
Package ‘numDeriv’
October 13, 2022

Version 2016.8-1.1

Title Accurate Numerical Derivatives

Description Methods for calculating (usually) accurate
numerical first and second order derivatives. Accurate calculations
are done using 'Richardson''s' extrapolation or, when applicable, a
complex step derivative is available. A simple difference
method is also provided. Simple difference is (usually) less accurate
but is much quicker than 'Richardson''s' extrapolation and provides a
useful cross-check.
Methods are provided for real scalar and vector valued functions.

Depends R (>= 2.11.1)

LazyLoad yes

ByteCompile yes

License GPL-2

Copyright 2006-2011, Bank of Canada. 2012-2016, Paul Gilbert

Author Paul Gilbert and Ravi Varadhan

Maintainer Paul Gilbert <pgilbert.ttv9z@ncf.ca>

URL http://optimizer.r-forge.r-project.org/

NeedsCompilation no

Repository CRAN

Date/Publication 2019-06-06 09:51:09 UTC

R topics documented:
numDeriv-package . 2
00.numDeriv.Intro . 3
genD . 3
grad . 5
hessian . 8
jacobian . 10

Index 12

1

http://optimizer.r-forge.r-project.org/

2 numDeriv-package

numDeriv-package Accurate Numerical Derivatives

Description

Calculate (accurate) numerical approximations to derivatives.

Details

The main functions are

grad to calculate the gradient (first derivative) of a scalar
real valued function (possibly applied to all elements
of a vector argument).

jacobian to calculate the gradient of a real m-vector valued
function with real n-vector argument.

hessian to calculate the Hessian (second derivative) of a scalar
real valued function with real n-vector argument.

genD to calculate the gradient and second derivative of a
real m-vector valued function with real n-vector

argument.

Author(s)

Paul Gilbert, based on work by Xingqiao Liu, and Ravi Varadhan (who wrote complex-step deriva-
tive codes)

References

Linfield, G. R. and Penny, J. E. T. (1989) Microcomputers in Numerical Analysis. New York:
Halsted Press.

Fornberg, B. and Sloan, D, M. (1994) “A review of pseudospectral methods for solving partial
differential equations.” Acta Numerica, 3, 203-267.

Lyness, J. N. and Moler, C. B. (1967) “Numerical Differentiation of Analytic Functions.” SIAM
Journal for Numerical Analysis, 4(2), 202-210.

00.numDeriv.Intro 3

00.numDeriv.Intro Accurate Numerical Derivatives

Description

Calculate (accurate) numerical approximations to derivatives.

Details

See numDeriv-package (in the help system use package?numDeriv or ?"numDeriv-package") for
an overview.

genD Generate Bates and Watts D Matrix

Description

Generate a matrix of function derivative information.

Usage

genD(func, x, method="Richardson",
method.args=list(), ...)

Default S3 method:
genD(func, x, method="Richardson",

method.args=list(), ...)

Arguments

func a function for which the first (vector) argument is used as a parameter vector.

x The parameter vector first argument to func.

method one of "Richardson" or "simple" indicating the method to use for the aproxi-
mation.

method.args arguments passed to method. See grad. (Arguments not specified remain with
their default values.)

... any additional arguments passed to func. WARNING: None of these should
have names matching other arguments of this function.

4 genD

Details

The derivatives are calculated numerically using Richardson improvement. Methods "simple" and
"complex" are not supported in this function. The "Richardson" method calculates a numerical ap-
proximation of the first and second derivatives of func at the point x. For a scalar valued function
these are the gradient vector and Hessian matrix. (See grad and hessian.) For a vector val-
ued function the first derivative is the Jacobian matrix (see jacobian). For the Richardson method
method.args=list(eps=1e-4, d=0.0001, zero.tol=sqrt(.Machine$double.eps/7e-7), r=4,
v=2) is set as the default. See grad for more details on the Richardson’s extrapolation parameters.

A simple approximation to the first order derivative with respect to xi is

f ′
i(x) =< f(x1, . . . , xi + d, . . . , xn)− f(x1, . . . , xi − d, . . . , xn) > /(2 ∗ d)

A simple approximation to the second order derivative with respect to xi is

f ′′
i (x) =< f(x1, . . . , xi + d, . . . , xn)− 2 ∗ f(x1, . . . , xn) + f(x1, . . . , xi − d, . . . , xn) > /(d2)

The second order derivative with respect to xi, xj is

f ′′
i,j(x) =< f(x1, . . . , xi + d, . . . , xj + d, . . . , xn)− 2 ∗ f(x1, . . . , xn)+

f(x1, . . . , xi − d, . . . , xj − d, . . . , xn) > /(2 ∗ d2)− (f ′′
i (x) + f ′′

j (x))/2

Richardson’s extrapolation is based on these formula with the d being reduced in the extrapolation
iterations. In the code, d is scaled to accommodate parameters of different magnitudes.

genD does 1 + r (N^2 + N) evaluations of the function f, where N is the length of x.

Value

A list with elements as follows: D is a matrix of first and second order partial derivatives organized
in the same manner as Bates and Watts, the number of rows is equal to the length of the result of
func, the first p columns are the Jacobian, and the next p(p+1)/2 columns are the lower triangle of
the second derivative (which is the Hessian for a scalar valued func). p is the length of x (dimension
of the parameter space). f0 is the function value at the point where the matrix D was calculated.
The genD arguments func, x, d, method, and method.args also are returned in the list.

References

Linfield, G.R. and Penny, J.E.T. (1989) "Microcomputers in Numerical Analysis." Halsted Press.

Bates, D.M. & Watts, D. (1980), "Relative Curvature Measures of Nonlinearity." J. Royal Statistics
Soc. series B, 42:1-25

Bates, D.M. and Watts, D. (1988) "Non-linear Regression Analysis and Its Applications." Wiley.

See Also

hessian, grad

grad 5

Examples

func <- function(x){c(x[1], x[1], x[2]^2)}
z <- genD(func, c(2,2,5))

grad Numerical Gradient of a Function

Description

Calculate the gradient of a function by numerical approximation.

Usage

grad(func, x, method="Richardson", side=NULL, method.args=list(), ...)

Default S3 method:
grad(func, x, method="Richardson", side=NULL,

method.args=list(), ...)

Arguments

func a function with a scalar real result (see details).

x a real scalar or vector argument to func, indicating the point(s) at which the
gradient is to be calculated.

method one of "Richardson", "simple", or "complex" indicating the method to use
for the approximation.

method.args arguments passed to method. Arguments not specified remain with their default
values as specified in details

side an indication of whether one-sided derivatives should be attempted (see details).

... an additional arguments passed to func. WARNING: None of these should have
names matching other arguments of this function.

Details

The function grad calculates a numerical approximation of the first derivative of func at the point
x. Any additional arguments in . . . are also passed to func, but the gradient is not calculated with
respect to these additional arguments. It is assumed func is a scalar value function. If a vector x
produces a scalar result then grad returns the numerical approximation of the gradient at the point
x (which has the same length as x). If a vector x produces a vector result then the result must have
the same length as x, and it is assumed that this corresponds to applying the function to each of its
arguments (for example, sin(x)). In this case grad returns the gradient at each of the points in x
(which also has the same length as x – so be careful). An alternative for vector valued functions is
provided by jacobian.

6 grad

If method is "simple", the calculation is done using a simple epsilon difference. For method "sim-
ple" method.args=list(eps=1e-4) is the default. Only eps is used by this method.

If method is "complex", the calculation is done using the complex step derivative approach of
Lyness and Moler, described in Squire and Trapp. This method requires that the function be able
to handle complex valued arguments and return the appropriate complex valued result, even though
the user may only be interested in the real-valued derivatives. It also requires that the complex
function be analytic. (This might be thought of as the complex equivalent of the requirement for
continuity and smoothness of a real valued function.) So, while this method is extremely powerful
it is applicable to a very restricted class of functions. Avoid this method if you do not know that your
function is suitable. Your mistake may not be caught and the results will be spurious. For cases
where it can be used, it is faster than Richardson’s extrapolation, and it also provides gradients that
are correct to machine precision (16 digits). For method "complex", method.args is ignored. The
algorithm uses an eps of .Machine$double.eps which cannot (and should not) be modified.

If method is "Richardson", the calculation is done by Richardson’s extrapolation (see e.g. Linfield
and Penny, 1989, or Fornberg and Sloan, 1994.) This method should be used if accuracy, as opposed
to speed, is important (but see method "complex" above). For this method method.args=list(eps=1e-4,
d=0.0001, zero.tol=sqrt(.Machine$double.eps/7e-7), r=4, v=2, show.details=FALSE) is
set as the default. d gives the fraction of x to use for the initial numerical approximation. The default
means the initial approximation uses 0.0001 * x. eps is used instead of d for elements of x which
are zero (absolute value less than zero.tol). zero.tol tolerance used for deciding which elements
of x are zero. r gives the number of Richardson improvement iterations (repetitions with successly
smaller d. The default 4 general provides good results, but this can be increased to 6 for improved
accuracy at the cost of more evaluations. v gives the reduction factor. show.details is a logical
indicating if detailed calculations should be shown.

The general approach in the Richardson method is to iterate for r iterations from initial values for
interval value d, using reduced factor v. The the first order approximation to the derivative with
respect to xi is

f ′
i(x) =< f(x1, . . . , xi + d, . . . , xn)− f(x1, . . . , xi − d, . . . , xn) > /(2 ∗ d)

This is repeated r times with successively smaller d and then Richardson extraplolation is applied.

If elements of x are near zero the multiplicative interval calculation using d does not work, and
for these elements an additive calculation using eps is done instead. The argument zero.tol is
used determine if an element should be considered too close to zero. In the iterations, interval is
successively reduced to eventual be d/v^r and the square of this value is used in second deriva-
tive calculations (see genD) so the default zero.tol=sqrt(.Machine$double.eps/7e-7) is set to
ensure the interval is bigger than .Machine$double.eps with the default d, r, and v.

If side is NULL then it is assumed that the point at which the calculation is being done is interior
to the domain of the function. If the point is on the boundary of the domain then side can be
used to indicate which side of the point x should be used for the calculation. If not NULL then it
should be a vector of the same length as x and have values NA, +1, or -1. NA indicates that the usual
calculation will be done, while +1, or -1 indicate adding or subtracting from the parameter point x.
The argument side is not supported for all methods.

Since usual calculation with method "simple" uses only a small eps step to one side, the only
effect of argument side is to determine the direction of the step. The usual calculation with method
"Richardson" is symmetric, using steps to both sides. The effect of argument side is to take a double

grad 7

sized step to one side, and no step to the other side. This means that the center of the Richardson
extrapolation steps is moving slightly in the reduction, and is not exactly on the boundary. (Warning:
I am not aware of theory or published experimental evidence to support this, but the results in my
limited testing seem good.)

Value

A real scalar or vector of the approximated gradient(s).

References

Linfield, G. R. and Penny, J. E. T. (1989) Microcomputers in Numerical Analysis. New York:
Halsted Press.

Fornberg, B. and Sloan, D, M. (1994) “A review of pseudospectral methods for solving partial
differential equations.” Acta Numerica, 3, 203-267.

Lyness, J. N. and Moler, C. B. (1967) “Numerical Differentiation of Analytic Functions.” SIAM
Journal for Numerical Analysis, 4(2), 202-210.

Squire, William and Trapp, George (1998) “Using Complex Variables to Estimate Derivatives of
Real Functions.” SIAM Rev, 40(1), 110-112.

See Also

jacobian, hessian, genD, numericDeriv

Examples

grad(sin, pi)
grad(sin, (0:10)*2*pi/10)
func0 <- function(x){ sum(sin(x)) }
grad(func0 , (0:10)*2*pi/10)

func1 <- function(x){ sin(10*x) - exp(-x) }

curve(func1,from=0,to=5)

x <- 2.04
numd1 <- grad(func1, x)
exact <- 10*cos(10*x) + exp(-x)
c(numd1, exact, (numd1 - exact)/exact)

x <- c(1:10)
numd1 <- grad(func1, x)
numd2 <- grad(func1, x, "complex")
exact <- 10*cos(10*x) + exp(-x)
cbind(numd1, numd2, exact, (numd1 - exact)/exact, (numd2 - exact)/exact)

sc2.f <- function(x){
n <- length(x)
sum((1:n) * (exp(x) - x)) / n
}

8 hessian

sc2.g <- function(x){
n <- length(x)
(1:n) * (exp(x) - 1) / n
}

x0 <- rnorm(100)
exact <- sc2.g(x0)

g <- grad(func=sc2.f, x=x0)
max(abs(exact - g)/(1 + abs(exact)))

gc <- grad(func=sc2.f, x=x0, method="complex")
max(abs(exact - gc)/(1 + abs(exact)))

f <- function(x) if(x[1]<=0) sum(sin(x)) else NA
grad(f, x=c(0,0), method="Richardson", side=c(-1, 1))

hessian Calculate Hessian Matrix

Description

Calculate a numerical approximation to the Hessian matrix of a function at a parameter value.

Usage

hessian(func, x, method="Richardson", method.args=list(), ...)

Default S3 method:
hessian(func, x, method="Richardson",

method.args=list(), ...)

Arguments

func a function for which the first (vector) argument is used as a parameter vector.

x the parameter vector first argument to func.

method one of "Richardson" or "complex" indicating the method to use for the ap-
proximation.

method.args arguments passed to method. See grad. (Arguments not specified remain with
their default values.)

... an additional arguments passed to func. WARNING: None of these should have
names matching other arguments of this function.

hessian 9

Details

The function hessian calculates an numerical approximation to the n x n second derivative of a
scalar real valued function with n-vector argument.

The argument method can be "Richardson" or "complex". Method "simple" is not supported.

For method "complex" the Hessian matrix is calculated as the Jacobian of the gradient. The
function grad with method "complex" is used, and method.args is ignored for this (an eps of
.Machine$double.eps is used). However, jacobian is used in the second step, with method
"Richardson" and argument method.args is used for this. The default is method.args=list(eps=1e-4,
d=0.1, zero.tol=sqrt(.Machine$double.eps/7e-7), r=4, v=2, show.details=FALSE). (These
are the defaults for hessian with method "Richardson", which are slightly different from the de-
faults for jacobian with method "Richardson".) See addition comments in grad before choosing
method "complex".

Methods "Richardson" uses genD and extracts the second derivative. For this method method.args=list(eps=1e-4,
d=0.1, zero.tol=sqrt(.Machine$double.eps/7e-7), r=4, v=2, show.details=FALSE) is set
as the default. hessian does one evaluation of func in order to do some error checking before call-
ing genD, so the number of function evaluations will be one more than indicated for genD.

The argument side is not supported for second derivatives and since . . . are passed to func there
may be no error message if it is specified.

Value

An n by n matrix of the Hessian of the function calculated at the point x.

See Also

jacobian, grad, genD

Examples

sc2.f <- function(x){
n <- length(x)
sum((1:n) * (exp(x) - x)) / n
}

sc2.g <- function(x){
n <- length(x)
(1:n) * (exp(x) - 1) / n
}

x0 <- rnorm(5)
hess <- hessian(func=sc2.f, x=x0)
hessc <- hessian(func=sc2.f, x=x0, "complex")
all.equal(hess, hessc, tolerance = .Machine$double.eps)

Hessian = Jacobian of the gradient
jac <- jacobian(func=sc2.g, x=x0)
jacc <- jacobian(func=sc2.g, x=x0, "complex")
all.equal(hess, jac, tolerance = .Machine$double.eps)
all.equal(hessc, jacc, tolerance = .Machine$double.eps)

10 jacobian

jacobian Gradient of a Vector Valued Function

Description

Calculate the m by n numerical approximation of the gradient of a real m-vector valued function
with n-vector argument.

Usage

jacobian(func, x, method="Richardson", side=NULL, method.args=list(), ...)

Default S3 method:
jacobian(func, x, method="Richardson", side=NULL,

method.args=list(), ...)

Arguments

func a function with a real (vector) result.

x a real or real vector argument to func, indicating the point at which the gradient
is to be calculated.

method one of "Richardson", "simple", or "complex" indicating the method to use
for the approximation.

method.args arguments passed to method. See grad. (Arguments not specified remain with
their default values.)

... any additional arguments passed to func. WARNING: None of these should
have names matching other arguments of this function.

side an indication of whether one-sided derivatives should be attempted (see details
in function grad).

Details

For f : Rn− > Rm calculate the mxn Jacobian dy/dx. The function jacobian calculates a
numerical approximation of the first derivative of func at the point x. Any additional arguments
in . . . are also passed to func, but the gradient is not calculated with respect to these additional
arguments.

If method is "Richardson", the calculation is done by Richardson’s extrapolation. See link{grad}
for more details. For this method method.args=list(eps=1e-4, d=0.0001, zero.tol=sqrt(.Machine$double.eps/7e-7),
r=4, v=2, show.details=FALSE) is set as the default.

If method is "simple", the calculation is done using a simple epsilon difference. For method "sim-
ple" method.args=list(eps=1e-4) is the default. Only eps is used by this method.

If method is "complex", the calculation is done using the complex step derivative approach. See
addition comments in grad before choosing this method. For method "complex", method.args is
ignored. The algorithm uses an eps of .Machine$double.eps which cannot (and should not) be
modified.

jacobian 11

Value

A real m by n matrix.

See Also

grad, hessian, numericDeriv

Examples

func2 <- function(x) c(sin(x), cos(x))
x <- (0:1)*2*pi
jacobian(func2, x)
jacobian(func2, x, "complex")

Index

∗ multivariate
genD, 3
grad, 5
hessian, 8
jacobian, 10

∗ package
00.numDeriv.Intro, 3
numDeriv-package, 2

00.numDeriv.Intro, 3

genD, 3, 6, 7, 9
grad, 3, 4, 5, 8–11

hessian, 4, 7, 8, 11

jacobian, 4, 5, 7, 9, 10

numDeriv-package, 2
numDeriv.Intro (numDeriv-package), 2
numericDeriv, 7, 11

12

	numDeriv-package
	00.numDeriv.Intro
	genD
	grad
	hessian
	jacobian
	Index

