Package 'otinference'

October 14, 2022

Type Package Title Inference for Optimal Transport Version 0.1.0 Imports MASS (>= 7.3-45), Rglpk (>= 0.6-2), sm (>= 2.2-5.4), transport (>= 0.8-1)Suggests Rcplex (>= 0.3.3) Description Sample from the limiting distributions of empirical Wasserstein distances under the null hypothesis and under the alternative. Perform a two-sample test on multivariate data using these limiting distributions and binning. License GPL-2 **Encoding** UTF-8 RoxygenNote 5.0.1 NeedsCompilation no Author Max Sommerfeld [aut, cre] Maintainer Max Sommerfeld <max.sommerfeld@mathematik.uni-goettingen.de> **Repository** CRAN Date/Publication 2017-03-07 14:46:11

R topics documented:

binWDTest	2 3 3 4
	5

Index

binWDTest

Description

Two-sample test for multivariate data based on binning.

Usage

binWDTest(x, y, L = 5, B = 100)

Arguments

х, у	The two samples, rows are realizations.
L	Number of bins in each dimension.
В	Number of realizations of limiting distribution to simulate.

Value

p-value.

Examples

```
## Not run:
x <- MASS::mvrnorm(n = 100, mean = c(0, 0), Sigma = diag(1, 2))
y <- MASS::mvrnorm(n = 100, mean = c(0, 0), Sigma = diag(2, 2))
pVal <- binWDTest(x, y)
## End(Not run)
```

```
limDisAlt
```

Sample from the limit distribution under the alternative.

Description

Sample from the limit distribution under the alternative.

Usage

limDisAlt(B = 1000, r, s, distMat, p = 1)

Arguments

В	Number of samples to generate.
r,s	Number of counts giving the two samples.
distMat	Distance matrix.
р	Cost exponent. Defaults to 1.

limDisAltBoot

Value

A vector of samples.

limDisAltBoot *m-out-of-n Bootstrap for the limiting distribution*.

Description

m-out-of-n Bootstrap for the limiting distribution.

Usage

```
limDisAltBoot(r, s, distMat, B = 1000, p = 1, gamma = 0.9)
```

Arguments

r,s	Vectors of counts giving the two samples.
distMat	Distance matrix.
В	The number of samples to generate. Defaults to 1000.
р	Cost exponent. Defaults to 1.
gamma	$m = n^{gamma}$. Defaults to 0.9.

Value

A sample from the limiting distribution.

limDisNullSample from the limiting distribution under the null.	
---	--

Description

Sample from the limiting distribution under the null.

Usage

limDisNull(B = 500, r, distMat, p = 1)

Arguments

В	number of samples to generate. Defaults to 500.
r	vector of probabilities in the original problem.
distMat	distance matrix in the original problem.
р	cost exponent. Defaults to 1.

Value

A vector of samples.

limDisNullGrid

Description

Sample from the limiting distribution under the null when the underlying space is a grid.

Usage

limDisNullGrid(B = 500, r, p = 1)

Arguments

В	Number of bootstrap samples to generate. Defaults to 500.
r	vector of probabilities in the original problem. Is interpreted as a square matrix.
р	cost exponent.

Value

A vector of samples.

wassDist Compute the Wasserstein distance between to finite distributions.	
--	--

Description

Compute the Wasserstein distance between to finite distributions.

Usage

wassDist(a, b, distMat, p = 1)

Arguments

a,b	Vectors representing probability distributions.
distMat	Cost matrix.
р	cost exponent.

Value

The Wasserstein distance.

Index

binWDTest, 2

limDisAlt, 2
limDisAltBoot, 3
limDisNull, 3
limDisNullGrid, 4

wassDist,4