Package ‘networkDynamic’

November 22, 2024
Version 0.11.5
Date 2024-11-21
Title Dynamic Extensions for Network Objects
Type Package
Depends R (>=3.0.0), network (>=1.17.0)
Imports statnet.common, methods, networkLite
Suggests testthat
LinkingTo network

Description Simple interface routines to facilitate the handling of network objects with complex in-
tertemporal data. This is a part of the * " statnet" suite of packages for network analysis.

License GPL-3
LazyLoad yes

URL https://statnet.org/
NeedsCompilation yes

Author Carter T. Butts [aut],
Ayn Leslie-Cook [aut],
Pavel N. Krivitsky [aut],
Skye Bender-deMoll [aut, cre],
Zack Almquist [ctb],
David R. Hunter [ctb],

Li Wang [ctb],

Kirk Li [ctb],

Steven M. Goodreau [ctb],
Jeffrey Horner [ctb],
Martina Morris [ctb]

Maintainer Skye Bender-deMoll <skyebend@uw. edu>
Repository CRAN
Date/Publication 2024-11-22 07:30:02 UTC

https://statnet.org/

2

networkDynamic-package

Contents
networkDynamic-package 2
aCLIVALE L e e e e e e 3
activity.attribute 7
add.methods L 8
add.vertices.active L. L e e e 10
adjust.activity e e e e e e e 12
age.al e 13
as.data.frame.networkDynamico 15
as.network.networkDynamic oL 17
as.networkDynamic Lo oo 18
attribute.activity.functions L. 19
cls33_10_16_96 e 25
delete.activity oL e e e e 27
duration.matriX e e 28
get.dyads.active L e 29
GELNEtWOTKS e e e e e e e e e 31
get.timing.info. L 32
IS.ACHIVE . . o v o e e e e e e e e 34
Nd_test_ NEtS e e e e e 37
net.obs.period 37
network.collapse e 39
network.dynamic.check Lo 41
NEtWOrK.eXtenSIoNS v v vt e e e e e e e e e 43
network.extract e e e 46
networkDynamic L e 49
Newcomb o 53
persistentids L. L e e e e e 54
print.networkDynamico L 57
1ead.SON L e e e e 58
reconcile.activity L L. 59
spells.overlap 61
when.vertex.attrs.match L 62
windsurfers 64
Index 66

networkDynamic-package

Dynamic Extensions for Network Objects

Description

Simple interface routines to facilitate the handling of dynamic network objects with different types
of temporal data. This allows the user to create, store and query networks that change over time.
Changes include edges that form and dissolve over time, and vertices that enter or leave the network.
The package also includes support for defining and querying temporally changing attributes of
vertices, edges, and network properties.

activate 3

Details
Package: networkDynamic
Type: Package
Version: 0.7
Date: 2014-09-25
Depends: network

License: GPL-3
LazyLoad: yes

The networkDynamic package provides support for a simple family of dynamic extensions to the
network class; these employ the standard network attribute functionality (and hence the resulting
objects are still compatible with all conventional routines), but greatly facilitate the practical storage,
manipulation and query of dynamic network data.

The basis for the dynamic extensions is described in activity.attribute. Dynamic attributese are
explained in attribute.activity.functions. Id systems which are persistent throughout manipulations
and changes in network size are explained in persistent.ids. Other core routines can be found in the
links below.

Additional example data sets can be found in the networkDynamicData package.

Author(s)

Originally created by Carter T. Butts <buttsc@uci.edu>,
Current Maintainer: Skye Bender-deMoll <skyebend@uw. edu>

Contributions from: Pavel Krivitsky <pavel@uow.edu.au>, Ayn Leslie-Cook <aynlc3@uw.edu>,

David Hunter <dhunter@stat. psu.edu>, Li Wang <lxwang@gmail.com>, Kirk Li <kirkli@uw.edu>,

StevenGoodreau <goodreau@uw. edu>, Zack Almquist <almquist@uci.edu>, Jeffrey Horner <jeffrey.horner@gmail. con
Martina Morris <morrism@u.washington.edu>, Michal Bojanowski <michal2992@gmail.com>

With support from the statnet team https://statnet.org

See Also

activity.attribute, activate, is.active, network.extract, network.extensions network

activate Dynamic Activation and Inactivation of Edges and Vertices

Description

activate and deactivate set spells of activity and inactivity respectively for elements (edges and
vertices) in a dynamic network.

https://statnet.org

4 activate

Usage

activate.edges(x, onset = NULL, terminus = NULL, length = NULL, at = NULL,
e = seg_along(x$mel))

activate.vertices(x, onset = NULL, terminus = NULL, length = NULL, at = NULL,
v = seq_len(network.size(x)))

deactivate.edges(x, onset = NULL, terminus = NULL, length = NULL, at = NULL,
e = seqg_along(x$mel))

deactivate.vertices(x, onset = NULL, terminus = NULL, length = NULL, at = NULL,
v = seqg_len(network.size(x)), deactivate.edges = FALSE)

Arguments

X an object of class network.

onset an optional vector of timepoints that specifies the starts of the interval(s). This
must be accompanied by one of terminus or length.

terminus an optional vector of timepoints that specifies the ends of the interval(s). This
must be accompanied by one of onset or length.

length an optional vector of interval lengths for the interval(s). This must be accompa-
nied by one of onset or terminus.

at optional, one or more time points to be activated.

e optional, one or more IDs indicating edges to be modified. Ids can be repeated
to indicate multiple time values per element.

v optional, one or more IDs indicating vertices to be modified. Ids can be repeated

to indicate multiple time values per element.
deactivate.edges

optional, TRUE setting will automatically deactivate all the edges associated
with the vertex being deactivated

Details

An element in a dynamically extended network class is considered to be either “active” or “inac-
tive” at any point in time, with the substantive meaning of “activity” determined by the specific
application context. The activate and deactivate functions provide an interface for controlling
the state of the elements in a dynamic network.

activate.edges and activate.vertices have identical behavior, except for the elements they
modify (the same is true for the deactivate.* functions).

There are several ways to specify the activity spell, and the general syntax rules are described at
activity.attribute. Activity can be set for a single time point, using either at, or by setting
onset=terminus. Activity can be set for an interval [onset,terminus), using a valid combination of
the onset, terminus and length attributes.

This allows for a wide range of options when specifying spells, but a correct specification must use
only one of these forms:

at

activate 5

onset and terminus

onset and length

terminus and length

or, you can provide no timing information

If provided with no timing information, the element is activated/deactivated from -Inf to Inf.
The specified interval spans the period from the onset (inclusive) to the terminus (exclusive), so
[onset,terminus).

There are some special behaviors associated with the arguments Inf and -Inf.

* The open-ended interval c(-Inf,x) includes -Inf. For consistency, we also allow the open-
ended interval c(x, Inf) to include Inf. Thus [onset, terminus) will be interpreted as [onset,
terminus] when terminus = Inf.

e The arguments Inf or -Inf are only valid when used to specify an interval, they can not
be used to specify status at a time point using at. In addition, they cannot be paired with
themselves in a call. That is, both (Inf,Inf) and (-Inf,-Inf) are not valid specifications
for any spell.

* Both deactivate.*(x) and deactivate.*(x, -Inf, Inf) create the null spell — specify-
ing inactivity over the entire time span. Note that by convention the null spell is stored as
(Inf,Inf).

Calling the activation/deactivation functions with a vector of spell modifiers and a vector of ele-
ments to be modified (for example, at=c(1,3,57), v=c(1:4)) allows multiple elements in the
network to be activated/deactivated simultaneously (note, not multiple spells for a single element).
The spell modifiers are applied sequentially to the selected elements. If the length of the spell vec-
tor is less than the number of elements, the spell modifiers are recycled as needed. When multiple
network elements are activated in a single call, the spell modifiers must all be of one type, either
at, or a valid mix of onset, terminus and length.

The activate.* and deactivate.x functions in general modify spells in similar, if opposite, ways.
However, there are some behaviors that are specific to each function.

 Effects on an element that has no existing activity attributes.

— For activate: the element is marked as being inactive before the onset time, then active
for the specified spell, then inactive from the terminus on.

— For deactivate: the element is marked as being active before the onset time, then inactive
for the specified spell, then active from the terminus on (i.e., the opposite of activate. .

* Effects of the at specification.

— For activate: the element is activated at that time point.
— For deactivate: the element is deactivated at the time point, but only if the time point is
currently activated as a O-length spell.

Currently, there is no support for activating multiple spells for a single element in a single call. To
activate 2 spells for a node, for example, one must call activate.vertices twice. It is advisable to
remove duplicate edges or vertices from the e or v input vectors.

Edge/vertex activity is tracked through an attribute called (eponymously) “active”, and which is
explained in more detail under activity.attribute. This may be modified or otherwise accessed using
standard class methods (e.g., get.edge.attribute), as well as the specialized methods described
here.

6 activate

Value

None. (But all four commands modify their arguments as a side-effect.)

Note

This function may not be entirely stable in the long run, since it makes explicit reference to internal
elements of the network object; some syntactic changes could occur in the future.

Author(s)

Ayn Leslie-Cook <aynlc3@uw.edu>, Carter T. Butts <buttsc@uci.edu>

References

~put references to the literature/web site here ~

See Also

is.active

Examples

triangle <- network.initialize(3) # create a toy network
add.edge(triangle,1,2) # add an edge between vertices 1 and 2
add.edge(triangle,?2,3) # add more edges
add.edge(triangle,3,1)

turn on all edges at time 1 only (@ length spell)
activate.edges(triangle,at=1)

activate edge (1,2) from t=2 to t=3
activate.edges(triangle,onset=2, terminus=3,
e=get.edgelDs(triangle,v=1,alter=2))

activate edge (2,3) from t=4 for 2 time lengths
activate.edges(triangle,onset=4, length=2,
e=get.edgelDs(triangle,v=2,alter=3))

deactivate.edges(triangle, at=2, e=1) # does not work since the spell is not 0@-length
is.active(triangle, at=2, e=1:3)

deactivate.edges(triangle, e=1, onset=2, length=0.1) # this deactivates the vertex
is.active(triangle, at=2, e=1:3)

this activates edges 2 and 3 at time 5
activate.edges(triangle, e=2:3, at=5)

this activates edge 1 at multiple times;
deactivate.edges(triangle)
activate.edges(triangle, e=c(1,1,1), at=6:8)
is.active(triangle, at=6, e=1:3)

activity.attribute 7

is.active(triangle, at=7, e=1:3)
is.active(triangle, at=8, e=1:3)

this activates vertex 1 for two spells, (0,1) and (3,4)
test <- network.initialize(3)
activate.vertices(test,onset=0:3,terminus=1:4,v=c(1,2,3,1))
get.vertex.activity(test, as.spelllList=TRUE)

activity.attribute Activity Attributes for Dynamically Extended Networks

Description

Dynamically extended networks are networkDynamic class objects (extensions of network objects)
whose vertex and edge elements include timing information. This page describes the types of timing
information currently available, and the general syntax for setting or querying this information.

Details

Currently, each edge and vertex in a dynamically extended network is presumed to be in one of two
states at any given point in time: (“active” or “inactive”). The state of a network element (i.e., edge
or vertex) is governed by an attribute with the name “active”, which is considered a reserved term
for purposes of this package.

The activity attribute consists of a two-column numeric matrix. Each row contains an activity spell,
and the two columns encode onset and terminus times respectively. Elements are presumed inactive
until the onset of their first activity spell, and are likewise presumed inactive after the termination
of their last active spell.

Spells are taken to span the period from the onset (inclusive) to the terminus (exclusive), so [on-
set,terminus). They must be consecutive, ordered forward in time, and strictly non-overlapping.

The syntax for defining or querying spells can specify either an instantaneous time point or an
interval. The commands for this include at=, onset=, terminus= and length=. Any numeric
values may be used in the interval specifications, including Inf and -Inf, (with some restrictions,
see below). A spell with onset=-Inf represents onset censoring. A spell with terminus=Inf
represents terminus censoring. Inf and -Inf cannot be used with the at specification. Similarly,
onset can not be Inf and terminus can not be -Inf.

The general syntax rules for specifying spells are as follows:

To specify a spell as a single time point:

e use the at argument, or

* use onset=terminus.

To specify a spell as a particular interval, one of the following combinations of onset, terminus
and length is required:

e onset and terminus

8 add.methods

* onset and length

e terminus and length
The special “null” spell is used to designate elements that are never active (i.e., have no valid
activity spells). These can only be set by the deactivate function (see activity.attribute)

and by convention are stored as c(Inf,Inf). “Null” spells are incompatible with other spells, and
should be replaced whenever an activation enters the element’s event history.

Although it is possible to access and modify the activity spells using network attribute methods
(e.g., get.edge.attribute) it is not recommended, and extreme care should be taken to preserve
the structure of the spell matrix. The preferred way to modify the spells of a network element is
with the activate related methods. Vertices and edges with specific activity ranges can be selected
using network.extensions.

In addition, a number of special functions are also provided to simplify common tasks related to the
active attribute (noted below).

Author(s)

Ayn Leslie-Cook <aynlc3@uw. edu>, Carter T. Butts <buttsc@uci.edu>

See Also

is.active, activate, activate.vertices,activate.edges, deactivate.vertices,deactivate.edges,network.exte

Examples

triangle <- network.initialize(3) # create a toy network

activate.vertices(triangle,onset=1,terminus=5,v=1)

activate.vertices(triangle,onset=1,terminus=10,v=2)
activate.vertices(triangle,onset=4,terminus=10,v=3)
deactivate.vertices(triangle,onset=2, length=2, v=1)

get.vertex.activity(triangle) # vertex spells

add.methods PID-aware versions of functions for adding edges and vertices to net-
workDynamic objects

Description

The methods (add. vertices.networkDynamic, add. edge.networkDynamic, add. edges.networkDynamic)
override their network-package counterparts in order to permit assigning persistent.ids to newly-

added elements if the pid is defined. They can be defined by the user with the vertex.pids argu-

ment, or, if not specified, a unique random id will be generated. (Note that any new values added

by default to a vertex.names pid will not be numeric.)

add.methods

Usage

S3 method for class 'networkDynamic'
add.vertices(x, nv, vattr = NULL, last.mode = TRUE,
vertex.pid = NULL, ...)

S3 method for class 'networkDynamic'
add.edges(x, tail, head, names.eval = NULL, vals.eval = NULL,
edge.pid = NULL, ...)

S3 method for class 'networkDynamic'
add.edge(x, tail, head, names.eval = NULL, vals.eval = NULL,

edge.check = FALSE, edge.pid = NULL, ...)
Arguments
X an object of class network or networkDynamic (see add.vertices in network)
nv number of vertices to be added. (see add. vertices in network)
vattr optionally, a list of attributes with one entry per new vertex. (see add.vertices
in network), not interpreted as a dynamic attribute
last.mode logical; should the new vertices be added to the last (rather than the first) mode
of a bipartite network? (see add.vertices in network)
vertex.pid a vector of vertex.pids to be assigned to the newly-added vertices
edge.pid a vector of edge.pids to be assigned to the newly-added edges
names.eval see add. edges in network), not interpreted as a dynamic attribute
vals.eval see add. edges in network), not interpreted as a dynamic attribute
edge.check see add.edges in network)
head see add. edges in network)
tail see add.edges in network)
possible additional arguments
Details

The networkDynamic versions of these methods call the network versions internally. See persis-
tent.ids for additional details about the PID mechanism.

Value

* add.verticies (invisibly) returns a reference to the network with the new vertices added.
Pids will be added/created if a vertex.pid attribute is set.

* add.edge and add.edges (invisibly) return a reference to the network with the new edges
added. Pids will be added/created if a vertex.pid attribute is set.

10 add.vertices.active

Note

Adding edges via the extraction/replacement operators [,] bypasses the pid code and will break
the edge pids defined for the network. Similarly, add.vertices.active and add.edges.active
do not yet support including pids.

Author(s)

Ixwang, skyebend, the statnet team

See Also

See also persistent.ids, add.vertices, add. edge, add. edges in network.

Examples

add vertices while using vertex.names as pids

nd <- as.networkDynamic(network.initialize(3))
set.network.attribute(nd, "vertex.pid”, "vertex.names")
add.vertices(nd,nv=2,vertex.pid=c(4,5)) # specify pids for two new vertices
network.vertex.names(nd) # peek at pids

add vertices and edges w/ auto-generated pids

nd <- as.networkDynamic(network.initialize(3))
initialize.pids(nd)

get.vertex.attribute(nd, 'vertex.pid') # peek at pids
add.vertices(nd,nv=2) # silently generate pids for vertices
get.vertex.attribute(nd, 'vertex.pid') # peek at pids
add.edges(nd,1,2) # silently generate a pid for the edge
get.edge.attribute(nd, 'edge.pid')

add.vertices.active add.verticies.active, add.edges.active

Description

Convenience functions for adding a set of verticies (or edges) and setting them to be active in a
single call

Usage

S3 method for class 'active'
add.vertices(x, nv, vattr = NULL, last.mode = TRUE,
onset = NULL, terminus = NULL, length = NULL, at = NULL, ...)

S3 method for class 'active'
add.edges(x, tail, head, names.eval = NULL, vals.eval = NULL,
onset = NULL, terminus = NULL, length = NULL, at = NULL, ...)

add.vertices.active

Arguments

X
nv

tail

head

onset

terminus

length

at

names.eval

vals.eval

vattr

last.mode

Details

11

an object of class network or networkDynamic.
the number of vertices to add

a vector of vertex IDs corresponding to the tail (source, ego) of each edge to be
added

a vector of vertex IDs corresponding to the head (target, alter) of each edge to
be added

an optional vector of time points that specifies the starts of the interval(s). This
must be accompanied by one of terminus or length.

an optional vector of time points that specifies the ends of the interval(s). This
must be accompanied by one of onset or length.

an optional vector of interval lengths for the interval(s). This must be accompa-
nied by one of onset or terminus.

optional, one or more time points to be activated.

optional list of length equal to the number of edges, with each element contain-
ing a list of names for the attributes of the corresponding edge. not currently
interpreted in a dynamic context, but passed directly to add. edges

an optional list of lists of edge attribute values (matching names.eval). Not
currently interpreted in a dynamic context, but passed directly to add. edges

optionally, a list of attributes with one entry per new vertex. not currently inter-
preted in a dynamic context, but passed directly to add. vertices

logical; should the new vertices be added to the last (rather than the first) mode
of a bipartite network?

possible future additional arguments

Essentially a wrapper for a call to add.vertices and activate.vertices or add.edges and
activate.edges when setting up a network object. These are not the S3 methods that their name
appears to imply, since there is no "active" class. See add.edges.networkDynamic, etc.

Value

The passed in network object with class set to networkDynamic and the specified number of new
vertices or edges added and activated

Note

Order of arguments was changed in version 1.9 for S3 method consistency. Does not currently
support the multiple-vertex head- and tail-sets of add. edges or add. edge.

Author(s)

Ayn Leslie-Cook <aynlc3@uw. edu>

12 adjust.activity

See Also

See Also as activate.vertices, activate.edges,add.vertices,add.edges

Examples

nw <- network.initialize(5)
activate.vertices(nw,onset=0,terminus=10)
network.size(nw) # just 5 nodes

add some new nodes with times
add.vertices.active(nw,2,onset=10,terminus=12)
network.size(nw) # now we have 7 nodes

add 2 edges edges, and activate them
add.edges(nw, tail=c(1,2),head=c(2,3))
activate.edges(nw,onset=0,terminus=10,e=1:2)

instead add and activate at the same time
add.edges.active(nw, tail=c(3,4),head=c(4,5),onset=10,terminus=12)

adjust.activity Adjust the activity ranges in all of the spells of a networkDynamic
object

Description

Transforms the values of all the activity spells of vertices and edges, as well as spells of dynamic
TEA attributes (and the net.obs.period if it exists).

Usage

adjust.activity(nd, offset = @, factor = 1)

Arguments
nd networkDynamic object to be modified
offset numeric value to be added (or subtracted) to all spell values
factor numeric factor for multiplying all spell values

Details

Spell values are modified by first adding the value of of fset and then multiplying by factor. If a
net.obs.period attribute exists, it’s observation spell values are transformed, and the time. increment
value is multiplied by factor.

Value

The nd argument is modified in place and returned invisibly.

age.at 13

Author(s)

skyebend @uw.edu

See Also

See also activity.attribute, attribute.activity.functions and net.obs.period

Examples

convert steps of an imaginary discrete sim

with each steps corresponding to 1 day

into decimal 'years' since 1990

sim<-network.initialize(5)

activate.vertices(sim,onset=0, terminus=2546)

add.edges.active(sim,head=1:4,tail=2:5,onset=0, terminus=2546)

set.network.attribute(sim, 'net.obs.period',list(
observations=1list(c(@,2546)),mode="discrete”,
time.increment=1,time.unit="step"))

do the transformation
adjust.activity(sim,offset=1990%365.25, factor=1/365.25)

modify the 'units' of net.obs.period

obs <-get.network.attribute(sim, 'net.obs.period')
obs$time.unit<-'year'

set.network.attribute(sim, 'net.obs.period',obs)

peek at the new values
as.data.frame(sim)
get.network.attribute(sim, 'net.obs.period')

age.at Age of active edges or vertices at a query time point

Description

Reports the age of edges or vertices at a specific time point. More precisely, the duration of time
between the query time point and the onset of the activity spell active at that point.

Usage

edges.age.at(nD, at, e = seq_along(nD$mel), active.default = TRUE)
dyads.age.at(nD, at, tails, heads, active.default=TRUE,

format.out = c("vector”, "edgelist”, "matrix"))
vertices.age.at(nD, at, v=seqg_len(network.size(nD)), active.default=TRUE)

14

Arguments

nD
at
e
v

tails

heads

active.default

format.out

Details

age.at

a networkDynamic object to be evaluated

numeric query time point which edge or vertex ages should be evaluated at
numeric vector of edges ids for which ages / durations should be reported
numeric vector of vertex ids for which ages / durations should be reported

numeric vector of vertex ids incident on the ’tail’ of edges for which ages /
durations should be reported

numeric vector of vertex ids incident on the "head’ of edges for which ages /
durations should be reported

logical, if TRUE edges or vertices with no activity specified will be considered
always active (see is.active)

character value indicating out the output should be structured. vector returns
output as a vector, edgelist returns a 3-column matrix in which the first columns
are the tail and head vertex ids of the edge and the 3rd column is the age, matrix
returns an adjacency matrix with the edge ages as values.

Edges or vertices that are not active at time at will return NA. For edges or vertices with multiple
activity spells, this function does not report the total duration of activity across all spells, only the
duration from the start of the spell with which the at point intersects.

dyads.age.at reports the age of edges corresponding to each dyad (tail,head). It cannot be used
with hypergraphic or multiplex networks because a pair of vertex ids may not uniquely correspond
to an edge. If tails and heads are not specified, they will default to the tails and heads of all
existing (but not necessarily active) edges in the network. Ordering and index position should
correspond to valid.eids.

Value

By default, a numeric vector indicating the age of the network element at the query time point,
or NA if the element is not active or (in the case of edges) deleted. Elements of the vector return
correspond to the values of e or v or (tails, heads) respectively.

Author(s)

skyebend

See Also

See also get.edge.activity, is.active

Examples

set up an example network for testing
test<-network.initialize(5)

add.edges(test,tail = 1:4,head=2:5)
activate.edges(test,onset=0:2,terminus=c(2,3,3),e=1:3)

as.data.frame.networkDynamic 15

activate.vertices(test,v = 1:4,onset=-3:0,terminus=5:8)

how old are each of the edges at time point 2.0 ?
edges.age.at(test,at=2.0)

how old is vertex id 2 time point 3
vertices.age.at(test,at=3, v=2)

how old are the edges [1,2] and [3,4] at time point 2
dyads.age.at(test,at=2,tails=c(1,3),heads=c(2,4))

dyads.age.at(test,at=2,format.out="matrix")

as.data.frame.networkDynamic
Extracts the edge timing information from a networkDynamic object
and represent as a data.frame.

Description

Creates a data.frame giving lists of edges and their activity spells corresponding to the networkDynamic
object. An observation window may be specified, and edge spells with values outside the window
will be omitted or truncated/censored to the observation window bounds.

Usage

S3 method for class 'networkDynamic'
as.data.frame(x, row.names = NULL, optional = FALSE, e =seq_along(x$mel),
start = NULL, end = NULL, active.default=TRUE,...)

Arguments

X a networkDynamic object

row.names ignored

optional ignored

e vector of edge ids that should be included in the output.

start optional, numeric onset-censoring time: time at which the network was first
observed. Edge spells with earlier onset times are given this as their onset time
(and marked as left censored). See Details for the default values.

end optional right-censoring time: time at which the network was last observed.

Edge spells with larger terminus are given this as their terminus time (and marked
as right censored). See Details for the default values.

active.default logical indicating if edges with no defined activity spells should be considered
active by default (and appear as a row in output)

possible additional arguments

16 as.data.frame.networkDynamic

Details

Exports the edge dynamics of a networkDynamic object as a data.frame giving a table of edges
with their activity spells, including whether an activity spell was “censored” (onset or termination
was not observed within the observation window). If a net.obs.period attribute exists, the max-
imal and minimal values will be used as censoring times by default. Censoring times can also be
provided using the start and end arguments (which will override net . obs. period), and censoring
can be prevented by setting start=-Inf, end=Inf. Edge spells that exceed the censoring bounds
will have their onset and/or terminus time appropriately truncated to match and will be marked as
censored. Spells which are fully outside the censoring bounds will be deleted and the corresponding
rows will not be returned.

Note that the spell overlap rules mean that when edge spells are modeled as momentary events
(onset==terminus), any events have onset==terminus==end of the the observation window will not
be returned. This will likely be the case for networks created by the networkDynamic converter
function.

Value

A data. frame containing timed relational information describing the networkDynamic object, hav-
ing the following columns:

onset, terminus Onset and terminus times of an edge, respectively, if not censored, and left and
right censoring times, if censored.

tail, head Tail and head of the edge.

onset.censored, terminus.censored
TRUE if onset/terminus time is censored.

duration the duration (terminus-onset) of each spell, evaluated after censoring
edge.id the id of the edge the row corresponds to
The output data. frame will be sorted by edge.id, onset,terminus. This means that for most (non-

multiplex) networks the group of spells for a specific edge will appear in sequential lines of output,
but the overall output is not in a temporal order.

Note

Vertex and attribute activity are not included in the returned data.frame. If an edge has multiple
activity spells, it will have multiple rows in the output. When output in censored, it may not match
values returned by get.edge.activity

See Also

See Also as get.edge.activity,get.vertex.activity

Examples

net <-network.initialize(3)
net[1,2]<-1;
net[2,3]<-1;
censoring

as.network.networkDynamic 17

activate.edges(net,onset=1, terminus=Inf,e=1)
activate.edges(net,onset=2,terminus=3,e=2)
activate.vertices(net, onset=1, terminus=Inf, v=1)
as.data.frame(net)

as.network.networkDynamic
Remove ‘networkDynamic’ class name from networkDynamic object.

Description

Changes the class of a networkDynamic object to a plain network object while leaving all attributes
(including dynamic attributes) intact.

Usage
S3 method for class 'networkDynamic'
as.network(x, ...)
Arguments
X A networkDynamic object that will have its class name stripped.

Possible additional arguments

Details

The primary use-case for this method is to force some other S3 method (like simulate in the
tergm package, plot, or print) to use 'network’ instead of "networkDynamic’ in method dispatching.
Dynamic features data structures be left intact but not recognized by corresponding methods, so
effectively broken.

Value

Returns the original network with the networkDynamic class name removed but all other attributes
unchanged

Author(s)
Skye Bender-deMoll

See Also

See Also as network.extract for extracting parts of a networkDynamic, and network.collapse
for extracting part of a networkDynamic as a static network. as.networkDynamic for the inverse
operation (adding the networkDynamic class to a static network).

18 as.networkDynamic

Examples

test<-network.initialize(2)
add.edges.active(test,tail=1,head=2,onset=1, terminus=2)
is.networkDynamic(test)

test<-as.network(test)

is.networkDynamic(test)

as.networkDynamic as.networkDynamic

Description

The as.networkDynamic generic provides a very basic conversion to networkDynamic from other

network types. Itis generally recommended to use the networkDynamic function instead of as . networkDynamic,
because networkDynamic provides a number of additional features for handling temporal informa-

tion.

Usage

S3 method for class 'networkDynamic'
as.networkDynamic(object,...)

S3 method for class 'network'
as.networkDynamic(object,...)

S3 method for class 'networkLite'

as.networkDynamic(object,...)
Arguments
object a network, networkLite, or networkDynamic object
ignored
Details

as.networkDynamic.network converts a network object into a networkDynamic object by adding
a networkDynamic class.

as.networkDynamic.networkLite converts a networkLite object into a networkDynamic object
by first converting it to a network object and then adding a networkDynamic class. (networkLites
are a backend data structure used in some EpiModel and statnet packages, providing improved
performance for certain applications, especially when working with vertex and edge attributes that
can be stored as atomic vectors. Currently, networkLites come with the restriction that the net-
work attributes hyper, multiple, and 1loops must be FALSE. See networkLite-package for more
information.)

Such conversions between network types are used when starting a dynamic simulation from a cross-
sectional network and returning the simulation history as a dynamic network, as done in the tergm
package for example.

attribute.activity.functions 19

Value

For as.networkDynamic. network the input object is returned with a networkDynamic class added.
For as.networkDynamic.networkLite, the input object is converted to a network object and then
the networkDynamic class is added. For as.networkDynamic.networkDynamic the input object
is returned unchanged.

Author(s)

Pavel, Zack W Almquist <almquist@uci.edu>

See Also

For the inverse (removing the networkDynamic class) see as . network.networkDynamic and as.networkLite.network
(which applies to networkDynamics). For extracting cross-sectional information from a networkDynamic

(which is often more appropriate than simply removing the networkDynamic class), see network.collapse

and network.extract. For more general construction of networkDynamics, see networkDynamic.

Examples

nd <- as.networkDynamic(network.initialize(3))
class(nd)
is.networkDynamic(nd)

nwL <- networkLite::networkLite(3)
nwD <- as.networkDynamic(nwL)
class(nwD)

is.networkDynamic(nwD)

attribute.activity.functions

Functions to activate and query dynamic attributes on vertices, edges,
and networks

Description

These functions set, query and modify attributes of networkDynamic objects used to represent val-
ues which change over time. These dynamic or "temporally extended attributes" are stored as
standard attributes with a specially defined structure.

Usage
activate.vertex.attribute(x, prefix, value, onset = NULL, terminus = NULL,

length = NULL, at = NULL, v = seq_len(network.size(x)), dynamic.only = FALSE)

activate.edge.attribute(x, prefix, value, onset = NULL, terminus = NULL,
length = NULL, at = NULL, e = seqg_along(x$mel), dynamic.only = FALSE)

activate.edge.value(x, prefix, value, onset = NULL, terminus = NULL,

20

attribute.activity.functions

length = NULL, at = NULL, e = seq_along(x$mel), dynamic.only = FALSE)

activate.network.attribute(x, prefix, value, onset = NULL, terminus = NULL,
length = NULL, at = NULL, dynamic.only = FALSE)

S3 method for class 'active'
get.vertex.attribute(x, prefix, onset = NULL, terminus = NULL,
length = NULL, at = NULL, rule = c("any"”, "all", "earliest”,"latest"),
na.omit = FALSE, null.na = TRUE, active.default = TRUE,
dynamic.only = FALSE, require.active = FALSE,
return.tea = FALSE, unlist = TRUE, ...)

S3 method for class 'active'

get.edge.attribute(x, prefix, onset = NULL, terminus = NULL,
length = NULL, at = NULL, rule = c("any", "all"”,"earliest”,"latest"),
active.default = TRUE, dynamic.only = FALSE, require.active = FALSE,
return.tea = FALSE, unlist = TRUE, ..., el)

S3 method for class 'active'

get.edge.value(x, prefix, onset = NULL, terminus = NULL,
length = NULL, at = NULL, rule = c("any", "all"”,"earliest”,"latest"),
active.default = TRUE, dynamic.only = FALSE, require.active = FALSE,
return.tea = FALSE, unlist = TRUE, ...)

S3 method for class 'active'

get.network.attribute(x, prefix, onset = NULL, terminus = NULL,length = NULL,
at = NULL, rule = c("any"”, "all","earliest”,"latest”),
dynamic.only = FALSE, return.tea=FALSE, unlist=TRUE, ...)

deactivate.vertex.attribute (x, prefix, onset=NULL, terminus=NULL,
length = NULL, at = NULL, v = seq_len(network.size(x)), dynamic.only = FALSE)

deactivate.edge.attribute (x, prefix, onset = NULL, terminus = NULL,
length = NULL, at = NULL, e = seq_along(x$mel), dynamic.only = FALSE)

deactivate.network.attribute(x, prefix, onset = NULL, terminus = NULL,
length = NULL, at = NULL, dynamic.only = FALSE)

S3 method for class 'active'

list.vertex.attributes(x, onset = NULL, terminus = NULL,length = NULL,
at = NULL, na.omit = FALSE, rule = c("any”, "all"),
v = seq_len(network.size(x)), require.active = FALSE,
active.default = TRUE, dynamic.only = FALSE, ...)

S3 method for class 'active'

list.edge.attributes(x, onset = NULL, terminus = NULL,length = NULL,
at = NULL, na.omit = FALSE, rule = c("any”, "all"),
e = seg_along(x$mel), require.active = FALSE,

attribute.activity.functions 21

active.default = TRUE, dynamic.only = FALSE, ...)

S3 method for class 'active'
list.network.attributes(x, onset = NULL, terminus = NULL,length = NULL,

Arguments

X

prefix

value

onset

terminus

length

at

dynamic.only

require.active

active.default

na.omit

null.na

rule

at = NULL, na.omit = FALSE, rule = c("any”, "all"),
dynamic.only = FALSE, ...)

a networkDynamic object

character string for the name of the attribute to be stored (will be stored as pre-
fix.active)

an object that is the value of the attribute to be stored. If value is a list, it is
assumed that each element corresponds to an index in v.

an optional vector of time-points that specifies the starts of the interval(s) at
which the value argument should be considered active for each vertex/edge.

an optional vector of time-points that specifies the ends of the interval(s) at
which the value argument should be considered active for each vertex/edge.

an optional vector of interval lengths for the interval(s) which should be ac-
tivated for each vertex/edge. This must be accompanied by one of onset or
terminus.

optional, one or more time points (corresponding to vertices/edges) at which
values should be activated for each vertex/edge

optional, one or more IDs indicating which vertices should have the TEA at-
tribute added (default is all vertices)

optional, one or more edge IDs indicating which edge should have the TEA
attribute added. Default is all edges. Note: Currently values of e correspond
to elements of x$mel, including null elements from deleted edges. So if some
edges have been deleted from the network, e may need to be padded out appro-
priately and can be longer than network. edgecount (x).

If dynamic.only==TRUE, only TEAs are considered; otherwise, non-TEA at-
tributes are also employed (with activity as defined by active.default).

logical. If TRUE, NA will be returned instead of an attribute value if the associ-
ated vertex or edge is inactive for the query period. When vertex or edge activity
has not be explicitly set, the state is controlled by active.default.

logical; should underlying vertices or edges without an activity attribute be re-
garded as active by default?

logical; should values from missing vertices/edges be removed? (implemented
for vertices, but removal means that the index may not correspond to vertex.id
for returned values)

logical; should NULL values be replaced with NAs?

a character string indicating how the attribute activity spells should be matched
against the query spell for this query:

22 attribute.activity.functions

* any (default) match attribute values if they overlap with any part of the
query interval.

* all match an attribute value only if it overlaps with the entire query inter-
val,

e earliest match a single value corresponding to the earliest attribute over-
laping any part of the query spell,

¢ latest match a single value corresponding to the earliest attribute overlap-
ing any part of the query spell.

return.tea logical; if return.tea=TRUE, will return an (appropriately truncated) activity
attribute- a list with the first element a list of values and the second element the
spell matrix of corresponding spell(s) matching according to rule. Also sets
unlist=FALSE and dynamic.only=TRUE.

unlist logical; should retrieved attributes be unlisted prior to being returned? Setting
to FALSE is necessary to correctly fetch list objects stored as attributes.

possible additional arguments

el unused argument that exists solely for consistency with network; do not use this
argument!

Details

These functions provide easy ways to work with temporally extended attributes, making it possible
to store attributes on a dynamic network that should be represented as changing values and different
points in time. Because the serve as wrappers for get.*.attribute and set.*.attribute, many of the
arguments are directly passed through.

The activate.*.attribute methods act as a cross between activate.* set.*.attribute methods. They
are used to activate an attribute for a given spell, and in so doing set a value for that spell. The
corresponding deactivate methods are more straightforward, deactivating the attribute over a set
interval (and removing any spells/values as needed).

A dynamic or Temporally Extended Attribute (TEA) is an edge, vertex, or network attribute satis-
fying the following properties:

1. Its name consists of an arbitrary prefix, together with the suffix ".active".

2. Its value consists of a two-element list, whose respective contents must be maintained in order
as follows:

¢ a. A list of value entries, such that the ith list element is the value of the attribute for the
ith spell in the associated activity matrix. An attribute not active at any given point in
time is defined as having a value of NA (but the reverse is not true — an active attribute
can also take a value of NA).

* b. A two-column numeric matrix, conforming to the specifications for activity attributes
in the networkDynamic package. Every active spell indicated in the activity matrix must
correspond to exactly one entry of the associated value list, and these must be maintained
in order (i.e., the value of the attribute for the ith active spell is the ith element in the value
list).

There are several ways to specify the activity spell, and the general syntax rules are described at
activity.attribute. Activity can be set for a single time point, using either at, or by setting

attribute.activity.functions 23

onset=terminus. Activity can be set for an interval [onset,terminus), using a valid combination of
the onset, terminus and length attributes.

This allows for a wide range of options when specifying spells, but a correct specification must use
only one of these forms:

at

onset and terminus
onset and length
terminus and length

If the set and deactivate functions are provided with no timing information, the element is acti-
vated/deactivated from -Inf to Inf. The specified interval spans the period from the onset (inclu-
sive) to the terminus (exclusive), so [onset, terminus). For more details, see activate The get
query functions will give an error if no timing information is provided.

When the activity arguments have a length greater than 1, the elements are assumed to correspond
to the vertex or edge ids that should have that activity specified, not to the elements of value. In
other words, it is possible to use one function call to activate multiple values on multiple vertices
with a different activity time on each vertex, but it is not possible to activate multiple values at
multiple times on a single vertex with one call.

activate.edge.value is a wrapper for activate.edge.attribute.

When the attribute query has a non-zero duration (i.e. length > 0, or onset!=terminus) it is
possible that the query spell will match against multiple attribute values for each network element.
If multiple values match and return.tea=FALSE, a warning will be generated and only the earliest
value will be returned. To avoid the warning, this behavior (or its opposite) can be specified by
setting rule="earliest' or rule="'latest"'.

Value

The set methods modify their network argument internally and also invisibly return a reference to
the modified network. The get methods return the attribute object appropriate for the time range
specified query spell parameters. If query results in multiple values and return.tea=FALSE only
the first (earliest) is returned along with a warning. Note that get.edge.value.active returns
NULL if no attributes names match, where get.vertex.attribute.active returns NAs. Also of
null.na=FALSE and unlist=TRUE, the index position for returned values may not correspond to
the vertex.id because NULL values will be omited.

Note

Attribute activity is only checked against vertex and edge activity during fetching if require.active=TRUE.
Otherwise the attributes for a vertex can take values (be active) when the vertex itself is inac-

tive. Likewise for edges. The because they must check all attributes on all network elements,

the list.*.active functions are generally more computationally expensive that a get call for
checking if a specific attribute exists. Note that get.edge.attribute.active currently calls
get.edge.attribute.active and does not support a list of edges as input.

Author(s)

skyebend, ayn, carter, pavel, martina, steve

24 attribute.activity.functions

See Also

See Also as set.vertex.attribute, get.vertex.attribute,list.vertex.attributes,activate.vertices,
activity.attribute, activate

Examples

#initialize network
test<-network.initialize(5)

#activate vertex attribute

test<-activate.vertex.attribute(test,"letter”,”a",onset=0, terminus=1)
test<-activate.vertex.attribute(test, "number”,"4", onset=1, terminus=2)
test<-activate.vertex.attribute(test, "number”,”5",onset=2, terminus=3)

#list active/all vertex attributes
list.vertex.attributes.active(test, onset=0,terminus=3,dynamic.only=TRUE)
list.vertex.attributes.active(test, onset=1,terminus=3,dynamic.only=FALSE)

#get values for specific vertex attribute
get.vertex.attribute.active(test,"letter”,onset=2,terminus=3)

#deactive vertex attribute
test <- deactivate.vertex.attribute(test, "letter”, onset=0, terminus=3)
list.vertex.attributes.active(test, onset=0,terminus=3,dynamic.only=TRUE)

#initialize edges
test[1,2]<-1
test[2,3]<-1

#activate edge attribute

test<-activate.edge.attribute(test, "number”,1,onset=0, terminus=2)
test<-activate.edge.attribute(test, "number”,5,onset=2, terminus=5)
test<-activate.edge.attribute(test,"letter”,"a”,onset=1,terminus=4)

#list edge attributes
list.edge.attributes.active(test, onset=0,terminus=4,dynamic.only=TRUE)
list.edge.attributes.active(test, onset=0,terminus=4,dynamic.only=FALSE)

#get values for specific edge attribute
get.edge.value.active(test, "number”,onset=3, terminus=4)

#deactive edge attribute
test <- deactivate.edge.attribute(test, "letter”, onset=0, terminus=3)
list.edge.attributes.active(test, onset=0,terminus=3,dynamic.only=TRUE)

#activate network attribute

test <- activate.network.attribute(test,”alist”,list("a","b"),onset=1,terminus=2)
test <- activate.network.attribute(test,”alist”,list("c","d"),onset=2,terminus=3)
test <- activate.network.attribute(test, "aspace”,list("1","2"),onset=1,terminus=2)
test <- activate.network.attribute(test,"aspace”,list("3","4"),onset=2,terminus=3)

#list network attributes

cls33_10_16_96 25

list.network.attributes.active(test, onset=0,terminus=3,dynamic.only=TRUE)
list.network.attributes.active(test, onset=0,terminus=3,dynamic.only=FALSE)

#get values for specific network attribute
get.network.attribute.active(test,"alist"”,at=2.5,unlist=FALSE)

#deactive network attribute
test <- deactivate.network.attribute(test, "alist”, onset=0, terminus=3)
list.network.attributes.active(test, onset=0,terminus=3,dynamic.only=TRUE)

activate multiple values on multiple vertices at multiple times
test<-network.initialize(3)
activate.vertex.attribute(test,"letters”,c("a","b","c"),onset=c(0,1,2),terminus=c(1,2,3))

peek at TEA structure using non-TEA attribute query
get.vertex.attribute(test,"letters.active”,unlist=FALSE)

compare different 'rules'

test<-network.initialize(1)

activate.vertex.attribute(test, 'color', 'red',onset=0,terminus=1)
activate.vertex.attribute(test, 'color', 'green',onset=1, terminus=2)
activate.vertex.attribute(test, 'color’', 'blue',onset=2,terminus=3)

get.vertex.attribute.active(test, 'color',onset=0,terminus=3)
get.vertex.attribute.active(test, 'color',onset=0,terminus=3,return.tea=TRUE)
get.vertex.attribute.active(test, 'color',onset=0,terminus=3,rule="'earliest"')
get.vertex.attribute.active(test, 'color',onset=0,terminus=3,rule="'latest"')

cl1s33_10_16_96 Daniel McFarland’s Streaming Classroom Interactions Dataset

Description

A dynamic network object describing continuous time streams of social interactions between teach-
ers and students in a classroom observed by Daniel McFarland in 1996.

Usage

data(McFarland_cls33_10_16_96)

Format

The format is is a networkDynamic object named c1s33_10_16_96 with node and edge activ-
ity.attributes defined by spell matricies and associated vertex attributes and dynamic edge attributes.

26 cls33_10_16_96

Details

The dynamic network object has 20 vertices and directed edges and covers a time range of 0.0 to
49.0 minutes of class time. The vertex attribute gender gives gender M’ or 'F’) of each person and
type gives a crude role ("gradel1’, grade12’,instructor’). The original dataset id for the vertices is
included as data_id and defined as a persistent.id. The edges include a dynamic attribute (TEA)
interaction_type with values ’saction’, ’social’ and ’task’ (see explanation below) and a weight
assigned by the reacher to that interaction (direct comunication is given more weight than indirect
’broadcast’ communication).

A .son formatted input file with the same data as well as seperate tsv files for vertices and edges are
located in the /inst/extdata directory.

The data for these classroom interactions consists of streaming observations of conversation turns.
The conversation turns were recorded as pairs of senders and receivers and for types of content.
Speakers were viewed as directing their communication in one of two fashions: (1) indirect sound-
ings, such as lectures (where a teacher addresses all students); and (2) direct interactions that are
focused on particular others. Each type of directional speech is viewed as having different forms
of network reception - indirect speech reaches all bystanders as passive hearers and directed speech
reaches the focal person as an active co-author of the conversation (Goffman 1981).

Two types of interaction are found to prevail in classroom contexts: task and sociable (McFarland,
in press). Task interactions are those behaviors that pertain to the ongoing teacher prescribed task
(content is academic). In contrast, sociable interactions concern everyday concerns of adolescents’
social lives, such as parties, dating, social outings, plans, etc. While the content is the key distinc-
tion, it is often the case that these speech acts are distinguishable in style as well, where sociable
behaviors are more play-like, fast-paced, and free than the more constrained academic styles of
speech during lessons (Cazden 1988). Last, observations also recorded when task and sociable
forms of interaction were laminated with evaluative meaning. Such evaluations were seen as being
either positive or negative - either giving praise or attempting a reprimand (Ridgeway and Johnson).

The class (#33) is an economics class composed of 11th and 12th graders at a magnet high school.
On this day, economics has two teachers. The first is the usual teacher and the second is a busi-
nessman who donates his time a couple days a month to assist the class with their lesson on stock
investments. After a minute of undefined class time, the two teachers prescribe collaborative group
work and assist students in conducting it. The students are assigned groups within which they are to
study the stock market and make mock investments they can follow over time. The groups compete
with each other over the course of the semester to see who can make the greatest profit.

The network narrative for the class opens with the teacher trying to focus student attention and then
lecturing while the visiting professional assists each group. The teacher prescribes group work but
continues to lecture, thereby preventing the desired social routine from fully taking effect. Eventu-
ally the students are doing group projects while the adults move from group to group, facilitating
their progress, and stabilizing interaction patterns. The routine of group work is basically character-
ized by dyadic task and social interactions that persist in multiple clusters. Not all persons engage
in these groups, and a couple students sit quietly by themselves. The group work routine breaks
down as social activity increases within the groups’, and then the teacher emits broadcast sanctions
in an effort to redirect student attention back on task (16 minutes). The task breaks down again at
the end of class, but this time because the adults make closing announcements.

So the network illustrates that teachers are involved in this task engaging their students as they
monitor interaction. When students become too social, a teacher usually arrives, disperses the
group, and then reforms it via task interactions (revolution in type of behavior, McFarland 2004).

delete.activity 27

Hence, the “dance” here entails relatively bounded groups of individuals that free-associate over
tasks and drift into social affairs, and teachers who refocus affairs by indirect means of broadcasts
or by direct means of directed speech.

Source

Dr. Daniel McFarland, Stanford University https://ed.stanford.edu/faculty/mcfarland

References

McFarland, Daniel A. 2005. “Why Work When You Can Play? Dynamics of Formal and Informal
Organization in Classrooms.” Chapter 8 in The Social Organization of Schooling, edited by Larry
Hedges and Barbara Schneider (pp. 147-174). New York: Russell Sage Foundation.

McFarland, Daniel A. 2004. “Resistance as a Social Drama - A Study of Change-Oriented Encoun-
ters.” American Journal of Sociology 109 (6): 1249-1318.

McFarland, Daniel A. 2001. “Student Resistance: How the Formal and Informal Organization of
Classrooms Facilitate Everyday Forms of Student Defiance.” American Journal of Sociology 107
(3): 612-78.

McFarland, Daniel A. and Skye Bender-deMoll. 2003. “Classroom Structuration: A Study of
Network Stabilization.” Working paper, Stanford University.

Examples

data(McFarland_c1s33_10_16_96)

delete.activity Remove Timing Information in a Dynamically Extended Network Ob-
Jject

Description

Removes the activity spells of a given set of vertices or edges.

Usage

delete.edge.activity(x, e=seq_along(x$mel))

delete.vertex.activity(x, v=seq_len(network.size(x)))

Arguments
X an object, of class network or networkDynamic.
e the edges of x that will have their timing information deleted; default = all.

v the vertices of x that will have their timing information deleted; default = all.

https://ed.stanford.edu/faculty/mcfarland

28 duration.matrix

Details

Though the timing information of the edges and/or vertices may be removed, other networkDy-
namic methods will assume activity or inactivity across all time points, based on the argument
active.default.

Value

An object with the same class as x, equivalent to x without the activity spells of the edges e or the
vertices V.

Author(s)

Ayn Leslie-Cook <aynlc3@uw. edu>, Carter T. Butts <buttsc@uci.edu>

See Also

activate

Examples

library(networkDynamic)

data(flo)

netl <- network(flo)

activate.edges(net1)

activate.vertices(netl)

net2 <- netl

delete.edge.activity(netl, e=seq(2,40,2))
delete.edge.activity(net2)
delete.vertex.activity(net2)

is.active(netl, at=0, e=c(1,2), active.default=FALSE)
is.active(netl, at=0, e=c(1,2), active.default=TRUE)
is.active(net2, at=0, e=1:16, active.default=FALSE)
is.active(net2, at=0, e=1:16, active.default=TRUE)

duration.matrix Construct a edge spells list from base network and toggle list.

Description

Given a network object and a toggle list, it will construct a list of edges and activity spells and return
that as a data frame. The network object does not need to have edges; it only needs to have enough
vertices to cover all the edges specified in the toggle list.

The toggle list should be a three column matrix or data frame, where the first column is the toggle
time, the second column is the tail vertex id of the edge, and the third column is the head vertex id
of the edge. A toggle represents a switch from active state to inactive, or vice-versa.

Usage

duration.matrix(nw@, changes, start, end)

get.dyads.active 29

Arguments
nwo an object of class network
changes a matrix or data frame, listing the toggles for edges as specified in the above
description
start integer, specifies the starting time of the network’s dynamic activity
end integer, specifies the ending time of the network’s dynamic activity
Value

Returns a data frame that lists the edge spells specified by the toggles. The columns in the data frame
are start end tail head left.censored right.censored duration. Left and right censoring
and duration are calculated automatically from the toggle list and the start and end times.

Author(s)

Ayn Leslie-Cook <aynlc3@uw.edu>, Carter T. Butts <buttsc@uci.edu>

See Also

as.networkDynamic

Examples

library(networkDynamic)

duration matrix test

net <-network.initialize(3)

net[1,2]<-1;

net[2,3]<-1;

net[1,3]<-1;

class(net)

toggle list: time, tail, head

tog=matrix(c(1,1,2, 1,2,3, 2,1,2, 4,1,3, 4,1,2), ncol=3, byrow=TRUE)
networkDynamic:::duration.matrix(net, tog, @, 5)

get.dyads.active Return the set of vertex ids of edges active at a given time

Description
Constructs a matrix, essentially an edgelist, of the pairs of vertices connected by edges active within
the query spell.

Usage

get.dyads.active(nD, onset = NULL, terminus = NULL, length = NULL, at = NULL,
rule = c("any”, "all"”, "earliest”, "latest"”), active.default = TRUE)

30 get.dyads.active

Arguments
nD networkDynamic object to be queried
onset optional numeric value giving onset time of query spell
terminus optional numeric value giving terminus time of query spell
length optional numeric value giving length (duration) of query spell
at optional numeric value giving single time point to query
rule a character string indicating the definition of "active" for this query: any (de-

fault) to define active as any active spell during the interval, or all to define
active as being active over the entire interval. For this functions, the values of
earliest and latest are equivalent to any and are only included for consis-
tency.

active.default logical; should elements without an activity attribute be regarded as active by
default? Default to TRUE

Details

Uses is.active internally. The ordering of matrix rows is arbitrary. The ordering of vertices in
non-directed networks corresponds to how they were set in the data structure (i.e. does not enforce
i>j) If no edges are active or exist, a matrix with zero rows will be returned.

Value

Returns a two-column numeric matrix in which the first column gives a tail vertex.id and the second
column gives the head vertex.id and each row corresponds to the existence of an active relationship
between the vertices for the given query spell.

Note

This function does not support hypergraphic networks.

Author(s)

skyebend

See Also

See also is.active

Examples

data(windsurfers)
get.dyads.active(windsurfers,onset=2, terminus=3)

get.networks 31

get.networks Obtain a list of collapsed networks sampled periodically from a net-
workDynamic object

Description

Given a start time, end time, and increment (or vectors of onsets and termini) to express sampling
intervals, return a list of collapsed networks from a networkDynamic object.

Usage

get.networks(dnet, start = NULL, end = NULL, time.increment = NULL,
onsets=NULL, termini=NULL,...)

Arguments
dnet A networkDynamic object with possible vertex, edge, network, and attribute
spell information.
start numeric value giving the start of the sampling interval
end numeric value giving the end of the sampling interval

time.increment value for the offset (and duration) between sucessive samples. Will default to 1
if not otherwise specified

onsets A numeric vector containing the onset times of the networks to be extracted.
This must be accompanied by termini of the same length.

termini A numeric vector containing the terminus times of the networks to be extracted.
This must be accompanied by onsets of the same length.

Additional arguments to network.collapse (such as rule,active.default,retain.all.vertices)

Details

The sampling ("slicing") intervals may be defined using either the start, end, and time.increment
parameters, or by providing parallel vectors of onsets and termini. If values are not specefied but a
net.obs.period attribute exists to describe the 'natural’ sampling parameters, start and end will
defult to the max an min of the observations element, with time.increment set to its corresponding
value in the net.obs.period.

Value

A list of static network objects corresponding to the specified sampling intervals of the networkDynamic

Note

See Note in network.collapse.

Author(s)
Kirk Li, Skye Bender-deMoll

32 get.timing.info

See Also

See Also as network.collapse for obtaining a slice of static network, network.extract for ex-
tracting sub-ranges of a networkDynamic, get.vertex.attribute.active for more on TEA at-
tributes, and as.network.networkDynamic for stripping the the networkDynamic class from an
object.

Examples

create a networkDynamic with some basic activity and time extended attributes (TEA)
test <- network.initialize(5)

add.edges.active(test, tail=c(1,2,3), head=c(2,3,4),onset=0,terminus=1)
activate.edges(test,onset=3, terminus=5)

activate.edges(test,onset=-2,terminus=-1)

activate.edge.attribute(test, 'weight',5,onset=3, terminus=4)
activate.edge.attribute(test, 'weight',3,onset=4,terminus=5,e=1:2)

obtain the list of networks
list <- get.networks(test,start=0, end=5)

aggregate over a longer time period with specified rule
list <- get.networks(test,start=0, end=6,time.increment=2,rule="'latest"')

use 'at' style extraction of momentary slices via onsets & termini
list <- get.networks(test,onsets=0:5,termini=0:5)

ensure that all networks returned will be the same size
list <- get.networks(test,onsets=0:5,termini=0:5,retain.all.vertices=TRUE)
find out how many edges in each sampling point with apply

sapply(get.networks(test,start=0,end=5),network.edgecount)

generate a list of matrices
lapply(get.networks(test,start=0,end=5),as.matrix)

get.timing.info Retrieve the timing information present in a networkDynamic.

Description

These methods return either the activity spells of each vertex or edge or the unique time points at
which edges and vertices become active or inactive.

Finds all of the unique time points at which the edges and/or vertices become active or inactive.

get.timing.info 33

Usage

get.change.times(x, vertex.activity=TRUE, edge.activity=TRUE, ignore.inf=TRUE,
vertex.attribute.activity = TRUE, edge.attribute.activity = TRUE,
network.attribute.activity = TRUE)
get.vertex.activity(x, v=seq_len(network.size(x)),
as.spelllList=FALSE, active.default=TRUE)
get.edge.activity(x, e=seq_along(x$mel), as.spelllList=FALSE, active.default=TRUE)

Arguments

X an object, of class network or networkDynamic.

vertex.activity
logical, whether the times at which vertices become active or inactive is to be
returned.

edge.activity logical, whether the times at which edges become active or inactive is to be
returned.

vertex.attribute.activity
logical, whether the times attached to any dynamic vertex attributes should be
returned

edge.attribute.activity
logical, whether the times attached to any dynamic edge attributes should be
returned

network.attribute.activity
logical, whether the times attached to any dynamic network attributes should be

returned
ignore.inf logical, whether Inf value will be ignored or not.
e IDs for the edges whose activity spells are wanted.
v IDs for the vertices whose activity spells are wanted.

as.spelllList should data be returned in spell matrix form? TODO: should this be callsed
as.spellmatrix instead?

active.default logical, should edges / vertices with no spell activity defined be treated as always
active (TRUE) and included in output, or never active (FALSE) and skipped.

Value

For the get.change.times function, the default settings return a vector of all of the finite time
points at which any edge or any vertex becomes active or inactive, or any of their dynamic attributes
change. If only one of the logical arguments, say vertex.activity, is set to FALSE, then the time
points for the corresponding parts of the data structure will not be returned. If both are FALSE,
numeric(0) is returned.

For the get.vertex.activity and get.edge.activity functions, a list of activity spells is re-
turned with each list element corresponding to the id of the vertex or edge. Deleted edges will
appear as NULL entries, as will any spell marked as inactive with the 'null’ (Inf,Inf) spell. If the
argument as.spelllList=TRUE the activity spells are instead formatted as a data.frame and in-
clude additional columns to indicate possible onset- and terminus-censoring. Any 'null’ spells and
deleted edges will be omited.

34 is.active

For get.vertex.activity the columns are [onset, terminus,vertex.id,onset.censored, terminus.censored,durat

For get.edge.activity the columns are [onset, terminus, tail, head, onset.censored, terminus.censored,
duration, edge.id] .

The data.frames will be sorted by id, onset, terminus.

Ifanet.obs.period network attribute is set, the range of its $observations element is substituted
in for the -Inf and Inf values that otherwise indicate the onset- and terminus-censored observations.

Author(s)

Ayn Leslie-Cook <aynlc3@uw.edu>, Carter T. Butts <buttsc@uci.edu>,skyebend

See Also

See also activity.attribute,net.obs.period,as.data.frame.networkDynamic

Examples

library(networkDynamic)

data(flo)

netl <- network(flo)

activate.edges(netl, onset=1:20, terminus=101:120)
activate.vertices(netl, at=seq(2,32,2))
get.change.times(net1)

get.edge.activity(netl)
get.edge.activity(netl,as.spelllList=TRUE)
get.vertex.activity(net1)

a <-network.initialize(5)
activate.vertices(a,onset=0, terminus=Inf)
get.change.times(a,ignore.inf=FALSE)

is.active Determine Activation State of Edges and Vertices

Description

Query the activity state of one or more network elements (edges or vertices) for either a single time
point or an extended interval.

Usage

is.active(x, onset = NULL, terminus = NULL, length = NULL, at = NULL, e = NULL, v = NULL,
rule = c("any”, "all","earliest"”,"latest"), active.default = TRUE)

is.active 35

Arguments

X an object of class network.

onset an optional vector of timepoints that specifies the start of the queried interval(s).
This must be accompanied by one of terminus or length.

terminus an optional vector of timepoints that specifies the end of the queried interval(s).
This must be accompanied by one of onset or length.

length an optional vector of interval lengths for the queried interval(s). This must be
accompanied by one of onset or terminus.

at an optional vector of single time point(s) to query.

e a vector of edge IDs to evaluate.

v a vector of vertex IDs to evaluate.

rule a character string indicating the definition of "active" for this query: any (de-

fault) to define active as any active spell during the interval, or all to define
active as being active over the entire interval. Because we are only testing for
activity, the values of earliest and latest are equivilent to any and are only
included for compatibility with calling functions.

active.default logical; should elements without an activity attribute be regarded as active by
default?

Details

This function can be used to query the activity status of an element at single time point, or over
an interval. The specification of timepoints and intervals is the same as for the activate function.
The general rules are discussed in activity.attribute.

To query status at a single time point, use one of the following:

e the at argument, or

e set onset=terminus.
To query status over a particular interval, one of the following valid combinations of onset, terminus
and length is required:

* onset and terminus.

e onset and length.

e terminus and length.

* or, you can specify no information.
If the query is specified with no timing information the spell is defined as (-Inf,Inf). The query
interval spans the period from the onset (inclusive) to the terminus (exclusive), so [onset,terminus).
There are some special behaviors associated with the arguments Inf and -Inf.

* The open-ended interval c(-Inf,x) includes -Inf. For consistency, we also allow the open-

ended interval c(x, Inf) toinclude Inf. Thus [onset, terminus) will be interpreted as [onset,
terminus] when terminus = Inf.

* Queries for intervals specified by c(Inf, Inf) or c(-Inf, -Inf) are ignored.

36 is.active

If the e argument includes edge ids corresponding to deleted edges, a warning will be generated
because the length of the output vector will not match the vector of edge ids. In this case it is a good
idea to use valid.eids to determine the edge ids.

Value

A logical vector indicating the activity states of vertices or edges. In the case of vertices, the
elements of the vector correspond to the vertex ids provided via the v paramter. In the edges case,
if the network has deleted edges, they will be omited from the result so the elements of the vector
may not correspond to the eids provided via the e parameter.

Author(s)

Ayn Leslie-Cook <aynlc3@uw. edu>, Carter T. Butts <buttsc@uci.edu>

See Also

activity.attribute, activate, valid.eids

Examples

triangle <- network.initialize(3) # create a toy network
add.edge(triangle,1,2) # add an edge between vertices 1 and 2
add.edge(triangle,?2,3) # add more edges
add.edge(triangle,3,1)

turn on all edges at time 1 only (@ length spell)

activate.edges(triangle,at=1)

activate edge (1,2) from t=2 to t=3

activate.edges(triangle,onset=2, terminus=3,
e=get.edgelDs(triangle,v=1,alter=2))

activate edge (2,3) from t=4 for 2 time lengths

activate.edges(triangle,onset=4, length=2,
e=get.edgelDs(triangle,v=2,alter=3))

are the edges active at a particular time?
is.active(triangle, at=1, e=1:3)
is.active(triangle, at=4, e=seq_along(triangle$mel))

delete an edge

delete.edges(triangle,e=2)

is.active(triangle, at=4, e=seq_along(triangle$mel))

gives warning, and only two values returned, which edges are they?
much safer to use

is.active(triangle, at=4, e=valid.eids(triangle))

nd_test_nets 37

nd_test_nets networkDynamic testing networks

Description

A list of networkDynamic objects to be used for testing package functions. Each network exempli-
fies a possible extreme case for the data structure representation.

Usage

data(nd_test_nets)

Format

A list of networkDynamic objects. Each element is named with a short description

Details

This list of networks is intended for testing purposes. Each element is a network with a different
unusual configuration of the networkDynamic data structure. The idea is that the items on the
list can be used when testing functions that use networkDynamic objects to make sure that they can
properly handle (or explicitly reject) a wide range of network configurations and parameter settings.
A short description of each test case can be printed with names(nd_test_nets). Note that these
test cases are intended for checking that functions process the data structures without error, but in
most cases the networks are too trivial to be useful in testing algorithm results.

Examples

data(nd_test_nets)

print the list of test cases
names(nd_test_nets)

check that network.size.active works

(or at least doesn't fail)

for many types of networks
lapply(nd_test_nets,network.size.active,at=1)

net.obs.period Network attribute describing the observation properties of a network-
Dynamic object

Description

net.obs.period is an optional network-level attribute that gives meta-information about the char-
acteristics of the observations, time range and temporal model of a networkDynamic object.

38 net.obs.period

Format

If the attribute is present, it is required to have a specific structure. It is a 4-element 1ist with
named values.

* the observations element is a list of two-elment spell vectors that give the onset and terminus
of the time period(s) during which the network was observed or simulated

* mode A string indicating the temporal model of the network: either discrete or continuous
e time.increment is an indicator of the ‘natural’ time unit for iterating over the network (pri-
marily useful for discrete time models)

e time.unit is the name of the unit used by all of the spells in the object: often set to step for
discrete simulations.

Details

Some functions that work with networkDynamic objects need to know information about the ob-
servation design of the network. Is it discrete or continuous time model? When did the observation
(or simulation) of the network processes start and end? What are the time units? This information
may be stored in the optional net.obs.period network attribute.

Some examples of possible net.obs.period values for various networks:

* for an stergm output it might be: 1ist(observations=1list(c(@,100)),mode="discrete",
time.increment=1,time.unit="step")

* For Lin’s windsurfers , which is missing all observations on day 25: 1ist(observations=1ist(c(9@,25),c(26,31)),
time.increment=1,time.unit="day")

¢ For McFarland’s classroom data: 1ist(observations=1ist(c(@,55),),mode="continuous”,
time.increment=NA, time.unit="minute")

* Afictitious instantaneous panel example : 1ist(observations=1ist(c(0,0),c(21,21),c(56.5,56.5),c(68,68))
time.increment=0,time.unit="seconds")
The values of the net.obs.period object are not checked for consistency with activity spells
of the network itself.

References

Link to page on statnet wiki?

See Also

Several of the networkDynamic converter functions set the net.obs.period attribute on their out-
put object. See also activity.attribute

Examples

nd<-network.initialize(5)

activate.vertices(nd,onset=0,terminus=100)

set.network.attribute(nd, 'net.obs.period',list(observations=list(c(0,100)),
mode="discrete”, time.increment=1,time.unit="step"))

find the overall “expected' time range for the object

range(get.network.attribute(nd, 'net.obs.period')$observations)

network.collapse 39

network.collapse Convert a time range of a networkDynamic object into a static network
object.

Description

This function provides an easy way to sensibly collapse the time-related information in a networkDynamic
object and return a plain network object with a set of vertices, edges, and attributes that appro-
priately correspond to those appearing in the original networkDynamic object during the query
interval.

Usage

network.collapse(dnet, onset = NULL, terminus = NULL, at = NULL, length = NULL,
rule = c("any”, "all","earliest"”,"latest”), active.default = TRUE,

retain.all.vertices=FALSE, rm.time.info=TRUE, ...)
dnet%k%at
Arguments

dnet A networkDynamic object with possible vertex, edge, network, and attribute
spell information.

onset optionally, the start of the specified interval. This must be accompanied by one
of terminus or length.

terminus optionally, the end of the specified interval. This must be accompanied by one
of onset or length.

length optionally, the length of the specified interval. This must be accompanied by
one of onset or terminus.

at optionally, a single time point.

rule a text string for defining “active” for this call: any if elements active at any time

during the interval are to be used, or all if elements must be active over the
entire interval. The value earliest behaves like any but specifies that when
multiple attribute values are encountered, only the earliest will be returned. The
value latest behaves like any but specifies that when multiple attribute values
are encountered, only the latest will be returned.

active.default logical; should elements without an activity attribute be regarded as active by
default?

retain.all.vertices
logical; should the extracted network retain all vertices, ignoring the vertex ac-
tivity spells of x in order to ensure that the network returned has the same size
as dnet?

rm.time.info logical; if TRUE, the net.obs. period attribute will be removed (if it exists), and
the activity summary attributes activity.count and activity.duration will
not be attached to edges and vertices

Possible additional arguments (not yet invented) to handle aggregation of at-
tributes.

40 network.collapse

Details

First performs a network.extract on the passed networkDynamic object with the specified time
range to get the appropriate set of active edges. Extracts appropriate values from any dynamic at-
tributes and stores them as static attributes and optionally (if rm. time. info=FALSE) computes some
crude summary attributes for edge and vertex spells (activity.count, activity.duration),.
Then removes all activity.attribute and dynamic.attributes information and returns a plain
network without the networkDynamic class.

The %k% operator (‘K’ for kollapse) is a shortcut for the *at’ version of network.collapse.

If no temporal arguments are specified, defaults to collapsing entire time range of the input network
(onset=-Inf, terminus=Inf). Original network is not modified.

Arbitrary attribute values may be returned when query spells with a duration are used for continuous
time networks (i.e. anything other than ’at’) or query spells that don’t line up with the discrete units

for discrete time networks are used. If a query spell intersects with multiple attribute values, a warn-

ing will be produced and only the earliest value will be used (see get.vertex.attribute.active).

To avoid ambiguity (and the warning), appropriate handling can be specified by setting rule="'earliest'’
or rule="'latest"' to indicate which of the multiple values should be returned.

The duration values returned for edges do not account for any potential ‘censoring’ of observations
in the original network.

Value

A new ’static’ network object corresponding to the specified time range of the networkDynamic
argument. If the original network contained dynamic TEA attributes (i.e. ’weight.active’), the
appropriate (if possible) value is queried and stored as a non-TEA attribute ("weight’).

Note

This function may be quite computationally expensive if the network contains lots of attributes.
For many tasks it is possible to avoid collapsing the network by using is.active, the dynamic
network.extensions, and the attribute.activity.functions.

Author(s)
Skye Bender-deMoll

See Also

See also network.extract for extracting sub-ranges of a networkDynamic, get.vertex.attribute.active
for more on TEA attributes, and as.network.networkDynamic for stripping the the networkDy-
namic class from an object without the expense of modifying or removing the activity attributes.

Examples

create a network with some basic activity
test<-network.initialize(5)

add.edges.active(test, tail=c(1,2,3), head=c(2,3,4),onset=0,terminus=1)
activate.edges(test,onset=3, terminus=5)
activate.edges(test,onset=-2,terminus=-1)

network.dynamic.check 41

collapse the whole thing

net <-network.collapse(test)
is.networkDynamic(net)
get.vertex.attribute(net, 'activity.duration')
get.edge.value(net, 'activity.count')
get.edge.value(net, 'activity.duration')

add a dynamic edge attribute
activate.edge.attribute(test, 'weight',5,onset=3, terminus=4)
activate.edge.attribute(test, 'weight',3,onset=4, terminus=5)

collapse with an interval query
net3<-network.collapse(test,onset=3, terminus=4)
get.edge.value(net3, 'weight')

note that if we use a query that intersects mutiple
attribute values it will generate a warning.
try commented line below:

net3<-network.collapse(test,onset=3,terminus=5)

but should be safe from attribute issues when
collapsing with a point query
net3<-network.collapse(test,at=3)
get.edge.value(net3, 'weight')

can use operator version for point query instead
net3<-test%k%4.5
get.edge.value(net3, 'weight')

network.dynamic.check Verify a Dynamically Extended Network Object

Description

Checks a networkDynamic object for any activity information that is not correctly specified.

Usage

network.dynamic.check(x, verbose = TRUE, complete = TRUE)
is.networkDynamic(x)

42 network.dynamic.check

Arguments
X an object, hopefully of class networkDynamic.
verbose logical; should output messages be printed to the user?
complete logical; should a complete test be ran, including checks of the activity matrices
for edges and vertices, versus a check of only edge activity invovling non-active
vertices
Details

Currently, network.dynamic. check runs three types of checks on an input object:
1. If a complete test is run, vertex spell matrices and edge spell matrices (if any) are checked for
legality, specifically these are checked for correct dimensionality and proper spell ordering.

2. If vertex and edge spell matrices are correctly specified or assumed to be using complete=FALSE,
incident vertices of active edges (if any) are checked to ensure that they are also active during
the specified period(s).

3. If a complete test is run, and any TEA attributes are attached to the network, vertices or edges,
they will be checked for correct structure.
If spell matrices are only acted upon by network or networkDynamic methods, there is no need to
run a complete test - correct dimensionality and spell ordering are guaranteed.

is.networkDynamic checks if its argument has the class 'networkDynamic’.

Value

For network.dynamic.check: A list of logical vectors, one for each network component checked:

* $vertex.checks : Whether the spell matrix of each vertex (if any) is correctly specified
* $edge.checks : Whether the spell matrix of each edge (if any) is correctly specified

* $dyad.checks : Corresponding to edges, whether the incident vertices of each edge are active
when the edge is active

* $vertex.tea.checks : Corresponding to vertices, whether the vertex has correctly formed
TEA attributes

* $edge.tea.checks : Corresponding to edges, whether the edge has correctly formed TEA
attributes

* $network.tea.checks : Single boolean, whether the network TEA attributes are formed
correctly

* $net.obs.period.check : NULL, if no net.obs.period network attribute is present, oth-
erwise a single boolean, whether the attribute is formed correctly.

For is.networkDynamic: a boolean which is true if the class matches

Author(s)

Ayn Leslie-Cook <aynlc3@uw. edu>, Carter T. Butts <buttsc@uci.edu>, Skye Bender-deMoll

network.extensions 43

See Also

activity.attribute, net.obs.period

Examples

test <-network.initialize(2) # make a network

only activate one vertex
activate.vertices(test,onset=2,length=5,v=1)

test[1,2] <-1 # add an edge between the verticies

activate the edge for a spell not including vertex spell
activate.edges(test,onset=0,terminus=7, e=1)
network.dynamic.check(test) # find the bad edge

name a vertex attrible like a TEA but with the wrong structure
set.vertex.attribute(test, 'letters','a")
network.dynamic.check(test)

network.extensions Dynamically Extended Core Network Functions

Description
Various core functions from the network package, with specialized extensions for handling dynamic
data.

Usage

get.edgelDs.active(x, v, onset = NULL, terminus = NULL, length = NULL, at = NULL,
alter = NULL, neighborhood = c("out”, "in", "combined"),

rule = c("any"”, "all", "earliest"”, "latest”), na.omit = TRUE, active.default = TRUE)
get.edges.active(x, v, onset = NULL, terminus = NULL, length = NULL, at = NULL,
alter = NULL, neighborhood = c("out”, "in", "combined"),
rule = c("any"”, "all", "earliest”, "latest”), na.omit = TRUE, active.default = TRUE)
get.neighborhood.active(x, v, onset = NULL, terminus = NULL, length = NULL, at = NULL,
type = c("out”, "in", "combined”), rule = c("any”, "all"”, "earliest"”, "latest"),
na.omit = TRUE, active.default = TRUE)

is.adjacent.active(x, vi, vj, onset = NULL, terminus = NULL, length = NULL, at = NULL,
rule = c("any", "all", "earliest"”, "latest"”), na.omit = FALSE, active.default = TRUE)

S3 method for class 'active'

network.dyadcount(x, onset = NULL, terminus = NULL, length = NULL, at = NULL,
rule = c("any”, "all", "earliest”, "latest"),
na.omit = TRUE, active.default = TRUE,...)

S3 method for class 'active'

network.edgecount(x, onset = NULL, terminus = NULL, length = NULL, at = NULL,

rule = c("any”, "all", "earliest”, "latest"),
na.omit = TRUE, active.default = TRUE,...)

44

S3 method for class

network.extensions

'active'

network.naedgecount(x, onset = NULL, terminus = NULL, length = NULL, at = NULL,
rule = c("any”, "all", "earliest”, "latest"),
active.default = TRUE,...)

S3 method for class

'active'

network.size(x, onset = NULL, terminus = NULL, length = NULL, at = NULL,
rule = c("any"”, "all", "earliest”, "latest”),
active.default = TRUE,...)

Arguments

X
Vv

vi

vj
onset

terminus

length

at
alter

neighborhood

type
rule

na.omit

active.default

Details

an object of class network

a required vertex ID.

an optional vertex ID (tail).
an optional vertex ID (head).

an optional start time for the selection interval. This must be accompanied by
one of terminus or length.

an optional end time for the selection interval. This must be accompanied by
one of onset or length.

the length of the selection interval. This must be accompanied by one of onset
or terminus

a time point for selecting edges/vertices.
optionally, the ID of another vertex.

a text string that indicates whether we are interested in in-edges, out-edges, or
both (relative to v).

a text string that functions as neighborhood, above, for vertex neighborhoods.

a text string for defining “active” for this call: any (default) to select elements
appearing at any time during the specified interval, or all to select only elements
active for the entire interval. For these functions, the values of earliest and
latest are equivalent to any and are only included for consistency.

logical; should we omit missing edges?

logical; should elements without an activity attribute be regarded as active by
default?

possible additional argumenets

These functions are “dynamically extended” versions of their standard network counterparts. As
such, conventional aspects of their behavior can be found on their respective manual pages (see
below). In all cases, the sole difference between the extended and non-extended versions lies in the
ability of the user to specify a time point (or interval), such that only vertices and edges active at
the indicated time (or during the indicated interval) are employed by the routine.

For elements (edges and vertices) lacking an activity attribute, the active.default argument de-
termines appropriate treatment. By default, all such elements are considered active.

network.extensions 45

Value

The return value matches that of the original function, suitably filtered.

Note
The current temporal implementation of these routines will be slower compared to the non-temporal
versions. Do not use them unless you have to.

Author(s)

Carter T. Butts <buttsc@uci.edu>

References
Butts, C. T. (2008). “network: a Package for Managing Relational Data in R.” Journal of Statistical
Software, 24(2). https://www. jstatsoft.org/v24/i02/
See Also
network.extract, is.active, get.edgelDs, get.edges, get.neighborhood, is.adjacent, network.dyadcount,
network.edgecount, network.naedgecount, network.size

Examples

is.adjacent.active

triangle <- network.initialize(3) # create a toy network
add.edge(triangle,1,2) # add an edge between vertices 1 and 2
add.edge(triangle,?2,3) # add a more edges

add.edge(triangle,3,1)
is.adjacent.active(triangle,vi=1,vj=2,onset=2,length=1)

get.edges.active

net <-network.initialize(5)

net[1,2]<-1;

net[2,3]<-1;

activate.edges(net,onset=1, terminus=Inf,e=1)
activate.edges(net,onset=2, terminus=3,e=2)
get.edges.active(net,v=2,at=1)
get.edges.active(net,v=2,at=1, neighborhood="combined")
get.edges.active(net,v=2,at=2, neighborhood="combined")

get the ids of the active edges instead (could be multiple incident edges)
get.edgelDs.active(net,v=2,at=2)

or get ids of the active nodes in a vertex neighborhood
get.neighborhood.active(net,v=2,at=2)

returns both edges

get.edges.active(net,v=2,onset=1, terminus=3, neighborhood="combined”, rule='any')
returns only one edge (e=2)

get.edges.active(net,v=2,onset=1, terminus=3, neighborhood="combined”, rule='all')

https://www.jstatsoft.org/v24/i02/

46

network.extract

network.edgecount.active

network.edgecount.active(net, at=1, active.default=FALSE)
network.edgecount.active(net, at=2, active.default=FALSE)
network.edgecount.active(net, at=5, active.default=FALSE)

network.extract

Temporal Extracts/Cross-sections of Dynamically Extended Network
Objects

Description

Given a networkDynamic and a specified time point (or interval), return a reduced networkDynamic
that only contains the vertices and edges active at the given point or over the given interval.

Usage

network.extract(x, onset = NULL, terminus = NULL, length = NULL, at = NULL,
rule = c("any”, "all"), active.default = TRUE, retain.all.vertices = FALSE,
trim.spells=FALSE)

X %t% at

Arguments

X

onset
terminus
length
at

rule

active.default

an object of class network.

optionally, the start of the specified interval. This must be accompanied by one
of terminus or length.

optionally, the end of the specified interval. This must be accompanied by one
of onset or length.

optionally, the length of the specified interval. This must be accompanied by
one of onset or terminus.
optionally, a single time point.

a text string for defining “active” for this call: any if elements active at any time
during the interval are to be used, or all if elements must be active over the
entire interval.

logical; should elements without an activity attribute be regarded as active by
default?

retain.all.vertices

trim.spells

logical; should the extracted network retain all vertices, ignoring the vertex ac-
tivity spells of x in order to ensure that the network returned has the same size
as x?

logical; should the spells of vertices, edges and their attributes in the extracted
network be trimmed to match the query range? (Sensible thing to do, but could
be expensive)

network.extract 47

Details

For the purposes of extraction, edges are only considered active over some interval if: the edge itself
is active over this time period, and both of the incident vertices are also active over the given time
period.

When retain.all.vertices=FALSE (the default), the function has the following behavior:
» If at is used to specify the spell of interest, the returned network consists of all edges and
vertices active at that time point.

* If an interval is supplied to specify the spell (via onset and one of terminus or length),
edges and vertices active over the specified interval are used. If rule="any", then edges and
vertices active at any time during the interval are returned; otherwise, only those active during
the entire period are returned.

Vertices in the extracted network will have the same order as the original network, with inactive
vertices removed.

When retain.all.vertices=TRUE

* All vertices are preserved in the output net to preserved network size and ids.

* if trim.spells=TRUE, ’retained’ vertices will be marked as inactive (they will have ’null’
spell (Inf,Inf))

» Edges that are active (by the specified rule) during the specified spell are included in the
returned network (same as above.)

» Edges with one or more inactive vertices still will be removed (even if the vertex is being
‘retained’ to preserve network size)

If a net.obs.period network attribute is present, its observation spells will be truncated by the
onset and terminus of extraction. If the onset and terminus do not intersect with any observation
spells, the ‘$observations component will be set to the ‘null‘ spell c(Inf,Inf).

%1% (the temporal cross-section operator) is a simplified (and less flexible) wrapper for network.extract
that returns the network of active vertices and edges at a given time point.
Value

A networkDynamic object containing the active edges and vertices for the specified spell, when
retain.all.vertices=FALSE, otherwise the network object containing all vertices, and only those
edges active for the specified spell.

Note

Note that only active vertices are included by default (retain.all.vertices=FALSE). As a result,
the size of the extracted network may be smaller than the original. Vertex and edge ids will be
translated, but may not correspond to their original values. If it is necessary to maintain the identities
of vertices, see persistent.ids.

Author(s)

Carter T. Butts <buttsc@uci.edu>, skyebend

48

See Also

network.extract

is.active, activity.attribute, network.extensions, and get.inducedSubgraph for a re-
lated non-temporal version, network.collapse to squish a networkDynamic object into a static

network

Examples

triangle <- network.initialize(3) # create a toy network

add edges with activity

first add an edge between vertices 1 and 2
add.edges.active(triangle,onset=0,terminus=10,tail=1,head=2)
add a more edges
add.edges.active(triangle,onset=0,length=4,tail=2,head=3)
add.edges.active(triangle,at=4.5,tail=3,head=1)

specify some vertex activity
activate.vertices(triangle,onset=0,terminus=10)
deactivate.vertices(triangle,onset=1,terminus=2,v=3)

degree<-function(x){as.vector(rowSums(as.matrix(x))
+ colSums(as.matrix(x)))} # handmade degree function

degree(triangle) # degree of each vertex, ignoring time

degree(network.extract(triangle,at=0))
degree(network.extract(triangle,at=1)) # just look at t=1
degree(network.extract(triangle,at=2))
degree(network.extract(triangle,at=5))

watch out for empty networks! they are just an empty list
t10 <- network.extract(triangle,at=10)
t10

notice difference between 'at' syntax and 'onset,terminus'
when network is not in discrete time
degree(network.extract(triangle,at=4))
degree(network.extract(triangle,onset=4, terminus=5))

the %t% (time) operator is like an alias for the 'at' extraction syntax
degree(triangle%t%4)

par(mfrow=c(2,2))
#show multiple plots
plot(triangle,main="ignoring dynamics',displaylabels=TRUE)

plot(network.extract(triangle,onset=1,terminus=2),main="at time 1',displaylabels=TRUE)
plot(network.extract(triangle,onset=2,terminus=3),main="at time 2',displaylabels=TRUE)
plot(network.extract(triangle,onset=5,terminus=6),main="at time 5',displaylabels=TRUE)

networkDynamic

49

networkDynamic

Convert various forms of network timing information into networkDy-
namic objects.

Description

Converts various forms of temporal data (spell matrices, togles, lists of networks) describing dy-
namics of vertices and edges into networkDynamic objects.

Usage

networkDynamic(base.net = NULL, edge.toggles = NULL, vertex.toggles =NULL,

Arguments

base.net

edge.spells

vertex.spells

edge.toggles

vertex.toggles
edge.changes
vertex.changes

network.list

edge.spells = NULL, vertex.spells = NULL,
edge.changes = NULL, vertex.changes = NULL,
network.list = NULL, onsets = NULL, termini = NULL,
vertex.pid = NULL, start = NULL, end = NULL,
net.obs.period=NULL,verbose=TRUE,create.TEAs = FALSE,
edge.TEA.names=NULL,vertex.TEA.names=NULL, ...)

A network (or network-coearceable) object which will be used to define network-
level properties (directedness,etc) of the output network. When constructing
from toggles, the edges in base.net give the initially active set of edges and ver-
tices that the activity states will be toggled from. Network and vertex attributes
of base.net will be copied to output (unless they are overwritten by dynamic
attributes with the same names)

A matrix or data.frame of spells specifying edge timing. Assumed to be [on-
set,terminus,tail vertex.id, head vertex.id]. Any additional columns can loaded
as dynamic attributes (see edge.TEA.names)

A matrix or data.frame of spells specifying vertex timing. Assumed to be [on-
set,terminus,vertex.id]

A matrix or data.frame of toggles giving a sequence of activation and deactiva-
tion times for toggles. Columns are assumed to be [toggle time, tail vertex id of
the edge, head vertex id of the edge].

A matrix or data.frame of toggles giving a sequence of activation and deactiva-
tion times for vertices. Column order assumed to be [time,vertex.id]

A matrix or data.frame of edge changes with at least 4 columns, assumed to be
[time, tail, head, direction]

A matrix or data.frame of vertex changes with at least 3 columns, assumed to be
[time, vertex.id,direction]

a list of network objects assumed to describe sequential panels of network ob-
servations. Network sizes may vary if some vertices are only active in certain
panels. See onsets, termini, vertex.pid. If base.net not specified, first element
of list will be used as base.net. Network, vertex, and edge attributes will be
converted to TEAs if create. TEAs=TRUE.

50

networkDynamic

onsets an optional array of onset times to be assigned to the network panels of net-
work.list. defaults to seq(from=0,length=length(network.list)-1)

termini an optional array of terminus times to be assigned to the network panels of
network.list defaults to seq(from=1,length=length(network.list)

vertex.pid an optional name of a vertex attribute to be used as a unique vertex identifier
when constructing from a network list with different sized networks.

start Optional argument to indicate the earliest time at which any changes in the net-
work could have been observed or simulated; any spells before this time point
are considered onset-censored.

end Optional argument to indicate the latest time at which any changes in the net-
work could have been observed or simulated; any spells after this time point are
considered terminus-censored.

net.obs.period Optional argument. A structured list for providing additional information about
when and how the network was observed.

verbose Logical, If TRUE (default), status message will be printed about the assumptions

made in the conversion process.

create.TEAs If TRUE, Dynamic TEA attributes will be created corresponding to the static

attributes appear on the network elements of network.list

edge.TEA.names an optional vector of names for the dynamic (TEA) edge attributes to be im-

ported from the extra columns of edge. spells (if create. TEAS=TRUE)

vertex.TEA.names

an optional vector of names for the dynamic (TEA) vertex attributes to be im-
ported from the extra columns of vertex.spells (if create. TEAS=TRUE)

Additional arguments controlling the creating of the network or processing of
attached data objects.

Details

This function provides ways to convert multiple forms of timing information for vertices and edges
into network dynamic objects.

Converting from lists of networks: If the timing information is provided in the form of a lists
of networks (specified by the network.list argument) the assumption is that each network is a
discrete ‘panel’ observation indicating the active set vertices and edges. By default, each observa-
tion is assumed to span a unit interval, (so the Ist goes from O to 1, 2nd from 1-2, etc). However,
the onset and termini of each observation panel can be explicitly specified via the onsets and
termini arguments. If the networks in network.list vary in size, the name of a vertex attribute
to be used as a persistent id must be specified using the vertex.pid attribute so that the vertices
in each network can be matched up correctly. If create. TEAs=TRUE, dynamic attributes will be
created for any (non-default) attributes appearing in the list of networks. Otherwise, network and
vertex attributes will be copied from the network specified via base.net. If base.net is not spec-
ified, the first element of network.list will be used. A net.obs.period will be constructed to
describe the range of observations used to construct the network, or one can be specified directly
using the net.obs.period argument.

networkDynamic 51

Converting from matrices of spells, changes or toggles: Alternatively, timing information for
edges and vertices can be provided separately as matrices or data.frames in the forms of tables
of spells, changes, or toggles. For vertices, the arguments are vertex. spells, vertex.changes
or vertex.toggles. The columns for each argument have a specific order and function, in-
dicated in the argument definitions above. Edge arguments are named similarly edge.spells,
edge.changes or edge. toggles. The vertex ids and ‘head’ and ‘tail’ ids must be integer index
ids. Network properties (number of vertices, bipartite, directedness, etc) can currently be spec-
ified by including a base.net argument to be used as a template, network and vertex attributes
will be copied from base. net as well. If only edge information is provided, the network size will
be imputed from the set of edge endpoints.

In the edge. toggles case, the edges present in base.net provide the initial state to be toggled
from. If a net.obs.period is not specified directly using the net.obs.period argument one
will be constructed. Since the correct observation information is not known it may not describe
the data accurately. Spells data will be assumed to be ’continuous’ and where toggles and changes
will be assumed to be ’discrete’ and the net.obs.period$observations may include infinate
values indicating unknown bounds.

When constructing a network with separate sources of data for vertex and edge timing, edge
and vertex activity will not be made consistent if input data is inconsistent — edges may be ac-
tive when their incident vertices are inactive, etc. These situations can be detected using the
network.dynamic. check function and possible resolved using one of the reconcile.activity
functions.

Curently, dynamic attributes (TEAs, see attribute.activity.functions) for edges or ver-
tices (with onset and termination times matching those of the edge or vertex spell) can be loaded
in by by setting create.TEAS=TRUE and including additional columns in the edge.spells or
vertex.spells argument and specifying a vector of names for the attributes with edge . TEA. names
or vertex.TEA.names. Note that when using a data. frame to pass in non-numeric attributes, the
default behavior of converting strings to factors should be avoided.

Value

A networkDynamic object with vertex and edge timing specified by the input data. It will also print
out information about the assumptions it makes while constructing the network.

Note

This function provides the features that were formerly (in versions < 0.4) called using as.networkDynamic.*
syntax.

Author(s)

Li Wang Ixwang @uw.edu, skyebend, statnet team

See Also

See Also as get.edge.activity,get.vertex.activity, network.dynamic.check

Examples

construct network out of a list of panels of varying sizes

52

omiting missing day 25
data(windsurferPanels)

networkDynamic

dynBeach<-networkDynamic(network.list=beach[-25], vertex.pid="vertex.names",

onsets=c(1:24,26:31),termini=c(2:25,27:32))

read in tsv files for vertex and edge spells and
construct network of McFarland classroom interaction data
see ?7c¢1s33_10_16_96 for more info about this data set

read vertex data
rawVerts<-read.table(paste(path.package('networkDynamic'),
"/extdata/cls33_10_16_96_vertices.tsv"”,sep=""), header=TRUE)

peek at column headings to find ids and times
names(rawVerts)

read in interation (edge) data
rawEdges<-read. table(paste(path.package('networkDynamic'),
"/extdata/cls33_10_16_96_edges.tsv",sep=""),header=TRUE)

peek at column headings to find ids and times
names (rawkdges)

construct network using vertex and edge timing information
cls33 <-networkDynamic(vertex.spells=rawVerts[,c(3,4,1)],
edge.spells=rawkEdges[,c(3,4,1,2)1)

add in the unchanging vertex attribute data
set.vertex.attribute(cls33,"sex"”,as.vector(rawVerts$sex))
set.vertex.attribute(cls33, "role",as.vector(rawVerts$role))

Not run: # takes 5 seconds, too slow for CRAN checks
loop over edge data to add the dynamic attributes on the edge
for(r in 1:nrow(rawEdges)){
get the id of the edge from its tail and head
eid <- get.edgelDs(cls33,v=rawEdges$from_vertex_id[r],
alter=rawEdges$to_vertex_id[r])

activate.edge.attribute(cls33, 'interaction_type',rawEdges$interaction_typel[r],
onset=rawEdges$start_minute[r], terminus=rawEdges$end_minute[r],e=eid)

activate.edge.attribute(cls33, 'weight', rawEdges$weight[r],

onset=rawEdges$start_minute[r], terminus=rawEdges$end_minute[r],e=eid)

}

convert the set of newcomb panels with rank weights
data(newcomb)

newRankDyn <-networkDynamic(network.list=newcomb.rank)
get.network.attribute.active(newRankDyn, 'title',at=3)
as.matrix(network.collapse(newRankDyn,at=5),attrname="rank")

End(Not run)

Newcomb 53

Newcomb Newcomb’s Fraternity Networks

Description

These 14 networks record weekly sociometric preference rankings from 17 men attending the Uni-
versity of Michigan in the fall of 1956; Data were collected longitudinally over 15 weeks, although
data from week 9 are missing.

The men were recruited to live in off-campus (fraternity) housing, rented for them as part of the
Michigan Group Study Project supervised by Theodore Newcomb from 1953 to 1956. All were
incoming transfer students with no prior acquaintance of one another.

The data set contains two longitudinal networks as network.list.

newcomb.rank is a network.list object with 14 networks. Each network is complete and the edge
value rank is the preference of the ith men for the jth man from 1 through 16. A 1 indicates first
preference, and no ties were allowed.

newcomb is a network. 1ist object that has binary edge values but is similar in structure to newcomb . rank
and derived from it. Each network has a tie from the ith men to the jth man if ¢ had a preference

for j of 8 or less. Otherwise there is not tie from ¢ to j. Note that since these are ranks, the degree

of each vertex (and the total number of edges) does not vary over time

Usage

data(newcomb)

Details

Use data(package="netdata") to get a full list of networks.

Licenses and Citation
If the source of the data set does not specified otherwise, this data set is protected by the Creative
Commons License https://creativecommons.org/licenses/by-nc-nd/2.5/.

When publishing results obtained using this data set the original authors should be cited. In addition
this package should be cited as:

Mark S. Handcock, David Hunter, Carter T. Butts, Steven M. Goodreau, and Martina Morris. 2003
statnet: An R package for the Statistical Modeling of Social Networks
https://statnet.org/ and the source should be cited as:

Vladimir Batagelj and Andrej Mrvar (2006): Pajek datasets
https://github.com/bavla/Nets/tree/master/data/Pajek/

Source

https://github.com/bavla/Nets/tree/master/data/Pajek/ucinet#-newcomb-fraternity

https://creativecommons.org/licenses/by-nc-nd/2.5/
https://statnet.org/
https://github.com/bavla/Nets/tree/master/data/Pajek/
https://github.com/bavla/Nets/tree/master/data/Pajek/ucinet#-newcomb-fraternity

54 persistent.ids

References

See the link above. Newcomb T. (1961). The acquaintance process. New York: Holt, Reinhard
and Winston.\ Nordlie P. (1958). A longitudinal study of interpersonal attraction in a natural group
setting. Unpublished doctoral dissertation, University of Michigan.\ White H., Boorman S. and
Breiger R. (1977). Social structure from multiple networks, I. Blockmodels of roles and positions.
American Journal of Sociology, 81, 730-780.

See Also

network, sna

Examples

data(newcomb)

persistent.ids Use and manipulate persistent ids of network elements

Description

Persistent ids (pids) are unique values attached to vertices or edges which remain unchanged through-
out network manipulation and extraction processes. The “vertex.pid” of a vertex is an overall data-
set id, unlike the “vertex.id” which is an index dependent on network size. These functions provide
ways to look up vertex.pids from vertex.ids (and the other way around) and also provide necessary
modifications to some standard network functions to safely work with pids.

Usage
get.vertex.id(nd, pid)

get.vertex.pid(nd, id)
get.edge.id(nd, pid)
get.edge.pid(nd, id)
initialize.pids(nd)
vertex.pid.check(nd)

edge.pid.check(nd)

Arguments
nd a network or networkDynamic object to be modified
pid persistent id(s) of the network element(s) for which the network-specific id(s)

should be returned

persistent.ids 55

id network-specific (index) id(s) of the network element for which the persistent
id(s) should be returned

Details

The persistent id functionality is an optional feature of networkDynamic objects. If a network-level
attribute named vertex.pid exists, its value is required to be the name of a vertex attribute that can
safely be used as a vertex.pid. If it is set to NULL, pids will be ignored. A vertex.pid must have a
unique value for all vertices. Persistent ids for edges function in the same way, except the attribute
is named edge.pid.

Some existing network code uses the vertex.names attributes of networks as a persistent id without
checking that it is unique. It is possible to indicate that vertex.names can safely be used as a
vertex.pid by setting vertex.pidto 'vertex.names'

The function initialize.pids can be used to create a set of pids on all existing vertices (named
vertex.pid and edges named edge.pid). The pids are currently initialized with pseudo-random
hex strings using the tempfile function (something like '4ad912252bc2"). It is especially useful
if called after a network object as been constructed and before any extractions are performed.

The element addition functions (add.vertices) override their network-package counterparts in
order to permit assigning pids to newly-added elements if the pid is defined. They can be defined by
the user with the vertex.pids argument, or, if not specified, a unique random id will be generated.
(Note that any new values added by default to a vertex.names pid will not be numeric.)

Some of the import/conversion methods may set pids. See network.

User-specified pids are checked for uniqueness. The the current auto-generated pid implementation
produces ids that are unique within the current network. They are also almost certain to be unique
within an R session (so that vertices will have a unique id if added and removed) and quite likely
across sessions, but we need more details on the tempfile’s implementation.

With the exception of the "check" utilities, all of these functions modify their network argument in
place.

Value

Get methods:
* get.vertex.id returns the vertex.id(s) of vertices corresponding to the vertex.pid(s) pro-
vided.

e get.vertex.pid returns the vertex.pid(s) of vertices corresponding to the vertex.id(s) pro-
vided.

* get.edge.id returns the edge.id(s) of edge corresponding to the edge.pid(s) provided.
* get.edge.pid returns the edge.pid(s) of edges corresponding to the edge.id(s) provided.

Each of the above return NA values where no match is found.

* vertex.pid.check throws an error if the vertex.pid is found to not meet specifications.
Otherwise returns TRUE or FALSE and gives a warning if vertex.pid does not exist

* edge.pid.check throws an error if the edge.pid is found to not meet specifications. Other-
wise returns TRUE or FALSE and gives a warning if edge.pid does not exist

56 persistent.ids

Note

Adding edges via the extraction/replacement operators [,] bypasses the pid code and will break
the edge pids defined for the network. Similarly, add.vertices.active and add.edges.active
do not yet support including pids.

Author(s)

Ixwang, skyebend, the statnet team

See Also

See also add.vertices in network.

Examples

use vertex.names as a persistent id
net<-network.initialize(5)
set.network.attribute(net, 'vertex.pid', 'vertex.names')

find original vertex corresponding to vertex in smaller extracted net
haystack<-network.initialize(30)
activate.vertices(haystack,v=10:20)

hide a needle somewhere in the haystack
set.vertex.attribute(haystack, 'needle', TRUE,v=sample(1:30,1))

set up the persistand ids with defaults
initialize.pids(haystack)

some hay is removed over time ...
newstack<-network.extract(haystack,at=100,active.default=FALSE)
network.size(newstack)

we find the needle!

needleld <-which(get.vertex.attribute(newstack, 'needle'))
needleld

which vertex is the corresponding one in original stack?
oldId<-get.vertex.id(haystack,get.vertex.pid(newstack,needleld))
oldid

check if we got it right..
get.vertex.attribute(haystack, 'needle')[o0ldId]

one reason you wouldn't want to use ordinary vertex.names
net<-network.initialize(3)

add.vertices(net,3)

network.vertex.names(net)

but if you make it a persistant id, new names will be created
net<-network.initialize(3)
set.network.attribute(net, 'vertex.pid', 'vertex.names")

print.networkDynamic 57

add.vertices(net,3)
network.vertex.names(net)

try with edges and add/remove vertices

net <-network.initialize(10)
add.edges(net,1:9,2:10)

set.edge.attribute(net, 'test',"you found me!", 6 e=7)
initialize.pids(net)

changed<-net

add.vertices(changed,5)
delete.vertices(changed,c(1,3,5,15))
delete.edges(changed,eid=1:3)

which edge in changed corresponds to edge 7 in net?
network.edgecount (changed)

get.edge.id(changed, get.edge.pid(net,7))

actually, they are the same because of NULL edges in edgelist
get.edge.attribute(changed, 'test',unlist=FALSE)[[7]]

however, the ids of the vertices have changed
changed$mel[[7]1%$inl

net$mel[[7]]1$inl

do they still match up?
get.vertex.pid(changed, changed$mel[[7]]1$inl)==get.vertex.pid(net,net$mel[[7]1]1$inl)

print.networkDynamic Provide a view of a networkDynamic object including timing informa-
tion

Description

Prints out some very basic descriptive stats about the network’s dynamics, and the the normal in-
formation printed for network objects.

Usage
S3 method for class 'networkDynamic'
print(x, ...)
Arguments
X an object of class networkDynamic including dynamic relational information
additional items to be passed for consideration by other classes
Details

Prints some info about the number of time events in a networkDynamic object, then calls print.network

58 read.son

Value

Returns the networkDynamic object passed to the function.

Note

Only prints out the network information without any dynamic data.

Author(s)

Pavel

See Also

print.network

Examples

library(networkDynamic)

data(flo)

netl <- network(flo)

activate.edges(netl, onset=1:20, terminus=101:120)
activate.vertices(netl, at=seq(2,32,2))

print(net1)
read.son Read .son-formatted (SoNIA) input files containing longitudinal net-
work data and create a corresponding networkDynamic object
Description

A .son file is a tab-separated text file with two sections, the first describing node attribute events and
the second arc attribute events. Each section has a set of defined column names as a header. See the
SoNIA file specification for more information: https://sourceforge.net/p/sonia/wiki/Son_
format/.

Usage

read.son(file, guess.TEA=TRUE)

Arguments
file path to the file to be read
guess.TEA logical: should the parser guess that non-changing attribute values are intended

to be static instead of TEAs?

https://sourceforge.net/p/sonia/wiki/Son_format/
https://sourceforge.net/p/sonia/wiki/Son_format/

reconcile.activity 59

Details

Uses networkDynamic internally to build a dynamic network out of an array of vertex spells and
an array of edge spells. Vertex and edge attributes will be attached, usually as TEA. However, If
the values of an attribute never change, they will be attached as a static attribute. This is convenient
but will be incorrect if a value was intended to be defined for only a single spell matching with the
vertex activation. Setting guess. TEA=FALSE will force all attributes to be loaded as TEAs (slower).

Value

A network dynamic object with vertex and edge durations and attributes corresponding the the spells
defined in the input file.

Note

The current version of this function does not support reading clusters.

Author(s)

Skye Bender-deMoll

References

https://sourceforge.net/p/sonia/wiki/Son_format/.

See Also

See Also networkDynamic

Examples

classroom<-read.son(system.file('extdata/cls33_10_16_96.son',package="networkDynamic'))

reconcile.activity Modify the activity spells of vertices to match incident edges or the
other way around

Description

When networkDynamic objects are created from real-world data it is often the case that activity in-

formation for vertices and edges may not come from the same source and may not match up exactly.

Vertices may be inactive when incident edges are active, etc. The reconcile.vertex.activity

function modifies the activity of a network’s vertices acording to the mode specified, while reconcile.edge.activity
performs similar operations for edges.

https://sourceforge.net/p/sonia/wiki/Son_format/

60 reconcile.activity

Usage

reconcile.vertex.activity(net,
mode = ¢ ("expand.to.edges"”, "match.to.edges"”, "encompass.edges"),
edge.active.default = TRUE)

reconcile.edge.activity(net,
mode = c("match.to.vertices”, "reduce.to.vertices"),
active.default = TRUE)

Arguments
net a networkDynamic object
mode string indicating the method for reconciling

edge.active.default
boolean, should edges with no definied activity be considered active?

active.default boolean, should vertices with no definied activity be considered active?

Details
The mode argument takes the following values:
match.to.edges vertices will be modified so as to be only active when incident edges are
active. Existing vertex spells are deleted.

* expand.to.edges vertices activity will be expanded to include the activity periods of any
incident edges (still permits isolated vertices). Existing vertex spells are preserved.

* encompass.edges vertices activity will be modified so that it has a single spell beginning
with the earliest incident edge activity, and encompasses the last edge activity. (Note that this
implies that isolated vertices will become inactive).

* match.to.vertices edges will be modified so as to be active whenever all incident vertices
are active. Existing inactive edges will be activated if necessary.

* reduce.to.vertices edges will be modified so as to have no active spells when incident
vertices are inactive. Inactive edges will not be activated.
Value

The input networkDynamic object is modified in place and returned invisibly.

Author(s)

skyebend, Ixwang

Examples

nd<-network.initialize(6)
add.edges.active(nd,tail=1:3,head=2:4,onset=1, terminus=3)
add.edges.active(nd, tail=4,head=1,onset=5, terminus=7)
add.edge(nd, tail=1,head=6)

before

spells.overlap 61

get.vertex.activity(nd,as.spelllList=TRUE)
reconcile.vertex.activity(nd)

after
get.vertex.activity(nd,as.spelllList=TRUE)

induce edge activity for known vertex timing
nd<-network.initialize(4,directed=FALSE)
activate.vertices(nd,onset=1:4,terminus=3:6)

nd[, 1<-1

get.edge.activity(nd,as.spelllList=TRUE)
reconcile.edge.activity(nd, mode="reduce.to.vertices")
get.edge.activity(nd,as.spelllList=TRUE)

spells.overlap Functions to compare and search spell intervals

Description

spells.overlap checks if two spells overlap at all, spells.hit searches a spell matrix for an overlapping
spell

Usage

spells.overlap(sl, s2)
spells.hit(needle, haystack)

search.spell(needle, haystack)

Arguments
s1 First spell for in the comparison, must be a two-element numeric vector in the
form [onset,terminus]
s2 Second spell for in the comparison, must be a two-element numeric vector in
the form [onset,terminus]
needle The query spell used in the search, must be a two-element numeric vector in the
form [onset,terminus]
haystack The spell matrix to be searched by needle. Must be two column numeric matrix
meeting the order specifications of a spell matrix. See activity.attribute
Details

Spell overlap is defined as true if one of the following conditions sets is met, otherwise false:
onset]l >= onset2 AND onset] < terminus2
terminus1 > onset2 AND terminus] <= terminus2

onsetl <= onset2 AND terminus1 >= terminus2

62 when.vertex.attrs.match

Value

spells.overlap returns a boolean indicating if the two spells overlap or not.

spells.hit returns the integer row index of the first (earliest) spell in haystack that overlaps with
needle, or -1 if no overlaps are found

search.spell returns a vector containing the row indices of spells in haystack that overlap with
needle, or numeric(0) if none found

Author(s)

skyebend @uw.edu

See Also

See Also activity.attribute

Examples

a <- c(1,3)

b <- ¢(2,5.5)

c <- c(-1,10)

d <- c(4,4)
spells.overlap(a,b)
spells.overlap(b,c)
spells.overlap(a,d)

Spellmat <- rbind(c(0y1)y C(1;2); C(2y3))
spells.hit(c(1,2),spellmat)

when.vertex.attrs.match

return the times at which the TEA attributes of elements of a network
match a value

Description

The functions query the TEA attributes of network elements (vertices or edges) and return the time
that each element matches the specified value. The match operator defaults to ’==", but other binary
comparison operators that return logical, such as >>’ or even *%in%’ can be used as well.

Usage
when.vertex.attrs.match(nd, attrname, value, match.op = "==", rule = "earliest”,
no.match = Inf, v = seq_len(network.size(nd)))
when.edge.attrs.match(nd, attrname, value, match.op = "==", rule = "earliest”,

no.match = Inf, e = seq_along(nd$mel))

when.vertex.attrs.match 63

Arguments
nd a networkDynamic object
attrname character name of the TEA attribute to be queried
value the value to be passed to the comparison operator to be matched against the TEA
values
match.op the binary operator to be used in determining a match (defaults to ’==")
rule character giving the name of the rule to determine what value should be returned
from the spell of matching attributes. Options are 'earliest’ (the default) and
'latest’ which will return the onset and terminus of the spell respectively.
no.match The value to be returned when the TEA attribute never matches value. Default
is Inf, NA may be useful as well.
v possible numeric vector of vertex ids indicating a subset of vertices to be queried
e possible numeric vector of edge ids indicating a subset of edges to be queried
Details

The no.match argument is included to make it possible for user to distinguish cases where the
attribute is missing from the network element (which will return NA) from cases where the value of
the attribute never matches value according to the operation match. op

Value

A numeric vector of attribute onset times (if rule="'earliest') or termination times (if rule="1latest"')

Note

this is a draft implementation, suggestions on function and argument names welcome.

Author(s)

skyebend

See Also

See also attribute.activity.functions

Examples

create a network with TEA attribute

net<-network.initialize(5)

net<-activate.vertex.attribute(net, 'test','A',onset=0,terminus=2)
net<-activate.vertex.attribute(net, 'test', 'B',onset=2,terminus=3)
net<-activate.vertex.attribute(net, 'test','C',onset=4,terminus=5)

net<-activate.vertex.attribute(net, 'weight',0,onset=-Inf, terminus=Inf)
net<-activate.vertex.attribute(net, 'weight',-1,at=6,v=2)

when does 'test' take the value 'B' for each vertex?

64

windsurfers

when.vertex.attrs.match(net, 'test',value='B"')

when is the terminus of when 'test' takes a value 'A' or 'C'?
when.vertex.attrs.match(net, 'test',value=c('A','C"'),match.op="%in%',rule="'latest')

when does 'weight' first take a value less than 07?
when.vertex.attrs.match(net, 'weight',value=0,match.op="'<")

windsurfers Lin Freeman’s Dynamic Network of Windsurfer Social Interactions

Description

A dynamic network object describing daily social interactions between windsurfers on California
beaches over a months time. Collected by Lin Freeman in 1988.

Usage

data(windsurfers)

Format

The format is is a networkDynamic object with node and edge activity.attributes defined by spell
matricies.

Details

The data in this network was originally collected and analyzed in aggregate by Freeman et al. (1988)
and has since been used in a number of influential articles (see Cornwell, 2009; Hummon and
Doreian, 2003; Zeggelink et al., 1996, etc.). While this network is typically analyzed in aggregate,
it was originally collected as a dynamically evolving network (where the vertex set is composed of
windsurfers and the edge set is composed of interpersonal communication).

The network was collected daily (sampled at two time points each day) for 31 days (August 28,
1986 to September 27,1986). From Almquist and Butts, 201:

"Individuals were tracked with a unique ID, and were divided by Freeman et al. into those we will
here call, 'regulars’ (N = 54) — frequent attendees who were well-integrated into the social life of
the beach community — and ’irregulars’ (N = 41) on ethnographic grounds. The former category
was further broken down by the researchers into two groups, Group 1 (N = 22) and Group 2 (N =
21), with 11 individuals not classified as belonging to either Group 1 or Group 2. Altogether, the
union of vertex sets (Vmax) consists of 95 individuals. On any given day during the observation
period, the number of windsurfers appearing on the beach ranged from 3 to 37, with the number of
communication ties per day ranging from 0 to 96."

The dynamicNetwork object was created from a list of network objects (length 31, but there is
one missing entry index 25 marked with an NA). Each list entry is labeled 828, 829 ... 927 —
this corresponds to the date the network was collected. Vertex attributes include: groupl, group2,
regular, vertex.names — groupl, group2, and regular are ethnographically defined (and are simply

windsurfers 65

dummies in this case, i.e., 0/1), and vertex.names is the original code number used by Lin. This are
static vertex attributes.

The original set of static networks have been merged into a single dynamic network object with
vertex activity coded in a spell matrix following the conventions of networkDynamic objects. There
is very high daily turnover of who is present on the beach on each day.

Several dynamic network level attributes (e.g., list.network.attributes) have been added by Zack
Almgquist. These include:

* atmp atmospheric temperature.

* cord Grid location on the beach.

* day simply the Monday/Tuesday/etc labeling.

* gst ground surface temperature (celsius).

» week week is the position within the month (e.g., first week in august)

* wspd Wind speed from noaa.gov.

* wvht Wave height noaa.gov.

atm, gst, wspd, wvht are from the national atmospheric data (noaa.gov) and come from the closest
beach that had accurate weather data. Day of week is relevant because weekly periodicity of the
nodeset is quite high.

Source

Dr. Lin Freeman (Research Professor UCI) and Zack W Almquist (Graduate Student, UCI)

References

Almquist, Zack W. and Butts, Carter T. (2011). "Logistic Network Regression for Scalable Analysis
of Networks with Joint Edge/Vertex Dynamics." IMBS Technical Report MBS 11-03, University of
California, Irvine.

Freeman, L. C., Freeman, S. C., Michaelson, A. G., 1988. "On human social intelligence." Journal
of Social Biological Structure 11, 415-425.

Examples

data(windsurfers)

data(windsurferPanels)

Index

* 10
read.son, 58

+ datasets
cls33_10_16_96, 25
nd_test_nets, 37
Newcomb, 53
windsurfers, 64

« files
read.son, 58

* graphs
activate, 3
activity.attribute, 7
delete.activity, 27
network.dynamic.check, 41
network.extensions, 43
read.son, 58

* manip
activate, 3
activity.attribute, 7
delete.activity, 27
network.dynamic.check, 41
network.extensions, 43

* package
networkDynamic-package, 2

+ utilities
read.son, 58

%k% (network.collapse), 39

%t% (network.extract), 46

activate, 3, 3, 8, 23, 24, 28, 35, 36

activate.edge.attribute
(attribute.activity.functions),
19

activate.edge.value
(attribute.activity.functions),
19

activate.edges, 8, 11, 12

activate.network.attribute
(attribute.activity.functions),
19

66

activate.vertex.attribute
(attribute.activity.functions),
19
activate.vertices, 8,11, 12,24
activity.attribute, 3-5,7, 8, 13, 22, 24,
25, 34-36, 38, 40, 43,48, 61, 62, 64
add.edge, 10
add.edge.networkDynamic (add.methods), 8
add.edges, 9-12
add.edges.active, 10, 56
add.edges.active (add.vertices.active),
10
add.edges.networkDynamic, 71
add.edges.networkDynamic (add.methods),
8
add.methods, 8
add.vertices, 9-12, 56
add.vertices.active, 10, 10, 56
add.vertices.networkDynamic
(add.methods), 8
adjust.activity, 12
age.at, 13
as.data.frame.networkDynamic, 15, 34
as.network.networkDynamic, 17, 19, 32, 40
as.networkDynamic, 17, 18, 29
as.networkLite.network, /19
attribute.activity.functions, 3, 13, 19,
40,51, 63

beach (windsurfers), 64
cls33_10_16_96, 25

data.frame, 16, 51

deactivate.edge.attribute
(attribute.activity.functions),
19

deactivate.edges, 8

deactivate.edges (activate), 3

INDEX

deactivate.network.attribute
(attribute.activity.functions),
19

deactivate.vertex.attribute
(attribute.activity.functions),
19

deactivate.vertices, 8

deactivate.vertices (activate), 3

delete.activity, 27

delete.edge.activity (delete.activity),
27

delete.vertex.activity
(delete.activity), 27

duration.matrix, 28

dyads.age.at (age.at), 13

dynamic.attributes, 40

dynamic.attributes
(attribute.activity.functions),
19

edge.pid.check (persistent.ids), 54
edges.age.at (age.at), 13

get.change.times (get.timing.info), 32

get.dyads.active, 29

get.edge.activity, 14, 16, 51

get.edge.activity (get.timing.info), 32

get.edge.attribute, 5,8

get.edge.attribute.active
(attribute.activity.functions),
19

get.edge.id (persistent.ids), 54

get.edge.pid (persistent.ids), 54

get.edge.value.active
(attribute.activity.functions),
19

get.edgelDs, 45

get.edgelDs.active
(network.extensions), 43

get.edges, 45

get.edges.active (network.extensions),
43

get.inducedSubgraph, 48

get.neighborhood, 45

get.neighborhood.active
(network.extensions), 43

get.network.attribute.active
(attribute.activity.functions),
19

67

get.networks, 31

get.timing.info, 32

get.vertex.activity, 16, 51

get.vertex.activity (get.timing.info),
32

get.vertex.attribute, 24

get.vertex.attribute.active, 32, 40

get.vertex.attribute.active
(attribute.activity.functions),
19

get.vertex.id (persistent.ids), 54

get.vertex.pid (persistent.ids), 54

initialize.pids (persistent.ids), 54

is.active, 3,6, 8, 14, 30, 34, 40, 45, 48

is.adjacent, 45

is.adjacent.active
(network.extensions), 43

is.networkDynamic
(network.dynamic.check), 41

list.edge.attributes.active
(attribute.activity.functions),
19

list.network.attributes.active
(attribute.activity.functions),
19

list.vertex.attributes, 24

list.vertex.attributes.active
(attribute.activity.functions),
19

McFarland_cl1s33_10_16_96
(c1s33_10_16_96), 25

nd_test_nets, 37
net.obs.period, 12, 13, 16, 31, 34, 37, 39,
43,47, 50, 51
network, 3, 4,7, 8, 11, 35,43, 44, 46, 55
network.collapse, 17, 19, 31, 32, 39, 48
network.dyadcount, 45
network.dyadcount.active
(network.extensions), 43
network.dynamic.check, 41, 51
network.edgecount, 45
network.edgecount.active
(network.extensions), 43
network.extensions, 3, 8, 40, 43, 48
network.extract, 3, 17, 19, 32, 40, 45, 46

68 INDEX

network.naedgecount, 45
network.naedgecount.active
(network.extensions), 43
network.size, 45
network.size.active
(network.extensions), 43
networkDynamic, 11, 14-16, 18, 19, 25, 37,
38,49, 59, 60, 64
networkDynamic-package, 2
Newcomb, 53
newcomb (Newcomb), 53
Newcomb . rank (Newcomb), 53
newcomb . rank (Newcomb), 53

persistent.ids, 3, 810,47, 54
print.network, 58
print.networkDynamic, 57

read.son, 58
reconcile.activity, 51, 59
reconcile.edge.activity
(reconcile.activity), 59
reconcile.vertex.activity
(reconcile.activity), 59

search.spell (spells.overlap), 61
set.vertex.attribute, 24
spells.hit (spells.overlap), 61
spells.overlap, 61

TEAs (attribute.activity.functions), 19
tempfile, 55

valid.eids, 14, 36
vertex.pid.check (persistent.ids), 54
vertices.age.at (age.at), 13

when.edge.attrs.match

(when.vertex.attrs.match), 62
when.vertex.attrs.match, 62
windsurfers, 64

	networkDynamic-package
	activate
	activity.attribute
	add.methods
	add.vertices.active
	adjust.activity
	age.at
	as.data.frame.networkDynamic
	as.network.networkDynamic
	as.networkDynamic
	attribute.activity.functions
	cls33_10_16_96
	delete.activity
	duration.matrix
	get.dyads.active
	get.networks
	get.timing.info
	is.active
	nd_test_nets
	net.obs.period
	network.collapse
	network.dynamic.check
	network.extensions
	network.extract
	networkDynamic
	Newcomb
	persistent.ids
	print.networkDynamic
	read.son
	reconcile.activity
	spells.overlap
	when.vertex.attrs.match
	windsurfers
	Index

