Package 'nucim'

October 13, 2022

Title Nucleome Imaging Toolbox

Version 1.0.11

Date 2021-06-09

Author Volker Schmid [aut, cre]

Maintainer Volker Schmid <volker.schmid@lmu.de>

biocViews

Depends R (>= 3.0.0), EBImage, bioimagetools (>= 1.1.4)

Imports fields, parallel, stringr

SystemRequirements tiff fftw libcurl openssl

Description Tools for 4D nucleome imaging. Quantitative analysis of the 3D nuclear landscape recorded with superresolved fluorescence microscopy. See Volker J. Schmid, Marion Cremer, Thomas Cremer (2017) <doi:10.1016/j.ymeth.2017.03.013>.

License GPL-3

URL https://bioimaginggroup.github.io/nucim/

RoxygenNote 7.1.0

Suggests knitr, rmarkdown, R.rsp

VignetteBuilder knitr, R.rsp

BugReports https://github.com/bioimaginggroup/nucim/issues

NeedsCompilation no

Repository CRAN

Date/Publication 2021-06-10 04:40:05 UTC

R topics documented:

barplot_with_interval	 	2
barplot_with_interval_23	 	3
class.neighbours	 	4

class.neighbours.folder
classify
classify.folder
classify.single
classify.table
colors.in.classes
colors.in.classes.folder
compute.distance2border
dapimask
dapimask.file
dapimask.folder
find.spots.file
find.spots.folder
heatmap.color
heatmap7
nearestClassDistances.folder
plot_classify.folder
plot_colors.in.classes.folder
plot_nearestClassDistances.folder
splitchannel
splitchannels
splitchannels.file
splitchannels.folder
spots.combined
spots.combined.file
spots.combined.folder
t_colors.in.classes.folder
23

Index

barplot_with_interval Barplot with Intervals

Description

Barplot with Intervals

```
barplot_with_interval(
    x,
    method = "minmax",
    qu = c(0, 1),
    ylim = NULL,
    horiz = FALSE,
    border = NA,
    ...
)
```

х	matrix
method	method for intervals: "minmax" (default), "quantile" or "sd"
qu	vector of two quantiles for method="quantile
ylim	limits for y axis. Default:NULL is ylim=c(0,max(interval))
horiz	boolean: horizontal bars?
border	border parameter forwarded to barplot, default: NA is nor border
	additional parameters forwarded to barplot

Value

plot

barplot_with_interval_23 Barplot with Intervals for two or three bars beside

Description

Barplot with Intervals for two or three bars beside

Usage

```
barplot_with_interval_23(x, method = "minmax", qu = c(0, 1), ylim = NULL, ...)
```

Arguments

Х	array
method	method for intervals: "minmax" (default), "quantile" or "sd"
qu	vector of two quantiles for method="quantile
ylim	limits for y axis. Default:NULL is ylim=c(0,max(interval))
	additional parameters forwarded to barplot

Value

plot

class.neighbours Class

Description

Class neighbourhood distribution

Usage

```
class.neighbours(img, N, N.max = 7, cores = 1)
```

Arguments

img	Class image
Ν	which class
N.max	maximum class (default: 7)
cores	number of cores used in parallel (needs parallel package)

Value

vector of length N.max

```
class.neighbours.folder
```

class.neighbours.folder

Description

class.neighbours.folder

Usage

```
class.neighbours.folder(inputfolder, outputfolder, N = 7)
```

Arguments

inputfolder	Input folder
outputfolder	Output folder
Ν	Max class #'

Value

plots

classify

Classify DAPI

Description

Classify DAPI

Usage

classify(blue, mask, N, beta = 0.1, z = 1/3, silent = TRUE)

Arguments

blue	DAPI channel (image)
mask	mask (image)
Ν	number of classes
beta	smoothing parameter used in potts model (default: 0.1)
Z	scaling parameter: size of voxel in X-/Y-direction divided by the size of voxel in Z-direction (slice scaling parameter: size of voxel in X-/Y-direction divided by the size of voxel in Z-direction (slice thickness))
silent	boolean. Should algorithm be silent?

Value

image with classes

classify.folder Classify DAPI

Description

Classify DAPI

Usage

```
classify.folder(f, N, beta = 0.1, output = paste0("class", N), cores = 1)
```

f	folder
Ν	number of classes
beta	beta parameter used in bioimagetools::segment()
output	output folder
cores	number of cores used in parallel (needs parallel package)

results in "output" and "output"-n

classify.single Classify DAPI

Description

These functions are provided for compatibility with older version of the nucim package. They may eventually be completely removed.

Usage

```
classify.single(...)
```

Arguments

... parameters for classify

Value

image with classes

classify.table Count classes in classified image

Description

Count classes in classified image

Usage

classify.table(class, N)

Arguments

class	classes image
Ν	number of classes

Value

table with number of voxels per class

colors.in.classes Compute colors in classes distribution

Description

Compute colors in classes distribution

Usage

```
colors.in.classes(
  classes,
  color1,
 color2 = NULL,
 mask = array(TRUE, dim(classes)),
 N = max(classes, na.rm = TRUE),
  type = "tresh",
  thresh1 = NULL,
  thresh2 = NULL,
  sd1 = 2,
  sd2 = 2,
  col1 = "green",
  col2 = "red",
  test = FALSE,
  plot = TRUE,
 beside = TRUE,
 ylim = NULL,
  verbose = FALSE,
  • • •
)
```

classes	Image of classes
color1	Image of first color
color2	Image of second color
mask	Image mask
Ν	Maximum number of classes
type	Type of spot definition, see details
thresh1	Threshold for first color image
thresh2	Threshold for second color image
sd1	For automatic threshold, that is: mean(color1)+sd1*sd(color1)
sd2	For automatic threshold of color2
col1	Name of color 1
col2	Name of color 2

test	Compute tests: "Wilcoxon" for Wilcoxon rank-sum (Mann-Whitney U), chisq for Chi-squared test
plot	Plot barplots
beside	a logical value. If FALSE, the columns of height are portrayed as stacked bars, and if TRUE the columns are portrayed as juxtaposed bars.
ylim	limits for the y axis (plot)
verbose	verbose mode
	additional plotting parameters

Details

Type of spot definitions: "thresh" or "t": Threshold based (threshold can be given by thresh1/2 or automatically derived) "voxel" or "v": Spots are given as binary voxel mask "intensity" or "i": Voxels are weighted with voxel intensity. Intensity is scaled to [0,1] after subtracting thresh1/2 (or automatic threshold)

Value

Table of classes with color 1 (and 2)

colors.in.classes.folder

Compute colors in classes distribution for folders

Description

Compute colors in classes distribution for folders

```
colors.in.classes.folder(
  path,
  color1,
  color2 = NULL,
  N = 7,
  type = "intensity",
  thresh1 = NULL,
  thresh2 = NULL,
  sd1 = 2,
  sd2 = 2,
  col1 = "green",
  col2 = "red",
  cores = 1,
  verbose = FALSE
)
```

path	Path to root folder
color1	Image of first color
color2	Image of second color
Ν	Maximum number of classes
type	Type of spot definition, see details
thresh1	Threshold for first color image
thresh2	Threshold for second color image
sd1	For automatic threshold, that is: mean(color1)+sd1*sd(color1)
sd2	For automatic threshold of color2
col1	Name of color 1
col2	Name of color 2
cores	Number of cores used in parallel, cores=1 implies no parallelization
verbose	verbose mode

Value

Results are in folder colorsinclasses

compute.distance2border

Compute distance to border of classes

Description

Compute distance to border of classes

```
compute.distance2border(
  f,
  color,
  N,
  from.spots = FALSE,
  output = "dist2border",
  cores = 1
)
```

dapimask

Arguments

f	folder of classes images
color	folder of color images ("spots-"color for spots images)
Ν	which class
from.spots	Logical.
output	output folder
cores	number of parallel cores which can be used

Value

images in output"-"color"-"N

dapımask Mask DAPI in kernel	dapimask	Mask DAPI in kernel	
------------------------------	----------	---------------------	--

Description

Mask DAPI in kernel

Usage

```
dapimask(
    img,
    size = NULL,
    voxelsize = NULL,
    thresh = "auto",
    silent = TRUE,
    cores = 1
)
```

Arguments

img	DAPI channel image (3d)
size	size of img in microns
voxelsize	size of voxel in microns
thresh	threshold for intensity. Can be "auto": function will try to find automatic threshold
silent	Keep silent?
cores	number of cores available for parallel computing

Value

mask image, array with same dimension as img.

10

dapimask.file Automatic DAPI mask segmentation for files

Description

Automatic DAPI mask segmentation for files

Usage

```
dapimask.file(
   file,
   folder = "blue",
   voxelsize = NULL,
   size = NULL,
   silent = FALSE,
   cores = 1
)
```

-

Arguments

file	file to read
folder	with
voxelsize	real size of voxel (in microns), if NULL (default), look in folder XYZmic
size	real size of image (in microns), if NULL (default), look in folder XYZmic
silent	Keep silent?
cores	Number of cores available for parallel computing

Value

nothing, DAPI mask image will be saved to dapimask/

dapimask.folder Automatic DAPI mask segmentation for folder

Description

Automatic DAPI mask segmentation for folder

```
dapimask.folder(
   path,
   folder = "blue",
   voxelsize = NULL,
   size = NULL,
   cores = 1
)
```

path	path to folder with DAPI
folder	folder with DAPI images
voxelsize	real size of voxel (in microns), if NULL (default), look in folder XYZmic
size	real size of image (in microns), if NULL (default), look in folder XYZmic
cores	number of cores to use in parallel (need parallel package)

Value

nothing, results are in folder dapimask

find.spots.file	Detects spots for one file	
-----------------	----------------------------	--

Description

Detects spots for one file

Usage

```
find.spots.file(
   file,
   dir,
   color,
   thresh = NULL,
   thresh.auto = FALSE,
   thresh.quantile = 0.9,
   filter = NULL,
   cores = 1
)
```

Arguments

file	file
dir	directory for results
color	which color, images have to be in folder with color name
thresh	threshold
thresh.auto	Logical. Find threshold automatically?
thresh.quantil	e
	numeric. use simple
filter	2d-filter to use before spot detection
cores	number of cores to use in parallel (with parallel package only)

Value

spot images in spot-color/, number of spots as txt files in spot-color/

find.spots.folder Detects spots

Description

Detects spots

Usage

```
find.spots.folder(
   f,
   color,
   thresh = 1,
   thresh.auto = TRUE,
   filter = NULL,
   cores = 1
)
```

Arguments

f	path to folder
color	which color, images have to be in folder with color name
thresh	threshold
thresh.auto	Logical. Find threshold automatically?
filter	2d-filter to use before spot detection
cores	number of cores to use in parallel (with parallel package only)

Value

spot images in spot-color/, number of spots as txt files in spot-color/

heatmap.color Heatmap colors for n classes

Description

Heatmap colors for n classes

Usage

```
heatmap.color(n)
```

Arguments

n number of colors.

Examples

barplot(8:1,col=heatmap.color(8))

heatmap7

Heatmap colors for 7 classes

Description

Heatmap colors for 7 classes

Usage

heatmap7(...)

Arguments

... parameters are ignored.

Examples

barplot(7:1,col=heatmap7())

nearestClassDistances.folder

Find all distances to next neighbour of all classes for folders

Description

Find all distances to next neighbour of all classes for folders

Usage

```
nearestClassDistances.folder(
   path,
   N = 7,
   voxelsize = NULL,
   add = FALSE,
   cores = 1
)
```

14

path	path to folder
Ν	number of classes, default: 7
voxelsize	real size of voxels (in microns), if NULL (default), look in folder XYZmic
add	if TRUE, only process images which have not been processed before (i.e. have been added to classN)
cores	number of cores to use in parallel (needs parallel package if cores>1)

Value

nothing, results are in folder distances in RData format

Description

Plot barplot for classified images in a folder

Usage

```
plot_classify.folder(
   path,
   N = 7,
   cores = 1,
   col = grDevices::grey(0.7),
   method = "sd"
)
```

Arguments

path	path to folder
Ν	number of classes, default: 7
cores	number of cores to use in parallel (needs parallel package if cores>1)
col	color of bars, either one or a vector of hex RGB characters
method	method for error bars ("sd", "minmax", "quartile")

Value

plots

plot_colors.in.classes.folder

Plot for colors in classes distribution for folders

Description

Plot for colors in classes distribution for folders

Usage

```
plot_colors.in.classes.folder(path, col1 = "green", col2 = "red")
```

Arguments

path	path to folder
col1	color of channel 1
col2	color of channel 2

Value

plot

plot_nearestClassDistances.folder Plots all distances to next neighbour of all classes for folders

Description

Plots all distances to next neighbour of all classes for folders

```
plot_nearestClassDistances.folder(
   path,
   N = 7,
   cores = 1,
   method = "quantile",
   qu = 0.01
)
```

splitchannel

Arguments

path	path to folder
Ν	number of classes, default: 7
cores	number of cores to use in parallel (needs parallel package if cores>1)
method	method for summarizing distances, either "min" or "quantile"
qu	quantile for method="quantile", default: 0.01

Value

plots

splitchannel Split RGB channels

Description

Split RGB channels

Usage

splitchannel(img, preprocess = TRUE)

Arguments

img	rgb image
preprocess	logical. Should preprocessing be applied?

Value

list with red, green, blue channels and size in microns.

splitchannels Split RGB images into channels and pixel size information

Description

These functions are provided for compatibility with older version of the nucim package. They may eventually be completely removed.

Usage

splitchannels(...)

. . .

parameters for splitchannels.folder

Value

Nothing, folders red, green, blue and XYZmic include separate channels and pixel size information

splitchannels.file Split channels into files and extracts size in microns

Description

Split channels into files and extracts size in microns

Usage

```
splitchannels.file(file, channels, rgb.folder, normalize = FALSE)
```

Arguments

file	file name
channels	e.g. c("red", "green", "blue")
rgb.folder	folder with file
normalize	boolean. Should we try to do normalization?

Value

files in "./red/", "./green", "./blue" and "./XYZmic"

splitchannels.folder Split RGB images into channels and pixel size information

Description

Split RGB images into channels and pixel size information

```
splitchannels.folder(
   path,
   channels = c("red", "green", "blue"),
   rgb.folder = "rgb",
   normalize = FALSE,
   cores = 1
)
```

spots.combined

Arguments

path	Path to root folder
channels	Vector of channels in images
rgb.folder	Folder with RGB images
normalize	boolean. Should we try to do normalization
cores	Number of cores used in parallel, cores=1 implies no parallelization

Value

Nothing, folders red, green, blue and XYZmic include separate channels and pixel size information

Examples

```
splitchannels.folder("./")
```

spots.combined Find spots using information from two channels

Description

Find spots using information from two channels

Usage

```
spots.combined(
  red,
  green,
  mask,
  size = NULL,
  voxelsize = NULL,
  thresh.offset = 0.1,
  window = c(5, 5),
  min.sum.intensity = 2,
  max.distance = 0.5,
  use.brightest = FALSE,
  max.spots = NA,
  full.voxel = FALSE
)
```

red	image
green	image
mask	image mask

size	size of img in microns
voxelsize	size of voxel in microns
thresh.offset	Thresh offset used in EBImage::thresh()
window	Half width and height of the moving rectangular window.
min.sum.intensity	
	spots smaller than min.sum.intensity are ignored
max.distance	use only spots with distance to other color spot smaller than max.distance
use.brightest	Logical; use only brightest in max.distance?
max.spots	maximum of spots (per channel), only when use brightest=TRUE
full.voxel	Logical; output contains full voxel instead of rgb intensities

RGB image with spots will be written to output folder

spots.combined.file Find spots using information from two channels

Description

Find spots using information from two channels

Usage

```
spots.combined.file(
   file,
   size = NULL,
   voxelsize = NULL,
   folder = "./",
   thresh.offset = 0.1,
   min.sum.intensity = 2,
   max.distance = 0.5,
   use.brightest = FALSE,
   max.spots = 2,
   full.voxel = FALSE,
   output = "markers"
)
```

file	File name
size	size of img in microns, if size and voxelsize are NULL, size is determined from folder XYZmic
voxelsize	size of voxel in microns

folder	Folder
thresh.offset	Thresh offset used in EBImage::thresh()
min.sum.intensity	
	spots smaller than min.sum.intensity are ignored
max.distance	use only spots with distance to other color spot smaller than max.distance
use.brightest	Logical; use only brightest in max.distance?
max.spots	maximum of spots (per channel), only when use brightest=TRUE
full.voxel	Logical; output contains full voxel instead of rgb intensities
output	output folder

RGB image with spots will be written to output folder

spots.combined.folder Find spots using information from two channels for folder

Description

Find spots using information from two channels for folder

Usage

```
spots.combined.folder(
   path,
   size = NULL,
   voxelsize = NULL,
   thresh.offset = 0.1,
   min.sum.intensity = 2,
   max.distance = 0.5,
   use.brightest = FALSE,
   max.spots = 2,
   full.voxel = FALSE,
   output = "markers",
   cores = 1
)
```

path	path to folder
size	size of img in microns, if size and voxelsize are NULL, size is determined from folder XYZmic
voxelsize	size of voxel in microns
thresh.offset	Thresh offset used in EBImage::thresh()

min.sum.intensity	
	spots smaller than min.sum.intensity are ignored
max.distance	use only spots with distance to other color spot smaller than max.distance
use.brightest	Logical; use only brightest in max.distance?
max.spots	maximum of spots (per channel), only when use brightest=TRUE
full.voxel	Logical; output contains full voxel instead of rgb intensities
output	output folder
cores	number of cores we can use of parallel computing (needs parallel package if cores>1)

RGB image with spots will be written to output folder

t_colors.in.classes.folder

Test for colors in classes distribution for folders

Description

Test for colors in classes distribution for folders

Usage

```
t_colors.in.classes.folder(path, test = "Wilcoxon")
```

Arguments

path	path to folder
test	"Wilcoxon", "wilcox" or "U" for Wilcoxon rank-sum (Mann-Whitney U), chisq for Chi-squared test

Value

test results

Index

```
barplot_with_interval, 2
barplot_with_interval_23, 3
class.neighbours,4
class.neighbours.folder,4
classify, 5
classify.folder, 5
classify.single,6
classify.table, 6
colors.in.classes,7
colors.in.classes.folder,8
compute.distance2border,9
dapimask, 10
dapimask.file,11
dapimask.folder,11
find.spots.file, 12
find.spots.folder, 13
heatmap.color, 13
heatmap7, 14
nearestClassDistances.folder, 14
plot_classify.folder, 15
plot_colors.in.classes.folder, 16
plot_nearestClassDistances.folder, 16
splitchannel, 17
splitchannels, 17
splitchannels.file, 18
splitchannels.folder,18
spots.combined, 19
spots.combined.file, 20
spots.combined.folder,21
```

```
t_colors.in.classes.folder, 22
```