Package 'orientlib'

January 10, 2023

Title Support for Orientation Data

Version 0.10.5

Author Duncan Murdoch

Description Representations, conversions and display of orientation SO(3) data. See the orientlib help topic for details.

Maintainer Duncan Murdoch <murdoch.duncan@gmail.com>

License GPL

Depends R (>= 2.13.0), methods, stats

Suggests rgl, scatterplot3d

URL https://github.com/dmurdoch/orientlib,

https://dmurdoch.github.io/orientlib/

BugReports https://github.com/dmurdoch/orientlib/issues

NeedsCompilation no

Repository CRAN

Date/Publication 2023-01-10 16:20:02 UTC

R topics documented:

boat3d	
coerce-methods	
eulerzxz	
eulerzyx	
index-methods	
length-methods	
matrix-classes	
matrix-methods	
mean-methods	
nearest	
orientation-class	
orientlib	
orientlm	

boat3d

quaternion	12
rotation.distance	13
rotmatrix	14
rotvector	14
skewmatrix	15
skewvector	16
vector-classes	17
weighted.mean-methods	18
	19

Index

boat3d

Draw boat glyphs for orientation data

Description

Draws a stylized sailboat to represent an orientation.

Usage

```
boat3d(orientation, x = 1:length(orientation), y = 0,
        z = 0, scale = 0.25, col = 'red', add = FALSE, box = FALSE, axes = TRUE,
        graphics = c('rgl', 'scatterplot3d'), ...)
```

Arguments

orientation	An orientation object to be shown.
x, y, z	Coordinates where boats should be shown.
scale	Size of boats
col	Colour of boats
add	Context in which to continue drawing, or FALSE to clear first.
box	Whether to draw a box around the plot
axes	Whether to draw axes
graphics	Which graphics package to use
	Additional graphics parameters; see Details below

Details

For the identity orientation, the sailboats will be shown upright. Other orientations are shown as rotations of this glyph.

The (x,y,z) coordinate appears in the middle of the sail, at the top of the gunwales of the boat.

If the rgl package is installed, it will be used to draw solid faces on the boats which can be moved by the user. If not, but the scatterplot3d package is installed, it will be used to draw fixed wireframe boats. This search order can be changed by modifying the graphics parameter.

coerce-methods

Additional graphics parameters may be passed. If scatterplot3d is used, these are passed to the scatterplot3d function (and ignored when adding to an existing plot). Extra parameters are not passed to rgl.

To add to a scatterplot3d plot, you must pass the return value from the initial plot as the value of add. See the orientlm function for an example.

Value

A current plot number for rgl, or a scatterplot3d drawing context. In any case, an attribute named graphics is added to indicate the drawing device type.

Note

Requires the rgl or scatterplot3d package.

Author(s)

Duncan Murdoch

Examples

```
x <- eulerzyx(psi=c(0,pi/4,0,0), theta=c(0,0,pi/4,0), phi=c(0,0,0,pi/4))
# Need a 3D renderer; assume scatterplot3d, but others could be used
s <- boat3d(x, 0:3, axes = FALSE, graphics = 'scatterplot3d')
text(s$xyz.convert(0:3, rep(-0.5,4), rep(-0.5,4)),
    label = c('Id','z','y','x'))
## Not run:
# if the rgl package is installed, this code will work
boat3d(x, 0:3, axes = FALSE, graphics = 'rgl')
rgl::bbox3d(xat=0:3,xlab=c('Id','z','y','x'),yat=1,zat=1,color='grey')
## End(Not run)</pre>
```

coerce-methods Methods for Function coerce in Package 'orientlib'

Description

Coercion methods are provided between all types of orientation objects, and from matrices to the orientation classes.

eulerzxz

Description

Creates an eulerzxz-class object.

Usage

eulerzxz(phi, theta, psi)

Arguments

phi	Rotation about Z axis
theta	Rotation about X axis
psi	Further rotation about Z axis

Details

The rotations are expressed in radians and applied in the order Z, X, Z.

If theta and psi are missing, phi is taken to be an n x 3 matrix (or 3 element vector) holding all 3 Euler angles; alternatively, it may be an orientation object.

Value

An eulerzxz-class object.

Author(s)

Duncan Murdoch

See Also

eulerzxz-class, eulerzyx-class, rotmatrix, rotvector, quaternion, skewvector, skewmatrix

```
x <- eulerzxz(c(1,0,0), c(0,1,0), c(0,0,1))
x
rotmatrix(x)</pre>
```

eulerzyx

Description

Creates an eulerzyx-class object.

Usage

```
eulerzyx(psi, theta, phi)
```

Arguments

psi	Rotation about Z axis
theta	Rotation about Y axis
phi	Rotation about X axis

Details

The rotations are expressed in radians and applied in the order Z, Y, X.

If theta and phi are missing, psi is taken to be an n x 3 matrix (or 3 element vector) holding all 3 Euler angles; alternatively, any orientation object may be used.

Value

An eulerzyx-class object.

Author(s)

Duncan Murdoch

See Also

eulerzyx-class, rotmatrix, rotvector, quaternion, skewvector, skewmatrix

```
x <- eulerzyx(c(1,0,0), c(0,1,0), c(0,0,1))
x
rotmatrix(x)</pre>
```

index-methods

Description

Methods are defined for indexing all types of orientations.

Details

Single bracket indexing (e.g. x[1:3]) creates a new orientation object of the same class as the original by selecting the appropriate entries. Double bracket indexing (e.g. x[[3]]) extracts the chosen data as a matrix or vector, depending on the class of the orientation.

length-methods Length of orientation object

Description

The generic length() function has methods for orientations; it counts the number of orientations in the object.

|--|--|--|

Description

An orientation represented by 3 x 3 SO(3) matrices or 3 x 3 skew symmetric matrices

Objects from the Class

Objects can be created by calls of the form rotmatrix(x) or skewmatrix(x). The objects store the matrices in a 3 x 3 x n array.

Slots

x: 3 x 3 x n array holding the matrices.

Extends

Class "orientation", directly. Class "vector", by class "orientation".

matrix-methods

Methods

[, [<- Extract or assign to subvector

[[, [[<- Extract or assign to an entry

length The length of the orientation vector

coerce Coerce methods are defined to convert all orientation descendants from one to another, and to coerce an appropriately shaped matrix or array to a rotmatrix

Author(s)

Duncan Murdoch

See Also

orientation-class, vector-classes, rotmatrix, skewmatrix

Examples

```
x <- rotmatrix(matrix(c(1,0,0, 0,1,0, 0,0,1), 3, 3))
x
skewmatrix(x)</pre>
```

matrix-methods Methods for matrix operations in 'orientlib'

Description

Methods are defined for matrix multiplication %*% transposition t(), and real powers ^. These operate on the orientations term by term.

mean-methods

Methods for calculating the mean

Description

The mean function.

Methods

- **x** = "ANY" the standard mean function
- **x** = "orientation" find the nearest SO(3) matrix to the mean rotmatrix-class representation of the orientations

nearest

Description

Converts arbitrary 3 x 3 matrices into the nearest SO(3) or orthogonal matrix.

Usage

```
nearest.SO3(x)
nearest.orthog(x)
```

Arguments

Х

3 x 3 matrices stored in a 3 x 3 x n array)

Details

Uses Stephens' (1979) algorithm to find the nearest (in entry-wise Euclidean sense) SO(3) or orthogonal matrix to a given matrix.

Value

nearest.SO3 produces an orientation-class object holding the closest orientations. nearest.orthog produces a $3 \times 3 \times n$ array of orthogonal matrices.

Author(s)

Duncan Murdoch

References

Stephens (1979). Vector correlation. Biometrika 66, 41-48.

See Also

orientation-class

```
x <- matrix(rnorm(9), 3,3)
nearest.orthog(x)
nearest.SO3(x)
x <- -x
nearest.orthog(x)
nearest.SO3(x)</pre>
```

Description

Abstract class for vectors of various representations of SO(3) (orientation) objects.

Objects from the Class

A virtual Class: No objects may be created from it.

Methods

coerce Methods are defined to coerce orientation objects to any concrete descendant class.

- %*% Matrix multiplication acts on orientation objects component by component, producing compositions of the rotations.
- ^ An orientation is raised to a power by multiplying its component rotation angles by that power.
- t The transpose of an orientation object is its component by component inverse.
- **mean** The mean of an orientation object is the nearest SO(3) matrix to the element-by-element mean of its 3 x 3 rotation matrix representation.

weighted.mean The weighted mean, defined analogously to the mean.

Author(s)

Duncan Murdoch

See Also

matrix-classes, vector-classes

```
x <- rotmatrix(diag(3))
x
rotvector(x)
eulerzyx(x)
eulerzxz(x)
quaternion(x)</pre>
```

orientlib

Description

Representations, conversions and display of orientation data.

Details

This package contains methods for working with orientation data, i.e. data from SO(3). The basic abstract class is the orientation; there are several concrete classes (rotmatrix, rotvector, eulerzyx, eulerzxz, quaternion, skewmatrix and skewvector) storing different representations of orientations.

Methods are defined to get the length of a vector of orientations, as well as to extract and replace elements, and to multiply orientations and raise them to real powers.

There are also utility functions rotation.distance, rotation.angle, nearest.orthog, nearest.SO3.

There is a plotting method boat3d to display orientation data in a 3D plot, and a linear modelling function orientlm.

Note

Plots require either the rgl or scatterplot3d package.

Author(s)

Duncan Murdoch

orientlm

Linear models for orientation data

Description

Regression models for matched pairs of orientations.

Usage

```
orientlm(observed, leftformula, trueorient = rotmatrix(diag(3)),
            rightformula, data = list(), subset, weights, na.action,
            iterations = 5)
```

orientlm

Arguments

observed	Observed orientations
leftformula	Formula for "left" model (see below)
trueorient	"True" orientation (see below)
rightformula	Formula for "right" model (see below)
data	Optional data frame for predictors in linear model
subset	Optional logical vector indicating subset of data
weights	Optional weights
na.action	Optional NA function for predictors
iterations	How many iterations to use. Ignored unless both leftformula and rightformula are specified.

Details

The Prentice (1989) model for matched pairs of orientations was

$$E(V_i) = kA_1^t U_i A_2$$

where V_i is the observed orientation, A_1 and A_2 are orientation matrices, and U_i is the "true" orientation, and k is a constant. It was assumed that errors were symmetrically distributed about the identity matrix.

This function generalizes this model, allowing A_1 and A_2 to depend on regressor variables through leftformula and rightformula respectively. These formulas should include the predictor variables (right hand side) only, e.g. use $\sim x + y + z$ rather than response $\sim x + y + z$. Specify the response using the observed argument. If both formulas are ~ 1 , i.e. intercepts only, then Prentice's original model is recovered. More general models are fit by coordinatewise linear regression in the rotmatrix representation of the orientation, with fitted values projected onto SO(3) using the nearest.SO3 function.

When both left and right models are given, Prentice's iterative approach is used with a fixed number of iterations. Note that Shin (1999) found that Prentice's scheme sometimes fails to find the global minimum; this function presumably suffers from the same failing.

Value

Returns a list containing the following components:

leftfit	Result of lm call based on leftformula
rightfit	Result of lm call based on rightformula
A1	Fitted values of A_1 for each observation
A2	Fitted values of A_2 for each observation
predict	Fitted values of $A_1^t U_i A_2$ for each observation

Author(s)

Duncan Murdoch

References

Prentice, M.J. (1989). Spherical regression on matched pairs of orientation statistics. JRSS B 51, 241-248.

Shin, H.S.H. (1999). Experimental Design for Orientation Models. PhD thesis, Queen's University.

Examples

```
x <- rep(1:10,10)
y <- rep(1:10,each=10)
A1 <- skewvector(cbind(x/10,y/10,rep(0,100)))
A2 <- skewvector(c(1,1,1))
trueorientation <- skewvector(matrix(rnorm(300),100))
noise <- skewvector(matrix(rnorm(300)/10,100))
obs <- t(A1) %*% trueorientation %*% A2 %*% noise
fit <- orientlm(obs, ~ x + y, trueorientation, ~ 1)
context <- boat3d(A1, x, z=y, col = 'green', graphics='scatterplot3d')
boat3d(fit$A1, x, z=y, add=context)</pre>
```

quaternion

Create an orientation using quaternions

Description

Creates a quaternion-class object.

Usage

quaternion(m)

Arguments

m

n x 4 matrix or 4 element vector containing a unit quaternion, or an orientation object

Details

The rows of m are 4 element unit vectors interpreted as follows: the first 3 (x,y,z) define the axis of rotation, and the last element gives the cosine of half the angle of rotation in a counter-clockwise direction when looking down the axis towards the origin.

Value

A quaternion-class object.

Author(s)

Duncan Murdoch

12

rotation.distance

See Also

quaternion-class, rotmatrix, rotvector, eulerzyx, eulerzxz, skewvector, skewmatrix

Examples

```
x <- quaternion(c(1,0,0,0))
x
rotmatrix(x)</pre>
```

rotation.distance Rotation angle or distance

Description

Calculates the angle (in radians) of the rotation taking one orientation to another.

Usage

```
rotation.angle(x)
rotation.distance(x, y)
```

Arguments

x,y Two orientation objects

Details

If y is missing in a call to rotation.distance, it is treated as the identity, i.e. rotation.angle(x) is calculated.

Value

rotation.distance returns a vector of length max(length(x), length(y)) containing the angle of the rotation taking corresponding elements of x to y (with the usual recycling rules if they are different lengths).

rotation.angle is equivalent to calculating the rotation.distance to the identity matrix.

Author(s)

Duncan Murdoch

See Also

orientation-class, rotation.angle

```
rotation.angle(eulerzyx(1,0,0))
rotation.distance(eulerzyx(1,0,0), eulerzyx(0,1,0))
```

rotmatrix

Description

Creates a rotmatrix-class object.

Usage

rotmatrix(a)

Arguments

```
а
```

A 3 x 3 matrix or 3 x 3 x n array of matrices or an orientation object.

Value

A rotmatrix-class object.

Author(s)

Duncan Murdoch

See Also

rotmatrix-class, rotvector, eulerzyx, eulerzxz, quaternion, skewvector, skewmatrix

Examples

```
x <- rotmatrix(matrix(c(1,0,0, 0,1,0, 0,0,1), 3, 3))
x</pre>
```

rotvector Create an orientation using vectorized 3x3 matrices

Description

Creates a rotvector-class object.

Usage

```
rotvector(m)
```

Arguments

m

n x 9 matrix or 9 element vector whose rows are vectorized 3x3 matrices, or an orientation object.

skewmatrix

Details

Converts a matrix whose rows are vectorized 3x3 matrices (in column-major form) into an rotvector-class object.

Value

A rotvector-class object.

Author(s)

Duncan Murdoch

See Also

rotvector-class, rotmatrix, eulerzyx, eulerzxz, quaternion, skewvector, skewmatrix

Examples

x <- rotvector(c(0,1,0,-1,0,0,0,0,1))
x
rotmatrix(x)</pre>

skewmatrix	Create an orientation using the entries in a skew-symmetric matrix
	representation

Description

Creates a skewmatrix-class object.

Usage

skewmatrix(a)

Arguments

а

3 x 3 x n array or 3 x 3 matrix containing the entries of a skew-symmetric matrix, or an orientation object.

Details

The entries a[,,i] are 3 x 3 skew-symmetric matrices. The matrix exponential of these give SO(3) matrices.

Value

A skewmatrix-class object.

Author(s)

Duncan Murdoch

See Also

skewvector-class, skewvector, rotmatrix, rotvector, eulerzyx, eulerzxz, quaternion

Examples

```
x <- skewmatrix(matrix(c(0,1,2,-1,0,3,-2,-3,0),3,3))
x
rotmatrix(x)
skewvector(x)
rotation.angle(x)</pre>
```

skewvector	Create an orientation using the entries in a skew-symmetric matrix
	representation

Description

Creates a skewvector-class object.

Usage

skewvector(m)

Arguments

m

n x 3 matrix or 3 element vector containing a the entries of a skew-symmetric matrix, or an orientation object.

Details

The rows of m are 3 element vectors (x,y,z) interpreted as follows: the matrix exponential of the matrix ((0, -z, y), (z, 0, -x), (-y, x, 0)) is the SO(3) matrix.

Value

```
A skewvector-class object.
```

Author(s)

Duncan Murdoch

See Also

skewvector-class, skewmatrix, rotmatrix, rotvector, eulerzyx, eulerzxz, quaternion

vector-classes

Examples

```
x <- skewvector(c(1,0,0))
x
rotmatrix(x)
rotation.angle(x)</pre>
```

vector-classes Orientation classes

Description

An vector of orientations, each represented by a vector of numbers. Each of these types stores orientations as rows of a matrix in slot x.

The eulerzyx class uses 3 Euler angles in the roll-pitch-yaw scheme (rotation about Z axis, then Y axis, then X axis).

The eulerzxz class uses 3 Euler angles in the X system scheme (rotation about Z axis, then X axis, then Z axis again).

The rotvector class uses the 9 components of a $3 \ge 3$ rotation matrix, stored in column-major order.

The quaternion class uses the 4 components of a unit quaternion.

The skewvector class uses the 3 non-zero components of a skew-symmetric matrix, where (x, y, z) stores the matrix ((0, -z, y), (z, 0, -x), (-y, x, 0)).

Objects from the Class

Objects of each class can be created by calls to the corresponding constructor functions: eulerzyx, eulerzxz, rotvector, quaternion, skewmatrix and skewvector.

Slots

x: An n x m matrix object holding the vector representations, where m is 3, 4, or 9.

Extends

Class "orientation", directly. Class "vector", by class "orientation".

Methods

[, [<- Extract or assign to subvector

[[, [[<- Extract or assign to an entry

length The length of the orientation vector

coerce Coerce methods are defined to convert all orientation descendants from one to another, and to coerce an appropriately shaped matrix or array to a rotmatrix

Author(s)

Duncan Murdoch

See Also

Constructor and coercion functions rotmatrix, eulerzyx, eulerzxz, rotvector, quaternion, and skewvector.

Classes matrix-classes, orientation-class.

Examples

```
x <- eulerzyx(0,pi/4,0)
x
eulerzxz(x)
rotmatrix(x)
rotvector(x)
quaternion(x)
skewvector(x)</pre>
```

weighted.mean-methods Weighted mean method

Description

The weighted mean function.

Details

The weighted mean for orientations is the nearest SO(3) matrix to the entrywise weighted mean of the rotmatrix-class matrices.

Methods

x = "ANY", w = "ANY" the standard stats::weighted.mean
x = "orientation", w = "numeric" weighted mean for orientations

Index

* algebra eulerzxz, 4 eulerzyx, 5 nearest, 8 quaternion, 12 rotation.distance, 13 rotmatrix, 14 rotvector, 14 skewmatrix, 15 skewvector, 16 * arrav eulerzxz, 4 eulerzyx, 5 nearest, 8 orientlib, 10 quaternion, 12 rotation.distance, 13 rotmatrix, 14 rotvector, 14 skewmatrix, 15 skewvector, 16 * classes matrix-classes. 6 orientation-class, 9 vector-classes, 17 * dynamic boat3d, 2 orientlib, 10 * hplot boat3d, 2 orientlib, 10 * methods coerce-methods, 3 index-methods, 6 length-methods, 6 matrix-methods, 7 mean-methods, 7 weighted.mean-methods, 18 * regression

orientlm, 10 [,eulerzxz-method (index-methods), 6 [,eulerzyx-method (index-methods), 6 [,quaternion-method (index-methods), 6 [,rotmatrix-method (index-methods), 6 [,rotvector-method (index-methods), 6 [, skewmatrix-method (index-methods), 6 [, skewvector-method (index-methods), 6 [<-,eulerzxz-method (index-methods), 6</pre> [<-,eulerzyx-method (index-methods), 6</pre> [<-, quaternion-method (index-methods), 6 [<-,rotmatrix-method (index-methods), 6</pre> [<-,rotvector-method (index-methods), 6</pre> [<-, skewmatrix-method (index-methods), 6 [<-, skewvector-method (index-methods), 6 [[,eulerzxz-method(index-methods), 6 [[,eulerzyx-method (index-methods), 6 [[,quaternion-method (index-methods), 6 [[,rotmatrix-method (index-methods), 6 [[,rotvector-method (index-methods), 6 [[, skewmatrix-method (index-methods), 6 [[, skewvector-method (index-methods), 6 [[<-,eulerzxz-method (index-methods), 6</pre> [[<-,eulerzyx-method (index-methods), 6</pre> [[<-,quaternion-method(index-methods),</pre> 6 [[<-,rotmatrix-method (index-methods), 6</pre> [[<-,rotvector-method(index-methods),6</pre> [[<-, skewmatrix-method (index-methods),</pre> 6 [[<-, skewvector-method (index-methods),</pre> 6 %*%, orientation, orientation-method (matrix-methods), 7 ^,orientation,numeric-method (matrix-methods), 7

boat3d, 2, *10*

coerce,array,orientation-method

INDEX

(coerce-methods), 3 coerce, eulerzxz, rotmatrix-method (coerce-methods), 3 coerce, eulerzyx, rotmatrix-method (coerce-methods), 3 coerce,matrix,eulerzxz-method (coerce-methods), 3 coerce, matrix, eulerzyx-method (coerce-methods), 3 coerce,matrix,orientation-method (coerce-methods), 3 coerce,orientation,eulerzxz-method (coerce-methods), 3 coerce, orientation, eulerzyx-method (coerce-methods), 3 coerce, orientation, quaternion-method (coerce-methods), 3 coerce,orientation,rotvector-method (coerce-methods), 3 coerce, orientation, skewmatrix-method (coerce-methods), 3 coerce, orientation, skewvector-method (coerce-methods), 3 coerce, quaternion, rotmatrix-method (coerce-methods), 3 coerce, rotvector, rotmatrix-method (coerce-methods), 3 coerce,skewmatrix,rotmatrix-method (coerce-methods), 3 coerce,skewmatrix,skewvector-method (coerce-methods), 3 coerce,skewvector,quaternion-method (coerce-methods), 3 coerce, skewvector, rotmatrix-method (coerce-methods), 3 coerce-methods, 3 eulerzxz, 4, 10, 13-18

eulerzxz, orientation, missing, missing-method (eulerzxz), 4 eulerzxz-class (vector-classes), 17 eulerzyx, 5, *10*, *13–18* eulerzyx, orientation, missing, missing-method (eulerzyx), 5 eulerzyx-class (vector-classes), 17

index-methods, 6

 length,eulerzyx-method (length-methods), 6 length,quaternion-method (length-methods), 6 length,rotmatrix-method (length-methods), 6 length,rotvector-method (length-methods), 6 length,skewmatrix-method (length-methods), 6 length,skewvector-method (length-methods), 6 length-methods, 6 lm, 11

nearest, 8
nearest.orthog, 10
nearest.SO3, 10, 11

orientation, 2, 7, 10, 17 orientation (orientation-class), 9 orientation-class, 9 orientlib, 10 orientlm, 3, 10, 10

quaternion, 4, 5, 10, 12, 14-18
quaternion, orientation-method
 (quaternion), 12
quaternion-class (vector-classes), 17

INDEX

scatterplot3d, 2, 3, 10 skewmatrix, 4-7, 10, 13-15, 15, 16, 17 skewmatrix,orientation-method (skewmatrix), 15 skewmatrix-class (matrix-classes), 6 skewvector, 4, 5, 10, 13-16, 16, 17, 18 skewvector,orientation-method (skewvector), 16 skewvector-class (vector-classes), 17 t, orientation-method (matrix-methods), 7 vector-classes, 17 weighted.mean, 18 weighted.mean,ANY,ANY-method (weighted.mean-methods), 18weighted.mean,orientation,numeric-method (weighted.mean-methods), 18 weighted.mean-methods, 18