
Reading shape�les into R for use with the overlapptest

package

Marcelino de la Cruz

2025-04-30

overlapptest version 1.4

This vignette explains how to read shape�le data into R for use the overlapptest package.

It is based on the vignette about handling shape �les in the package spatstat.geom (Baddeley

et al. 2015).

This vignette is part of the documentation included in overlapptest version 1.4. The

information applies to overlapptest versions 1.3-0 and above.

1 Shape�les

As explained by Baddeley et al. (2015), a shape�le represents a list of spatial objects � a

list of points, a list of lines, or a list of polygonal regions � and each object in the list may

have additional variables attached to it. The overlapptest package deals only with polygonal

objects.

A dataset stored in shape�le format is actually stored in a collection of text �les, for example

mydata.shp

mydata.prj

mydata.sbn

mydata.dbf

which all have the same base name mydata but di�erent �le extensions. To refer to this collection

you will always use the �lename with the extension shp, for example mydata.shp.

2 Helper packages

With earlier versions of overlapptest we used packages rgdal and maptools to respectively

read and manipulate �les with the shape�le format. As these packages will be retired by the

end of 2023, from version 1.3-0 we will use spatstat.geom and sf. The sf package contains

functions for reading shape�les. The spatstat.geom package contains functions for handling

polygons (as owin objects) which allow computing areas, centroids, intersections and rotations.

3 How to read shape�les into R for use with overlapptest

To read shape�le data into R, for use with overlapptest, two steps must be followed:

1

1. using the facilities of sf, read the shape�les as a sf object.

2. convert the sf object into a multi-polygonal owin object supported by spatstat.geom.

3.1 Read shape�les using sf

Here's how to read shape�le data.

1. ensure that the package sf is installed.

2. start R and load the packages:

> library(sf)

3. read the shape�le into R using st_read, for example

> x <- st_read("mydata.shp")

4. To �nd out what kind of spatial objects are represented by the dataset, inspect its class:

> class(x)

For applications of the overlapptest package, the class should typicaly be a sf.

For example, to read in the shape�le data supplied in the overlapptest package, we just

should set the working directory to the folder where there are the sape�le data and use the

st_read() function of sf.

> setwd(system.file("shapes", package="overlapptest"))

> Androsace <- st_read("Androsace.shp", quiet =TRUE)

> class(Androsace)

[1] "sf" "data.frame"

3.2 Convert data to spatstat.geom format

The spatstat.geom must be loaded in order to convert the data.

> library(spatstat.geom)

In addition, for applications of the overlapptest package, it is fundamental to avoid the

automatic correction of polygons implemented in spatstat.geom which, by default, will try to

"repare" overlapping pieces (it would also try repairing polygon self-intersections, so the geometry

of the shape�les should be reliable). For this, just type,

> spatstat.geom::spatstat.options(fixpolygons=FALSE)

There are di�erent ways to convert the dataset to an object in the spatstat.geom package, as

explained in the corresponding vignette in spatstat. For applications of the overlapptest, the

most convenient way is combining all the polygonal elements of the same type (ussually present

in a unique shape�le) into a single "polygonal region", and convert this to a single object of class

owin. To do this, use as.owin(x), but with the argument "check_polygon" set to "FALSE", to

avoid errors if some polygons are traversed in the wrong direction. The result is a single window

(object of class "owin") in the spatstat.geom package. In our example,

> Androsace <- as.owin(Androsace, check_polygons=FALSE)

2

3.3 Checking the reliability of the owin object

For this, we should load the overlapptest package.

> library(overlapptest)

The function check.ventana() will check that the vertices of all polygons are listed anti-

clockwise (to ensure that spatstat.geom considers them as "solid" polygons and not "holes",

something necessary to be able to compute intersections among them). If it �nds some clockwise

listed vertices, it would try to reorder them, and will return the corrected owin object. If it suc-

ceded, the order number of the corrected polygon(s) would be listed as the attribute corrected

of the owin object. If it would not, the order number of the wrong polygon(s) would be listed

as the attribute not.corrected. These polygons should be corrected manually before using the

other functions in the overlapptest package.

> Androsace <- check.ventana(Androsace)

1 problematic polygon(s) detected

all problematic polygons have been repared

In this case the message warns that 1 polygon has been corrected so no manual correction is

necessary. To re-check this, we can examine the attributes of the owin object.

> attributes (Androsace)

$names

[1] "type" "xrange" "yrange" "bdry" "units"

$class

[1] "owin"

$corrected

[1] 1

In case that running check.ventana() would not produce any warnings that would mean

that all the polygons were correct. Once the polygons have been checked, the owin object could

be used with the other functions in the overlapptest package.

3

	Shapefiles
	Helper packages
	How to read shapefiles into R for use with overlapptest
	Read shapefiles using sf
	Convert data to spatstat.geom format
	Checking the reliability of the owin object

