RVineMatrix object from the VineCopula-package. Each entry of the matrix
is a list containing the test result from a test for a (j-1)-th order partial copula
obtained from a call to pacotest. Depending on the chosen test, it could consist
of different elements. A documentation of the pacotestResultLists can be
found in the documentation of pacotest.

pacotestRvineSeq 7

pValues A matrix in the same structure like the Matrix, family, par, etc. entries in the
RVineMatrix object from the VineCopula-package. Each entry of the matrix is
a p-value corresponding to the test result from a test for a (j-1)-th order partial
copula.

testResultSummary
A data.frame summarizing the test results. The first column, Tree, is the tree
number. The second column, NumbOfRe jections, is the number of of rejections
in the corresponding tree. The third column, IndividualTestLevel, is the
level at which each individual test has been performed. The fourth column,
Interpretation, provides an interpretation of the test result.

Author(s)
Malte S. Kurz

References

Kurz, M. S. and F. Spanhel (2022), "Testing the simplifying assumption in high-dimensional vine
copulas”, Electronic Journal of Statistics 16 (2), pp. 5226-5276.

Spanhel, F. and M. S. Kurz (2019), "Simplified vine copula models: Approximations based on the
simplifying assumption", Electronic Journal of Statistics 13 (1), pp. 1254-1291.

See Also

pacotest-package, pacotest, pacotestset, pacotestRvineSingleCopula

Examples

Sample data and R-vine copula selection are taken
from the documentation of RVineStructureSelect
of the VineCopula package.

Obtain sample data
data(daxreturns, package ="VineCopula")
dataSet = daxreturns[1:750,1:4]

Specify an R-vine copula model
(can be obtained by calling: RVM = VineCopula::RVineStructureSelect(dataSet))
vineStructure = matrix(c(3,4,1,2,0,2,4,1,0,0,1,4,0,0,0,4),4,4)
families = matrix(c(o,5,2,2,0,0,2,14,0,0,0,14,0,0,0,0),4,4)
par = matrix(c(@,0.8230664,0.1933472,0.6275062,
0,0,0.2350109,1.6619945,
0,0,0,1.599363,
0,0,0,0),4,4)
par2 = matrix(c(0,0,11.757700,4.547847,
0,0,17.15717,0,
0,0,0,0,0,0,0,0),4,4)
RVM = VineCopula::RVineMatrix(vineStructure, families, par, par2)

Specify a pacotestOptions list:

8 pacotestRvineSingleCopula

pacotestOptions = pacotestset('CCC')

Test for the simplifying assumption.
pacotestResultlList = pacotestRvineSeq(dataSet, RVM,
pacotestOptions)

pacotestRvineSingleCopula
Testing for a Single (j-1)-th Order Partial Copula in a R-Vine Copula

Description

The function can be used to test a single copula in a R-vine copula to be a (j-1)-th order partial
copula. To apply the function one needs to provide the data and a specified/estimated R-vine copula
model in form of a RVineMatrix from the VineCopula-package. Additionally, a pacotest options
list, which can be generated with the pacotestset function, needs to be provided.

Usage

pacotestRvineSingleCopula(data, RVM, pacotestOptions, tree, copulaNumber)

Arguments

data A (n x d) matrix (or data frame) of [0,1] data (i.e. uniform margins).

RVM An RVineMatrix object (VineCopula-package) which includes the structure, the
pair-copula families and parameters of an R-vine copula.

pacotestOptions
A options list generated by the pacotestset function or the test type as string,
i.e., CCC or VI.

tree The tree number (j>=2) of the copula which should be tested to be a (j-1)-th

order partial copula.

copulaNumber The number (1<= copulaNumber <= j-1) of the copula in the normalized RVine-
Matrix which should be tested to be a (j-1)-th order partial copula.

Value

A list which can, depending on the chosen test, consist of the following elements:

pValue The p-value of the test.
testStat The value of the test statistic.

decisionTree The decision tree used to partition the support Lmabda0 of the conditioning
variable W. It is provided as a list consisting of three nodes (CentralNode,

LeftNode and RightNode) represented as lists and the variable LeavesForFinalComparison.

Each node consists of the Variable used to perform the split, the corresponding
Quantile and Threshold.

S The bootstrapped values of the test statistic (only for the test type VI).

pacotestRvineSingleCopula 9

Author(s)

Malte S. Kurz

References

Kurz, M. S. and F. Spanhel (2022), "Testing the simplifying assumption in high-dimensional vine
copulas”, Electronic Journal of Statistics 16 (2), pp. 5226-5276.

Spanhel, F. and M. S. Kurz (2019), "Simplified vine copula models: Approximations based on the
simplifying assumption", Electronic Journal of Statistics 13 (1), pp. 1254-1291.

See Also

pacotest-package, pacotest, pacotestset, pacotestRvineSeq

Examples

Sample data and R-vine copula selection are taken
from the documentation of RVineStructureSelect
of the VineCopula package.

Obtain sample data
data(daxreturns, package ="VineCopula")
dataSet = daxreturns[1:750,1:4]

Specify an R-vine copula model
(can be obtained by calling: RVM = VineCopula::RVineStructureSelect(dataSet))
vineStructure = matrix(c(3,4,1,2,0,2,4,1,0,0,1,4,0,0,0,4),4,4)
families = matrix(c(o,5,2,2,0,0,2,14,0,0,0,14,0,0,0,0),4,4)
par = matrix(c(@,0.8230664,0.1933472,0.6275062,
0,0,0.2350109,1.6619945,
0,0,0,1.599363,
0,0,0,0),4,4)
par2 = matrix(c(0,0,11.757700,4.547847,
0,0,17.15717,0,
0,0,0,0,0,0,0,0),4,4)
RVM = VineCopula::RVineMatrix(vineStructure, families, par, par2)

Specify a pacotestOptions list:

For illustrating the functioning of the decision tree,

grouped scatterplots and a decision tree plot are activated.

pacotestOptions = pacotestset(testType='CCC',
groupedScatterplots = TRUE,
decisionTreePlot = TRUE)

Test for a 2-nd order partial copula

corresponding to the variables BAYN.DE,BMW.DE
and conditioning set ALV.DE,BAS.DE

tree = 3

copulaNumber = 1

pacotestResultlList = pacotestRvineSingleCopula(dataSet, RVM,

10 pacotestset

pacotestOptions, tree, copulaNumber)

pacotestset Create and Alter a Pacotest Options List

Description

The function creates or updates a list object, which is required for applying the pacotest function.

Arguments

pacotestOptions
A options list for the pacotest function generated by the pacotestset func-
tion.

testType A string which specifies the type of the test for testing the simplifying assump-
tion.
Possible values: CCC | VI

grouping For testType = CCC:

The grouping method which is used to obtain a partitioning of the support of the
conditioning variable W.
Possible values: TreeCCC | SumMedian | SumThirdsI | SumThirdsII|SumThirdsIII
| SumQuartiles|ProdMedian|ProdThirdsI |ProdThirdsII|ProdThirdsIII
| ProdQuartiles | TreeEC

expMinSampleSize
For testType = CCC with grouping = TreeCCC | TreeEC:
The minimum number of observations which are allocated to a group in the
decision tree learning process. The default value is 100.

agglnfo For testType = CCC with grouping = TreeCCC | TreeEC:
The method used for aggregating information in the conditioning set. The infor-
mation in the conditioning set can be aggregated by either taking the mean of
all variables or the pairwise mean. The result is added as an additional variable
which can be used by the decision tree to partition the support of the condition-
ing variable W.
Possible values: none | meanAll | meanPairwise

withEstUncert For testType = CCC:
A logical variable indicating whether the asymptotic-variance covariance matrix
of the estimated correlations should be corrected for the estimation uncertainty
of the probability integral transforms.

estUncertWithRanks
For testType = CCC:
A logical variable indicating whether the asymptotic-variance covariance matrix
of the estimated correlations should be corrected for the estimation uncertainty
induced by using a semiparametric estimator for the vine copula, i.e., empiri-
cal cdf’s for the univariate margins and parametric copula families as building
blocks of the R-vine copula.

pacotestset 11

finalComparison
For testType = CCC with grouping = TreeCCC | TreeEC:
A variable specifying whether at the end of the decision tree all subsets being
part of the partition are compared against each other or whether only the pair
with the highest value of the test statistic is used.
Possible values: pairwiseMax | all

penaltyParams For testType = CCC with grouping = TreeCCC | TreeEC:
A vector of length two, specifying the functional form of the penalty. The
penalty is a function of the sample size n and chosen to be lambda(n) = cn”\(-
beta). The first entry of the vector is specifying the level ¢ of the penalty and
needs to be a positive real number. The second entry of the vector is specifying
the power beta of the penalty and needs to be chosen from the interval (0,1).

gamma@Partition
For testType = CCC with grouping = TreeCCC | TreeEC:
The gamma0 partition. L.e., the partition which is favoured via the penalty under
the HO.
Possible values: SumMedian | SumThirdsI | SumThirdsII | SumThirdsIII |
SumQuartiles | ProdMedian | ProdThirdsI | ProdThirdsII | ProdThirdsIII
| ProdQuartiles

groupedScatterplots
For testType = CCC:
A logical whether grouped scatterplots should be produced.

decisionTreePlot
For testType = CCC:
A logical whether the partition of the support of W should be illustrated as a
decision tree plot.

numbBoot For testType = VI:
The number of bootstrap replications for computing p-values using the multi-
plier bootstrap approach.

Details

Calling without any arguments prints all possible options.

pacotestset()

Calling with a string, that specifies the test type, gives back a option list with the default values
corresponding to each test.

pacotestOptions
pacotestOptions

Calling with pairs

= pacotestset('CCC")

= pacotestset('VI")

of parameter names and values creates an pacotestOptions list in which the

named parameters have the specified values.

pacotestOptions

= pacotestset('Namel',Valuel, 'Name2',6Value2,...)

12 pacotestset

Calling with an existing pacotestOptions list checks the list for consistency.
pacotestset(pacotestOptions)

Calling with an existing pacotestOptions list and pairs of parameter names and values creates a
copy of the existing list, where the named parameters are updated with the provided values.

pacotestOptionsNew = pacotestset(pacotestOptions, 'Namel',Valuel, 'Name2',Value2,...

Value
The function returns a pacotestOptions list which can be used as input argument for the functions
pacotest, pacotestRvineSeq and pacotestRvineSingleCopula.

Author(s)
Malte S. Kurz

References

Kurz, M. S. and F. Spanhel (2022), "Testing the simplifying assumption in high-dimensional vine
copulas”, Electronic Journal of Statistics 16 (2), pp. 5226-5276.

See Also

pacotest-package, pacotest, pacotestRvineSeq, pacotestRvineSingleCopula

Index

pacotest, 2,3,4,6,7,9, 10, 12
pacotest-package, 2
pacotestRvineSeq, 2,4, 6,9, 12
pacotestRvineSingleCopula, 2,4, 7,8, 12
pacotestset, 2-4, 6-10, 10

RVineMatrix, 2, 6-8

VineCopula-package, 2, 6-8

13

	pacotest-package
	pacotest
	pacotestRvineSeq
	pacotestRvineSingleCopula
	pacotestset
	Index

