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Abstract

Network meta-analysis compares different interventions for the same condition, by
combining direct and indirect evidence derived from all eligible studies. Network meta-
analysis has been increasingly used by applied scientists and it is a major research topic for
methodologists. This article describes the R package netmeta, which adopts frequentist
methods to fit network meta-analysis models. We provide a roadmap to perform network
meta-analysis, along with an overview of the main functions of the package. We present
three worked examples considering different types of outcomes and different data formats
to facilitate researchers aiming to conduct network meta-analysis with netmeta.
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1. Introduction

Network meta-analysis (NMA), also known as multiple-treatments meta-analysis or mixed-
treatment comparison, is an extension of pairwise meta-analysis, pooling information from all
randomized trials among a set of different interventions for the same medical condition (Salanti
2012). It takes into account and synthesizes both direct and indirect evidence in a single
analysis: An estimate of the difference in effects between two given treatments may, in fact,
derive from studies directly comparing them (direct evidence), but also from studies included
in paths connecting the two treatments via one or more intermediate comparators (indirect
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evidence). As in pairwise meta-analysis, studies included in an NMA are assumed to be
independent. NMA additionally requires that the transitivity assumption holds. Transitivity
suggests that the underlying true relative treatment effect of each comparison is the same
across all, observed or not, comparisons. Examination of the similarity of the distribution of
effect modifiers across comparisons is often made to judge upon the plausibility of transitivity
in a network. Transitivity implies consistency, which means that direct and indirect evidence
are in agreement (Salanti 2012).

An NMA provides network estimates for the relative effects between any pair of interventions
included in the network, and a ranking thereof, with respect to the outcome of interest.
The latter is not possible when performing a series of pairwise meta-analyses, i.e., one per
treatment comparison. Given the advantages of NMA and the ease to fit models using common
statistical software, its use in applied projects has been increasing rapidly in the last decade
(Zarin et al. 2017; Petropoulou et al. 2017) and it represents a major research topic for
methodologists (Efthimiou et al. 2015).

R package netmeta (Rücker et al. 2023) is the only specialized R package for frequentist net-
work meta-analysis. The package adopts the approach by Rücker (2012) and builds on meta

(Schwarzer 2007; Schwarzer, Carpenter, and Rücker 2015; Balduzzi, Rücker, and Schwarzer
2019), a general R package for pairwise meta-analysis. Frequentist NMA can also be fitted
using R packages metafor (Viechtbauer 2010) and mixmeta (Sera, Armstrong, Blangiardo,
and Gasparrini 2019), which provide functions for multivariate and multilevel meta-analysis.
In fact, netmeta internally calls rma.mv() from metafor to calculate the maximum likelihood
and the restricted maximum likelihood estimators for the between-study variance. R pack-
age mixmeta implements various meta-analytical models, both standard and non-standard,
through a unified mixed-effects framework.

Bayesian methods for NMA play an important role both in methodological research and ap-
plications (Lu and Ades 2004; Salanti, Higgins, Ades, and Ioannidis 2008; Welton, Caldwell,
Adamopoulos, and Vedhara 2009). This is reflected in the large number of R packages for
Bayesian NMA: gemtc (Van Valkenhoef and Kuiper 2021), bnma (Seo and Schmid 2022), pc-

netmeta (Lin, Zhang, Hodges, and Chu 2020), multinma (Phillippo 2022), nmaINLA (Guen-
han, Friede, and Held 2018), bayesmeta (Röver 2020), BUGSnet (Béliveau, Boyne, Slater,
Brenner, and Arora 2019).

Package netmeta (Rücker et al. 2023) is available from the Comprehensive R Archive Net-
work (CRAN) at https://CRAN.R-project.org/package=netmeta. According to cranlogs

(Csárdi 2019), R package netmeta is the most popular R package for network meta-analysis
(3 645 monthly downloads between November 2021 and October 2022) followed by gemtc

(1 781 downloads) and bayesmeta (919 downloads). Main reasons for its popularity are pre-
sumably the large number of implemented statistical methods and the easy application of
these methods. More details on these aspects are provided in this article which describes
R package netmeta in detail.

The structure of the paper is as follows. Three example data sets are introduced in Section 2:
Models implemented in netmeta, i.e., the standard NMA model (Rücker 2012; Rücker and
Schwarzer 2014), methods specific for rare binary outcomes (Efthimiou, Rücker, Schwarzer,
Higgins, Egger, and Salanti 2019), and component NMA (Welton et al. 2009,
Rücker, Petropoulou, and Schwarzer 2020b), are described in Section 3. A roadmap to perform
an NMA, along with an overview of the main functions of netmeta is provided in Section 4.
The three worked examples are presented in Section 5.

https://CRAN.R-project.org/package=netmeta


Journal of Statistical Software 3

2. Data sets

We will use three data sets which are available in R package netmeta. All three examples
come from a database of NMAs (Petropoulou et al. 2017) made available by R package nmadb

(Papakonstantinou 2019) which includes a set of functions for accessing the data sets and main
characteristics. We extracted the data from nmadb and saved them in common data formats
for NMA: one row per study, called wide arm-based format and one row per treatment-arm
per study, called long arm-based format. The first two data sets consider continuous and
binary outcomes and are available in wide and long arm-based format. The third data set,
available in long arm-based format, was chosen as an example of a component NMA. Arm-
based in either wide or long format means that data on each treatment arm is available, as
opposed to contrast-based format, where data are given for each contrast of treatments.

2.1. Data set 1: Adjuvant treatments in Parkinson’s disease

The first data set (record no. 480851 in nmadb) contains data from a Cochrane review as-
sessing efficacy and safety of three drug classes as adjuvant treatment to levodopa ther-
apy in patients with Parkinson’s disease and motor complications (Stowe et al. 2010). The
authors conducted three pairwise meta-analyses comparing dopamine agonists, catechol-O-
methyl transferase inhibitors (COMTI), and monoamine oxidase type B inhibitors (MAOBI)
with placebo. The primary outcome was the mean reduction of the time spent in a relatively
immobile “off” phase (mean off-time), calculated in hours per day. Relative treatment effects
were expressed as mean difference. Data on this outcome were available for 5 331 patients from
28 studies comparing an active treatment with placebo and one three-arm study comparing
two active treatments with placebo.

The full data set – in wide arm-based format – is part of R package netmeta and made
available using the following command.

R> data("Stowe2010", package = "netmeta")

The data set Stowe2010 has 29 rows, each containing information regarding a single study.
To have a look at the format of this data set, we display some rows including the three-arm
study.1

R> library("dplyr")

R> Stowe2010 %>% slice(18:20)

study id t1 y1 sd1 n1 t2 y2 sd2 n2

1 COMTI(E) INT-OZ 18 COMTI -0.86 2.90 99 Placebo -0.54 3.13 63

2 LARGO 19 COMTI -1.20 2.21 218 Placebo -0.40 2.21 218

3 COMTI(E) Nomecomt 20 COMTI -1.30 2.20 85 Placebo -0.10 2.45 86

t3 y3 sd3 n3

1 NA NA NA

2 MAOBI -1.18 2.23 222

3 NA NA NA

1We make R package dplyr (Wickham, François, Henry, and Müller 2022) solely available for data processing
and manipulation. Network meta-analysis commands in netmeta do not depend on dplyr.
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All studies with a single pairwise comparison provide information for two means (y1, y2), two
standard deviations (sd1, sd2), two group sample sizes (n1, n2), along with two treatment
labels (t1, t2). Information for a third treatment (t3, y3, sd3, n3) is not available for two-
arm studies and thus coded as missing. The three-arm LARGO study provides information
for all variables. A disadvantage of this wide arm-based format is that we would have to add
four more variables (t4, y4, sd4, n4) for a four-arm study.

2.2. Data set 2: Antithrombotics to prevent strokes

The second data set (record no. 501250 in nmadb) comes from a systematic review aiming
to estimate the effects of eight antithrombotic treatments in reducing the incidence of major
thrombotic events in patients with non-valvular atrial fibrillation (Dogliotti, Paolasso, and
Giugliano 2014). The review included 20 studies (79 808 participants), four of which were
three-arm studies. The primary outcome is stroke reduction.

The full data set – in long arm-based format – is also part of R package netmeta.

R> data("Dogliotti2014", package = "netmeta")

R> Dogliotti2014 %>% head(7)

study id treatment stroke total

1 AFASAK-I 1989 1 VKAs 9 335

2 AFASAK-I 1989 1 Aspirin 16 336

3 AFASAK-I 1989 1 Placebo/Control 19 336

4 BAATAF 1990 2 VKAs 3 212

5 BAATAF 1990 2 Placebo/Control 13 208

6 CAFA 1991 3 VKAs 6 187

7 CAFA 1991 3 Placebo/Control 9 191

The first three rows pertain to the three-arm AFASAK-I study. For each treatment arm,
the treatment label (treatment), the number of strokes (stroke), and the group sample
size (total) is available. The subsequent rows belong to the two-arm BAATAF and CAFA
studies. An advantage of this long arm-based format is that a four-arm study could be easily
added by four additional rows.

2.3. Data set 3: Treatments for chronic obstructive pulmonary disease

The third data set (record no. 501201 in nmadb) comes from a systematic review of random-
ized controlled trials on pharmacologic treatments for chronic obstructive pulmonary disease
(COPD, Baker, Baker, and Coleman 2009). The primary outcome, occurrence of one or
more episodes of COPD exacerbation, is binary (yes/no). For this outcome, five drug treat-
ments (fluticasone, budesonide, salmeterol, formoterol, tiotropium) and two combinations
(fluticasone + salmeterol, budesonide + formoterol) were compared to placebo. The authors
considered the two combinations as separate treatments instead of evaluating the individual
components which is not surprising as the first methodological publication on how to evaluate
individual components in NMA was published in the same year (Welton et al. 2009).

In this NMA, 38 studies (29 two-arm, three three-arm, six four-arm studies with a total of
28 216 patients) were included.
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R> data("Baker2009", package = "netmeta")

R> subset(Baker2009, study == "Mahler 2002")

study year id treatment exac total

28 Mahler 2002 2002 14 Fluticasone 77 168

29 Mahler 2002 2002 14 Salmeterol 63 160

30 Mahler 2002 2002 14 Fluticasone+Salmeterol 68 165

31 Mahler 2002 2002 14 Placebo 79 181

The data set is again in long arm-based format. For each treatment arm, the treatment
label (treatment), the number of patients with COPD exacerbations (exac), and the group
sample size (total) is available. We can see that the Mahler study has four arms, comparing
fluticasone, salmeterol, and their combination to placebo.

3. Network meta-analysis in theory

The notation in this paper follows Schwarzer et al. (2015, Chapter 8). Let n be the number
of treatments of interest in a network (also called nodes or vertices). Each study contributes
a number of pairwise comparisons, for example three-arm studies contribute three pairwise
comparisons and four-arm studies contribute six pairwise comparisons. The sum of all pair-
wise comparisons across studies is denoted as m. Let k be the number of independent studies.
If there are only two-arm studies, m corresponds to k, while m is greater than k if at least
one study evaluates more than two treatments.

3.1. Standard NMA model

The common (fixed) effects and random effects NMA model developed by Rücker (2012)
is based on graph and electrical network theory (Bailey 2007). In order to fit this model,
treatment estimates of all pairwise comparisons θ̂ = (θ̂1, . . . , θ̂m)⊤ and corresponding stan-
dard errors si, i = 1, . . . , m, must be available. A multi-arm study with p treatments will
contribute p(p − 1)/2 comparisons, meaning that treatment effects and standard errors need
to be provided for each of them, e.g., a three-arm study will contribute three pairwise com-
parisons and a four-arm study will contribute six pairwise comparisons. As is common in
meta-analysis, standard errors are assumed to be known and fixed. For multi-arm studies,
adjusted standard errors are utilized (Rücker and Schwarzer 2014). In addition, a m × n de-
sign matrix X is required for the analysis which is defined by the network geometry, i.e., the
way that m pairwise comparisons connect the n treatments. The elements of X are 0, 1 or
−1 and represent the treatments (columns) of the comparison in the respective row.

The first step to get network treatment estimates θ̂
NMA

is the calculation of the Moore-
Penrose pseudoinverse matrix (Albert 1972). To this aim, we define the n × n Laplacian
matrix L as

L = X
⊤

WX (1)

where W is a diagonal matrix of dimension m × m whose diagonal elements are the inverse
variance weights (1/s2

1, . . . , 1/s2
m). Matrix L has rank n−1 and is thus singular. However, its

Moore-Penrose pseudoinverse L
+ (Rao and Mitra 1971; Gutman and Xiao 2004) is defined
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and can be calculated by

L
+ = (L − J/n)−1 + J/n

where J is a n × n matrix whose elements are all 1.

Once we have L
+, we can finally calculate the network treatment estimates θ̂

NMA

as

θ̂
NMA

= XL
+

X
⊤

Wθ̂ = Hθ̂ (2)

where H is typically called the hat matrix. From (2) we can see that elements of θ̂
NMA

are
linear combinations of elements from θ̂ (the observed estimates), with coefficients coming
from rows of H.

The variance-covariance matrix of θ̂
NMA

can be calculated as XL
+

X
⊤ which can be used

to estimate all treatment contrasts and associated standard errors. These estimates are the
same as obtained by weighted maximum likelihood (Yates 1940; Paterson 1983; Senn, Gavini,
Magrez, and Scheen 2013).

A random effects model can be defined assuming a common heterogeneity variance τ2 for
each pairwise treatment comparison. To fit a random effects model, an estimate of τ2 is
added to the variance of each comparison, s2

i + τ̂2, i = 1, . . . , m before calculating L in (1).
A special case of the generalized DerSimonian-Laird estimate is a common estimator for τ2

(Jackson, White, and Riley 2013; Rücker and Schwarzer 2014). Maximum likelihood and
restricted maximum likelihood estimates for τ2 are also available (Jackson, Riley, and White
2011; White 2015).

3.2. Ranking of treatments

Several ranking metrics exist to summarize the results from NMA and produce a treatment
hierarchy. One can calculate the probability of each treatment being at each possible rank.
This is traditionally done in a Bayesian framework drawing from the posterior distribution
of network treatment estimates, but is also possible in a frequentist environment using re-
sampling techniques. Surface under the cumulative ranking curve (SUCRA) values provide a
summary of the rankograms (Salanti, Ades, and Ioannidis 2011). The name originates from
the fact that SUCRA is calculated as the surface under the cumulative ranking probability
curve. P-scores are a frequentist analogue to SUCRA values without resampling methods
(Rücker and Schwarzer 2015). SUCRA and P-score express the extent of certainty that a
treatment is better than another treatment, averaged over all competing treatments.

3.3. Evaluating heterogeneity and inconsistency

The overall heterogeneity/inconsistency statistic Qtotal is defined as

Qtotal = (θ̂ − θ̂
NMA

)⊤
W(θ̂ − θ̂

NMA

).

This statistic measures the total heterogeneity/inconsistency in the network. When all studies
are two-arm studies, Qtotal follows a χ2 distribution with k − (n−1) degrees of freedom under
the null hypothesis of no heterogeneity, conditional on the (assumed to be known) comparison-
specific variances. More general, each p-arm study contributes p − 1 degrees of freedom to
Qtotal. The sum of the degrees of freedom contributed by each study minus n−1 (the number
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of treatments minus 1, which is the dimension of the consistent subspace) gives the total
degrees of freedom denoted by df in the following.

A generalized I2 statistic (Higgins and Thompson 2002) can be defined as

I2 = max

(

Qtotal − df

Qtotal

, 0

)

.

Defining a design as a unique set of treatments compared in an individual study (Higgins,
Jackson, Barrett, Lu, Ades, and White 2012), the maximum number of designs is 2n − n − 1
for n treatments. This leads to four possible designs for three treatments A, B, and C: A:B,
A:C, B:C, A:B:C; or 11 designs for four treatments. Usually not all possible designs are
present in an NMA. In a pairwise meta-analysis, all trials have the same design, e.g., A:B.

In some cases, inconsistency between designs might be likely, when they differ systematically:
for example, when all two-arm studies in a network are older, while three-arm studies are
more recent, design is a potential source of inconsistency.

Through an appropriate decomposition of the Qtotal statistic (Krahn, Binder, and König 2013)

Qtotal = QW + QB

we can determine the heterogeneity of study results within the same design, QW , and the
inconsistency in treatment effects between different designs, QB. A decomposition of QW into
parts coming from each study and a decomposition of QB into parts coming from each design
is also possible. Thus, for assessing the global inconsistency in a random effects model, the
QB statistic can be calculated based on a full design-by-treatment interaction random effects
model (Higgins et al. 2012), considering the “method of moments” estimate for τ2 (Jackson,
White, and Riley 2012).

A method to evaluate local inconsistency in each treatment comparison separately is by using
the separate indirect from direct evidence (SIDE) method (Dias, Welton, Caldwell, and Ades
2010). According to SIDE, each network estimate is split into the direct and the indirect
estimate which are then tested against each other. A z test of the difference between direct
and indirect estimate indicates potential evidence for inconsistency for each comparison in
the network. A similar method, originally implemented in a Bayesian framework is back-
calculation (Dias et al. 2010). Using this method, an indirect estimate with its variance
is derived from the respective quantities derived by pairwise and network meta-analysis.
Similarly to SIDE, the difference between direct and indirect estimate is used to construct a
test statistic to estimate inconsistency.

3.4. Specific NMA methods for rare binary outcomes

When the outcome of interest is binary and studies provide number of events and sample sizes
in each treatment group as in Dogliotti et al. (2014), we can estimate relative treatment effects
(e.g., log odds ratios) and corresponding standard errors from each study. Subsequently, we
can perform a standard NMA as described in Section 3.1.

The estimation of study-specific odds or risk ratios is based on approximations that do not
perform well when events are rare either because event rates are low or group sample sizes
are small. Especially treatment estimates can assume infinite values in studies with one
or more zero event numbers. This can be circumvented via a “continuity correction”; this,
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however, may lead to low model performance. Conversely, there are two NMA models ex-
plicitly designed for rare binary outcomes currently supported by netmeta, the non-central
hypergeometric (NCH-NMA) and the Mantel-Haenszel (MH-NMA) model.

The NCH-NMA model was proposed by Stijnen, Hamza, and Ozdemir (2010). It models the
likelihood of events in each study arm conditional on the total number of events in the study
via a noncentral hypergeometric distribution. In netmeta this is done using the so-called
Breslow approximation, which is only valid when the numbers of events are small relative to
the group sizes. Of note, netmeta provides only a common effects version of the NCH-NMA
model and maximizes the combined log-likelihood of all studies to estimate all log odds ratios
in the network, as well as their variance-covariance matrix. Studies with zero events in all
treatment arms do not contribute to the likelihood.

The second method, MH-NMA, was proposed by Efthimiou et al. (2019) and generalizes the
Mantel-Haenszel method for pairwise meta-analysis (Mantel and Haenszel 1959) which is a
common effects method. The analysis is conducted in three stages. At stage one, studies
with total zero events are removed and studies are grouped afterwards by design. Within
each design, treatments with zero events in all studies are removed and designs left with only
one treatment are removed.

At stage two, log odds ratios are estimated within each design. For two-arm studies, we
employ the usual MH estimator (Mantel and Haenszel 1959). For a design d including p
treatments, we need p − 1 odds ratios. To calculate them, we define cXY i = aXibY i/t(+i),
with i indicating the study index, aXi and bY i being the number of events and non-events
within treatment arms X and Y respectively and t(+i) being the total sample size of study
i. We define as CXY the sum of all cXY i over all studies of the same design and we then
define LXY = ln (CXY /CY X). The log odds ratio for XY for design d is then estimated

as θ̂d,XY =
LX+−LY +

p
where LX+ =

∑p
J=1 LXJ , likewise for other log odds ratios from this

design. The expressions for the variance-covariance matrix are provided elsewhere (Greenland
1989; Efthimiou et al. 2019). At the end of this stage, we obtain a vector of log odds ratios,
and corresponding variance-covariance matrix for design d.

Finally, at the third stage we synthesize the design-specific estimates across the network
assuming consistency. All treatment contrasts versus an arbitrarily chosen reference treatment
are the basic parameters of the model. The network treatment effects for all comparisons in
the network and their variance-covariance matrix are then estimated using weighted least
squares regression.

3.5. Component NMA

Treatments in NMA may sometimes be combinations of several interventions, i.e., may be
composite sharing one or more common components, see Baker et al. (2009) for an example.
The standard approach in analyzing such data sets is an NMA where all existing (simple
or composite) treatments in the network are considered as different nodes in the network.
Methods for such a standard analysis are described in Section 3.1.

However, we might be interested in estimating the individual effect of each component, to
help us identify the best combination of components. If some treatments are combinations of
common components, an additive component NMA (CNMA) model can be used to evaluate
the effect of each component (Welton et al. 2009). This model assumes that the effect of a
treatment combination is the sum of the effects of its components, which implies that common
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components cancel out in comparisons, and do not impact on the relative treatment effects.

While Welton et al. (2009) describe Bayesian methods for CNMA, R package netmeta im-
plements these models under a frequentist framework (Rücker et al. 2020b; Rücker, Schmitz,
and Schwarzer 2021).

The design matrix of the additive CNMA model is the n × c matrix

X = BC. (3)

Matrix X combines information on the structure of the network (B with m rows, representing
the pairwise comparisons, and n columns, representing the treatments) and information on
how the n treatments are composed of the c components (n × c matrix C). The elements of
X are 0, 1 or −1 and represent the components (columns) of the comparison in each row.
The additive model (common effects version) is given by

θ̂ = Xβ + ϵ, ϵ ∼ N (0, Σ)

where θ̂ is the vector of observed relative effects from the studies, X the design matrix
given in (3), and β a parameter vector of length c, representing the components, which is
estimated using weighted least squares regression. For details of the estimation see Rücker
et al. (2020b). Interaction CNMA models are readily available by additional columns in the
components matrix C, thus allowing for synergistic or antagonistic effects when combining
two components. In some cases CNMA models can also be applied to networks that are
disconnected (i.e., they consist of two or more separate subnetworks).

4. Network meta-analysis in practice: Overview of netmeta

R package netmeta implements the (C)NMA approaches introduced in the previous section.
In this section we describe a workflow to perform a (C)NMA, along with the related functions
of netmeta (Figure 1). After installing netmeta, we make it available for the current R session.

R> library("netmeta")

Loading required package: meta

Loading 'meta' package (version 6.2-1).

Type 'help(meta)' for a brief overview.

Readers of 'Meta-Analysis with R (Use R!)' should install

older version of 'meta' package: https://tinyurl.com/dt4y5drs

Loading 'netmeta' package (version 2.8-1).

Type 'help("netmeta-package")' for a brief overview.

Readers of 'Meta-Analysis with R (Use R!)' should install

older version of 'netmeta' package: https://tinyurl.com/kyz6wjbb

We can see from the printout that R package meta (Balduzzi et al. 2019) is also loaded, which
provides some basic functionality, and that brief overviews of methods and general hints on
meta and netmeta are available in the R help system.

The following command specifies that treatment estimates and confidence interval limits
should be printed with two digits and standard errors with three digits.
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Functions used in the worked examples are marked in red.
* At least one among print/plot/summary functions available

Import your own data set

Figure 1: Workflow to perform (component) network meta-analysis with R package netmeta.
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R> settings.meta(digits = 2, digits.se = 3)

These settings are recognized by all print and plot functions for (network) meta-analysis
objects in the current R session.

4.1. Organize data and perform main analysis

The main function of netmeta for standard NMA is likewise called netmeta(). It needs the
data to be in contrast-based format, which means that each row of the data set contains
information from one pairwise comparison. For multi-arm studies, all pairwise comparisons
must be provided, e.g., a four-arm study must contribute six pairwise comparisons (see Sec-
tion 3.1). Furthermore, netmeta() expects that the estimated treatment effects (argument
TE) and corresponding standard errors (argument seTE) are available for all pairwise compar-
isons as well as information on the two treatment groups (arguments treat1 and treat2).
Finally, netmeta() must know which rows belong to each multi-arm study, as standard errors
are adjusted to take the correlation between pairwise comparisons into account (Rücker and
Schwarzer 2014). Accordingly, argument studlab is mandatory for a network with at least
one multi-arm study and study labels must be identical. For example, “LARGO”, “Largo”,
and “Largo” for the pairwise comparisons of the three-arm study in Stowe2010 would be
considered as three independent studies.

Typically, a data set is not in the contrast-based format expected by netmeta() and must be
pre-processed accordingly. Auxiliary function pairwise() can be used to transform a data set
from wide or long arm-based format to the contrast-based format and to calculate all pairwise
treatment comparisons. The function can be used with binary, continuous, generic outcomes
or incidence rates by internally calling metabin(), metacont(), metagen(), or metainc()

from R package meta to calculate the treatment estimates and standard errors. An R object
created with pairwise() contains all information to conduct an NMA and can be used as
single input to netmeta().

R function netmeta() has several additional arguments, some of which are described below.
By default, both common and random effects NMA are conducted. This can be changed
using the logical arguments common and random. The method to estimate the between-study
variance can be specified by method.tau. Finally, a reference treatment can be specified with
argument reference.group; this only affects the way results are presented, but not the analy-
sis itself. The first treatment in the network is used as reference if argument reference.group

was not specified in pairwise() or netmeta().

The function netconnection() can be used to obtain information on the network structure
and to determine whether a given network is fully connected or consists of subnetworks. Again,
an R object created with pairwise() can be used as single input to netconnection(). For
disconnected networks, use of netmeta() will result in an error with the recommendation to
use netconnection() for further information.

R functions pairwise() and netconnection() can also be used in connection with rare
binary outcomes or when conducting a component NMA. Likewise, many methods described
in the next two sections are also relevant to rare binary outcomes and CNMAs.

4.2. Presentation of network structure, results and rankings

In general, the first step of an NMA is to construct a network graph in order to get an overview
of the network structure. After conducting the NMA, results can be summarized using forest



12 netmeta: Network Meta-Analysis in R

plots or league tables. A ranking of all treatments evaluated in an NMA provides additional
information on the merits of individual treatments.

Network graphs

A graphical presentation of the network can be obtained through netgraph() which can be
used with an R object created with netconnection() or netmeta(). Each treatment is repre-
sented by a point (node) in the plane and treatments are connected by a line (edge), if at least
one direct pairwise comparison exists. By default, multi-arm studies are not highlighted in a
network graph. If argument multiarm is TRUE, three-arm studies are indicated by a different
color for the area enclosing the respective nodes. Studies with more than three treatments
cannot be visually marked in the network graph. The standard layout is a circle presentation
with equally distanced treatments on the circle. Using argument seq = "optimal" (which
can be abbreviated), the number of line crossings is aimed to be minimized. Other layouts
are available with iterate = TRUE (Rücker and Schwarzer 2016) which optimize the distance
between treatment nodes using a stress majorization algorithm (Kamada and Kawai 1989;
Hu 2012).

R function netgraph() has several additional arguments; three of them, more commonly
used, are the following: edges of the network have a 3-D look if argument plastic = TRUE

(default) and the number of studies contributing to each pairwise comparison can be printed
on the edges (number.of.studies = TRUE). Finally, the width of the edges is determined by
argument thickness. By default, edges are proportional to the number of studies directly
comparing treatments.

Forest plots

Forest plots can be created using the generic function forest() or plot() which can be used,
amongst others, with ‘netmeta’ objects. Basic settings include specifying whether results of
the common or random effects model should be shown, and which treatment(s) should be used
as reference (argument reference.group). In general, the settings from ‘netmeta’ objects
are used as defaults. Results of the random effects model are shown in the forest plot if
both a common and random effects NMA were conducted (can be changed using argument
pooled). The first treatment in the network meta-analysis is used as reference if argument
reference.group was not specified in netmeta() and forest().

Other important arguments include sortvar to change the order of treatments in the forest
plot and the logical arguments drop.reference.group and baseline.reference to not
print a line with the reference group or to switch the order of reference and other treatments,
respectively.

League tables

A concise way to present NMA results is a league table (Hutton et al. 2015) which is a square
matrix showing all pairwise comparisons in an NMA. For a single NMA, network estimates
are typically shown in the lower triangle and estimates from direct pairwise comparisons in
the upper triangle. It is also common to show results from two NMAs in a single league table,
e.g., network estimates from an efficacy outcome in the lower triangle and a safety outcome
in the upper triangle.
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R function netleague() can be used to create league tables for ‘netmeta’ objects. Either
one or two NMAs can be provided as input. Furthermore, the user can specify whether to
construct a league table for common or random effects network estimates (arguments common

and random), and how to sort the league table (argument seq). Finally, league tables can be
easily exported, e.g., as Excel sheets, to be further edited for a publication.

Ranking of treatments

R function rankogram() can be used to calculate the probabilities of each treatment being
at each possible rank, and SUCRA values for a ‘netmeta’ object. A pivotal argument is
small.values determining whether small values in the outcome are beneficial ("good") or
harmful ("bad"). If argument small.values is not provided in the netrank() command,
it is taken from the ‘netmeta’ object which defaults to "good". Counter-intuitive ranking
results are typically due to using the wrong value for argument small.values. R function
plot.rankogram() plots these probabilities in a separate graph for each treatment, commonly
referred to as rankograms.

R function netrank() can be used to generate a treatment hierarchy for a ‘netmeta’ or
‘rankogram’ object using P-score or SUCRA. The ranking metric to be calculated can be
selected using argument method. The meaning of the small.values argument is the same as
in the rankogram() function.

Additional functions are available to (partially) rank treatments for more than one outcome
(Rücker and Schwarzer 2017). R function netposet() creates a partial order of treatment
ranks. Input to netposet() can be any number of NMAs created with netmeta() or an
existing ranking matrix. Function plot.netposet() can be used to create a scatter plot for
rankings of two outcomes and hasse() can be used to generated a Hasse diagram (Carlsen
and Bruggemann 2014) for any number of outcomes.

4.3. Evaluation of heterogeneity and inconsistency

The decomposition of the overall Q statistic described in Section 3.3 can be performed with
decomp.design() for ‘netmeta’ objects.

The function netsplit() provides two methods to compare direct and indirect evidence for
each pairwise comparison. The first method (argument method = "Back-calculation"),
separate indirect from direct evidence (SIDE), was introduced by Dias et al. (2010) and
a corresponding method using back-calculation was described by König, Krahn, and Binder
(2013). The second method ("SIDDE"), separate indirect from direct design evidence (SIDDE)
was described in Efthimiou et al. (2019). For the random effects model, the direct treatment
estimates are based on the common between-study variance τ2 from the NMA. By default,
SIDE is used for ‘netmeta’ objects and SIDDE for ‘netmetabin’ objects. The output for
SIDE or SIDDE can be very extensive for large networks. Accordingly, argument show =

"both" can be used in print.netsplit() and forest.netsplit() to only show pairwise
comparisons contributing both direct and indirect evidence.

The net heat plot (Krahn et al. 2013) implemented in netheat() visualizes hot spots of
inconsistency in an NMA. Note that the net heat plot is a visualization of the “between-
designs” part of function decomp.design(). The rows and columns of the plot correspond
to pairwise comparisons within designs. Not all comparisons are given in the net heat plot,
only those that can contribute to inconsistency. The colors on the diagonal represent the
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inconsistency contribution of the corresponding design (red = large). The colors on the off-
diagonal are associated with the change in inconsistency between direct and indirect evidence
in a network estimate in the row after relaxing the consistency assumption for the effect of
one design in the column. A blue-colored element indicates that the evidence of the design
in the column supports the evidence in the row, whereas a red-colored element indicates that
the evidence of the design in the column contrasts to the evidence in the row (Krahn et al.
2013).

4.4. Additional analyses

The function netbind() can combine different (C)NMA objects. This is useful when the aim
is to display the results of several (C)NMA in a forest plot.

The function funnel.netmeta() generates a “comparison-adjusted” funnel plot to assess
funnel plot asymmetry in an NMA (Chaimani and Salanti 2012; Chaimani, Higgins, Mavridis,
Spyridonos, and Salanti 2013). The user must specify a meaningful treatment order (argument
order) which should reflect the (a priori) expected direction of small study effects in each
pairwise comparison. See Chaimani and Salanti (2012) for more details on specifying the
order.

The function netimpact() evaluates the importance of individual studies in an NMA by
calculating the reduction of the precision when the study is removed from the network
(Rücker, Nikolakopoulou, Papakonstantinou, Salanti, Riley, and Schwarzer 2020a). The func-
tion netcontrib() gives the percentage contribution of each direct comparison (or study) to
each network estimate using an algorithm based on flow decomposition (Papakonstantinou
et al. 2018) or a random walk approach (Davies, Papakonstantinou, Nikolakopoulou, Rücker,
and Galla 2022).

The function netmeasures() provides measures for quantifying the direct evidence proportion
(i.e., the contribution of direct effect estimates combined for two-arm and multi-arm studies
to each network estimate), the mean path length, and other measures (König et al. 2013).

Finally, netpairwise() conducts separate pairwise meta-analyses for all comparisons with
direct evidence. In contrast to netmeta() and netsplit() unadjusted standard errors are
used in the calculations and the between-study heterogeneity variance is allowed to differ
between comparisons.

4.5. Specific NMA methods for rare binary outcomes: netmetabin()

The netmetabin() function can be used to perform an NMA for rare binary outcomes,
as described in Section 3.4. Like netmeta(), the function requires data to be supplied in
contrast-based format, where each row contains the number of events and sample sizes from
the respective pairwise comparison. This data format can be obtained using pairwise().
Three NMA methods for binary outcomes are available: NCH-NMA (method = "NCH"), MH-
NMA ("MH", default), and the standard NMA model ("Inverse") by Rücker (2012). For
NCH-NMA and MH-NMA, only the odds ratio can be used as effect measure (argument sm).
For the inverse variance method, all effect measures provided by metabin() from meta can
be used, however, this method is typically not suitable for rare binary outcomes. Of note,
pairwise() and netmeta() are called internally for the inverse variance method.

By default, netmetabin() excludes studies with zero events in all arms and does not use a
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continuity correction for studies with zeros in some, but not all treatment arms. This may
lead to designs having only one treatment left. These designs are excluded from the network
meta-analysis, which may result in network connectivity issues, i.e., the network may become
disconnected. A continuity correction can be used in such cases with argument cc.pooled =

TRUE which uses a continuity correction by adding a small increment (as defined by argument
incr) to all events and non-events in a study with some zero events. However, as noted in
Section 3.4, using a continuity correction may lead to low model performance.

4.6. Component NMA: netcomb(), discomb()

CNMA models, described in Section 3.5, are implemented in netcomb(). The main argument
of netcomb() is an R object created with netmeta(). A common separator must be used for
all combined treatments in the network and by default the plus sign is used in netcomb()

(argument sep.comps = "+"). Accordingly, for combinations named in the form A + B
(with treatment components A and B), netcomb() automatically conducts a CNMA and
estimates the effects of all treatment components and combined treatments in the network,
based on the additive model. The separator must be a single character, for example, setting
argument sep.comps = "and" will result in an informative error message. Finally, specifying
a separator that is not available in any treatment label will give the same results as netmeta()

as each treatment combination will be handled as a separate treatment.

A special property of CNMA is that it is possible to analyze disconnected networks (i.e., net-
works that consist of two or more separate subnetworks) if subnetworks share at least one
common treatment component. For example, if one subnetwork contains treatment A + B
and another subnetwork contains treatment A+C, then A is a common component of the two
networks. A CNMA analysis of a disconnected network can be conducted using discomb().
As standard NMA cannot be applied to a disconnected network, discomb() needs to start
from scratch instead of using a network meta-analysis object. Accordingly, the function shares
many arguments with netmeta() and netcomb() and can be used with a ‘pairwise’ object
as single input (Rücker et al. 2021).

Functions netcomplex() and netcomparison() can be used to calculate the treatment effect
for any complex intervention, i.e., combination of treatment components, or comparisons of
complex interventions. Input is an object created with netcomb() or discomb().

5. Three worked examples

5.1. Example 1: Adjuvant treatments in Parkinson’s disease

This data set is in wide arm-based format and includes several two-arm studies and a single
three-arm study. Accordingly, we can use pairwise() to transform the data set into contrast-
based format and to estimate treatment effects and corresponding standard errors.

R> pw1 <- pairwise(treat = list(t1, t2, t3), n = list(n1, n2, n3),

+ mean = list(y1, y2, y3), sd = list(sd1, sd2, sd3),

+ studlab = study, data = Stowe2010)

For a continuous outcome, we have to specify all variables containing information on group
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sample sizes (argument n), means (mean), and standard deviations (sd). Furthermore, we
have to provide the treatment labels (treat) and – as we have multi-arm studies – the
study labels (studlab). For a data set in wide arm-based format, the information for these
quantities with exception of the study labels is distributed over several variables, e.g., t1, t2,
and t3 for treatment labels. Therefore, we are using list() to collate all respective variables.
Finally, we specify the data set in argument data. By default, the mean difference is used as
effect measure for continuous outcomes (argument sm = "MD"). Alternatively, we could use
standardized mean differences ("SMD") or ratio of means ("ROM"). For the standardized mean
difference, the method by Crippa and Orsini (2016) is used to guarantee consistent SMDs and
standard errors for multi-arm studies.

R object pw1 is a data frame with 31 rows, each corresponding to a pairwise comparison
(28 rows from 28 two-arm studies and 3 rows from the three-arm study), and 25 columns
(variables).

R> dim(pw1)

[1] 31 25

R> names(pw1)

[1] "TE" "seTE" "studlab" "treat1" "treat2" "n1"

[7] "mean1" "sd1" "n2" "mean2" "sd2" "study"

[13] "id" "t1" "y1" "sd1.orig" "n1.orig" "t2"

[19] "y2" "sd2.orig" "n2.orig" "t3" "y3" "sd3"

[25] "n3"

The first 11 variables TE to sd2 have been created by pairwise() and will be described in
more detail below. The other variables come directly from Stowe2010 and some variables have
been renamed, e.g., sd1.orig and n1.orig, as the original names coincide with automatic
generated variables.

The following commands show all rows in pw1 coming from the three studies we already
considered in Section 2.1. We see that the two-arm studies contribute a single row whereas
the three-arm study contributes three rows.

R> selstudy1 <- c("COMTI(E) INT-OZ", "LARGO", "COMTI(E) Nomecomt")

R> subset(pw1, studlab %in% selstudy1) %>%

+ select(TE, seTE, studlab, treat1, treat2, mean1, mean2)

TE seTE studlab treat1 treat2 mean1 mean2

18 -0.32 0.4903630 COMTI(E) INT-OZ COMTI Placebo -0.86 -0.54

19 -0.80 0.2116796 LARGO COMTI Placebo -1.20 -0.40

20 -0.02 0.2116709 LARGO COMTI MAOBI -1.20 -1.18

21 0.78 0.2116709 LARGO Placebo MAOBI -0.40 -1.18

22 -1.20 0.3560024 COMTI(E) Nomecomt COMTI Placebo -1.30 -0.10

The first two variables contain the mean differences (TE) and corresponding standard errors
(seTE) of the pairwise comparison defined by variables treat1 and treat2. Mean differences
are calculated as differences between variables mean1 and mean2.

The first five variables in object pw1 are the main input to netmeta().
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Figure 2: Network graph for Parkinson’s disease network meta-analysis (Stowe et al. 2010).
Line widths are proportional to the number of studies directly comparing treatments.

R> net1 <- netmeta(TE, seTE, treat1, treat2, studlab, data = pw1,

+ common = FALSE, ref = "plac")

Here, we specify that we want to only see results for the random effects model (common =

FALSE) and use placebo as reference (reference.group); otherwise the first treatment would
be used as reference.

We can also use object pw1 directly to conduct the NMA.

R> net1 <- netmeta(pw1, common = FALSE, ref = "plac")

Network graphs

Before printing the results of the NMA, we have a look at the network graph, which does
not use the 3-D look (argument plastic), marks the three-arm study (multiarm) and in-
cludes the number of studies for each pairwise comparison (number.of.studies). The other
arguments determine the size and position of treatment labels (cex, offset) and the size
and position of the number of studies on the lines connecting treatments (cex.number,
pos.number.of.studies). Here, the use of argument pos.number.of.studies is impor-
tant as the two numbers for the comparisons dopamine agonist versus placebo and COMTI
versus MAOBI would otherwise lie on top of each other in the middle of the network graph.

R> netgraph(net1, plastic = FALSE, multiarm = TRUE,

+ cex = 1.25, offset = ifelse(trts != "MAOBI", 0.025, 0.01),

+ number.of.studies = TRUE, cex.number = 1, pos.number.of.studies = 0.3)

The network graph is shown in Figure 2. The line width is proportional to the number
of studies directly comparing the treatments and the three-arm study is marked by the blue
area. We immediately see that the comparisons dopamine agonist versus placebo and COMTI
versus placebo include the largest number of studies. Furthermore, the comparison COMTI
versus MAOBI was only considered in the three-arm study.
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Figure 3: Network graph without crossings for Parkinson’s disease network meta-analysis
(Stowe et al. 2010). Line widths are proportional to the number of studies directly comparing
treatments.

We may want to avoid the crossing lines in this small network which is due to the circle
presentation. We can switch to a different layout using argument iterate = TRUE. A disad-
vantage of all layouts but the circle presentation is that treatment labels may overlap with
edges. In the network graph generated with the following command (figure not shown) the
treatment label for placebo is overlapping with an edge.

R> nodes1 <- netgraph(net1, iterate = TRUE)$nodes

Each call of R function netgraph() creates an invisible list containing data frames with
information on nodes and edges. The above command extracts the information for nodes.
The x and y adjustment of treatment labels is stored in the variables adj.x and adj.y.

R> nodes1 %>% select(trts, adj.x, adj.y)

adj.x adj.y

COMTI 0 0

Dopamine Agonist 1 0

MAOBI 0 1

Placebo 0 1

For placebo, the treatment label overlaps with the edges due to the x adjustment. We can
easily change this value from 0 to 0.9.

R> nodes1 <- nodes1 %>%

+ mutate(adj.x = replace(adj.x, trts == "Placebo", 0.9))

R> nodes1 %>% select(trts, adj.x, adj.y)

adj.x adj.y

COMTI 0.0 0
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Dopamine Agonist 1.0 0

MAOBI 0.0 1

Placebo 0.9 1

Now, we can use the modified adjustment settings in nodes1 as input to argument adj; all
other arguments are used to create a network graph similar to Figure 2.

R> netgraph(net1, plastic = FALSE, multiarm = TRUE,

+ iterate = TRUE, col = "black",

+ cex = 1.25, offset = ifelse(trts == "Placebo", 0.04, 0.02),

+ adj = nodes1 %>% select(adj.x, adj.y),

+ number.of.studies = TRUE, cex.number = 1)

The resulting network graph is shown in Figure 3.

Network meta-analysis results

The main NMA results are reported by printing net1.

R> net1

Number of studies: k = 29

Number of pairwise comparisons: m = 31

Number of observations: o = 5331

Number of treatments: n = 4

Number of designs: d = 4

Random effects model

Treatment estimate (sm = 'MD', comparison: other treatments vs 'Placebo'):

MD 95%-CI z p-value

COMTI -0.95 [-1.27; -0.63] -5.79 < 0.0001

Dopamine Agonist -1.49 [-1.86; -1.12] -7.88 < 0.0001

MAOBI -1.03 [-1.56; -0.50] -3.81 0.0001

Placebo . . . .

Quantifying heterogeneity / inconsistency:

tau^2 = 0.1518; tau = 0.3896; I^2 = 43.9% [12.3%; 64.2%]

Tests of heterogeneity (within designs) and inconsistency

(between designs):

Q d.f. p-value

Total 48.15 27 0.0074

Within designs 46.91 25 0.0050

Between designs 1.24 2 0.5376

The printout starts with a concise summary of the network: the number of studies, k, the
number of pairwise comparisons, m, the number of observations, o, the number of treatments,
n, and the number of designs, d.
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The network estimates for the random effects models are provided next, taking placebo as
reference treatment (as we used reference.group = "plac" to generate net1). We get
network estimates for all treatments compared to placebo, even for treatments without any
direct comparisons with placebo (which is not the case in Stowe2010 as comparisons with
placebo are available for all treatments, see Figure 3). Using argument all.treatments =

TRUE, we would get three matrices providing the random effects network estimates, lower and
upper confidence limits for all observed and unobserved pairwise comparisons.

Recalling that the outcome is the difference in means of the off-time reduction of the first
treatment minus the second treatment, the random effects NMA shows strong evidence that all
adjuvant therapies, on a background of levodopa, reduced the off-time compared to placebo.
Dopamine agonists seem to perform somewhat better than COMTI and MAOBI, with a
average reduction of about 1.5 hours per day instead of 1 hour per day.

Information on heterogeneity and inconsistency is provided next. According to the Cochrane
Handbook (Higgins et al. 2020), I2 indicates a moderate level of heterogeneity/inconsistency.
Furthermore, inconsistency between designs seems not to be an issue in this NMA.

The summary.netmeta() function generates a more detailed NMA printout including infor-
mation on all pairwise comparisons from individual studies.

R> print(summary(net1), truncate = studlab %in% selstudy1, nchar.trts = 4,

+ nma = FALSE)

Original data (with adjusted standard errors for multi-arm studies):

treat1 treat2 TE seTE seTE.adj narms multiarm

COMTI(E) INT-OZ COMT Plac -0.32 0.490 0.626 2

LARGO COMT Plac -0.80 0.212 0.543 3 *

LARGO COMT MAOB -0.02 0.212 0.543 3 *

LARGO MAOB Plac -0.78 0.212 0.543 3 *

COMTI(E) Nomecomt COMT Plac -1.20 0.356 0.528 2

*** Output truncated ***

Number of treatment arms (by study):

narms

COMTI(E) INT-OZ 2

LARGO 3

COMTI(E) Nomecomt 2

*** Output truncated ***

Results (random effects model):

treat1 treat2 MD 95%-CI

COMTI(E) INT-OZ COMT Plac -0.95 [-1.27; -0.63]

LARGO COMT Plac -0.95 [-1.27; -0.63]

LARGO COMT MAOB 0.09 [-0.49; 0.67]

LARGO MAOB Plac -1.03 [-1.56; -0.50]

COMTI(E) Nomecomt COMT Plac -0.95 [-1.27; -0.63]
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*** Output truncated ***

Legend:

Abbreviation Treatment name

COMT COMTI

Dopa Dopamine Agonist

MAOB MAOBI

Plac Placebo

We use the additional arguments to only show individual results for the previously selected
three studies (argument truncate), abbreviate treatment labels to four characters (argument
nchar.trts) and suppress the printing of the NMA results (argument NMA) which are identical
to the printout of net1.

The first part of the detailed printout shows the original data in contrast-based format. The
study labels and the first four columns (treat1 to seTE) essentially come from pw1. We only
notice that the third comparison of the three-arm study has been switched as treatments are
sorted alpha-numerically by netmeta(). Accordingly, the mean difference switches from 0.78
(placebo versus MAOBI) to −0.78 (MAOBI versus placebo).

Next we see the adjusted standard errors (seTE.adj) which are identical for two-arm studies,
however, inflated for the three-arm study. We can easily spot multi-arm studies in the printout
as they are marked by an asterisk in column multiarm. Column narms reports the number
of the treatment arms in each study which is also provided in a more concise way in the next
part of the printout (labelled “Number of treatment arms (by study)”).

The next part gives the network estimates under the random effects model for each pairwise
comparison in the three studies. We notice that the network estimates and confidence intervals
are the same for the three comparisons of COMTI and placebo. All network estimates and
confidence intervals are identical to the printout of net1.

The legend at the bottom is printed as treatment labels are abbreviated. We could suppress
printing of the legend using argument legend = FALSE.

Forest plots

A standard forest plot with placebo as reference shown in Figure 4 can be generated with one
of the following commands.

R> forest(net1)

R> plot(net1)

A fuller picture is provided by the following command creating a forest plot showing all
pairwise comparisons of all active treatments with other treatments (Figure 5). Of note,
the abbreviated treatment names provided to argument reference.group must be (and are)
unambiguous.

R> forest(net1, ref = c("C", "D", "M"), baseline = FALSE, drop = TRUE)
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Treatment

COMTI
Dopamine Agonist
MAOBI
Placebo

−1.5 −1 −0.5 0 0.5 1 1.5

Comparison: other vs 'Placebo'
(Random Effects Model) MD

−0.95
−1.49
−1.03

0.00

95%−CI

[−1.27; −0.63]
[−1.86; −1.12]
[−1.56; −0.50]

Figure 4: Forest plot for Parkinson’s disease network meta-analysis (placebo as reference)
(Stowe et al. 2010).

Comparison

'COMTI' vs other           

'Dopamine Agonist' vs other

'MAOBI' vs other           

Dopamine Agonist
MAOBI
Placebo

COMTI
MAOBI
Placebo

COMTI
Dopamine Agonist
Placebo

−1.5 −1 −0.5 0 0.5 1 1.5

Random Effects Model MD

0.55
0.09

−0.95

−0.55
−0.46
−1.49

−0.09
0.46

−1.03

95%−CI

[ 0.06;  1.04]
[−0.49;  0.67]

[−1.27; −0.63]

[−1.04; −0.06]
[−1.11;  0.19]

[−1.86; −1.12]

[−0.67;  0.49]
[−0.19;  1.11]

[−1.56; −0.50]

Figure 5: Forest plot for Parkinson’s disease network meta-analysis (active treatment versus
all other treatments) (Stowe et al. 2010).

Ranking of treatments

A treatment ranking using P-scores clearly shows that dopamine agonists appear to be the
most effective treatment. The average proportion of treatments worse than dopamine agonists
is about 97% under the random effects model.

R> netrank(net1)

P-score

Dopamine Agonist 0.9677

MAOBI 0.5664

COMTI 0.4659

Placebo 0.0000
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Figure 6: Rankogram for Parkinson’s disease network meta-analysis (Stowe et al. 2010).

A more detailed picture of the treatment hierarchy is given by the rankograms for the four
competing treatments.

R> set.seed(1909)

R> (ran1 <- rankogram(net1))

Rankogram (based on 1000 simulations)

Random effects model:

1 2 3 4

COMTI 0.0060 0.3520 0.6420 0.0000

Dopamine Agonist 0.9170 0.0800 0.0030 0.0000

MAOBI 0.0770 0.5680 0.3550 0.0000

Placebo 0.0000 0.0000 0.0000 1.0000

We use set.seed() to make resampling results reproducible. Dopamine agonists have 91.7%
estimated probability of producing the best value compared to only 7.7% and 0.6% for the
other active treatments. Placebo ranks last with 100% estimated probability. By default, 1000
simulations are conducted which could be changed in rankogram() using argument nsim.

The following command creates the rankogram shown in Figure 6.

R> plot(ran1)
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As expected, SUCRA values based on 1000 simulations are very similar to P-scores reported
before.

R> netrank(ran1)

SUCRA

Dopamine Agonist 0.9713

MAOBI 0.5740

COMTI 0.4547

Placebo 0.0000

- based on 1000 simulations

League table

A league table with random effects estimates (and without confidence limits to have a more
concise printout in this article) sorted by decreasing P-scores is given by

R> netleague(net1, seq = netrank(net1), ci = FALSE)

League table (random effects model):

Dopamine Agonist . . -1.49

-0.46 MAOBI 0.02 -1.03

-0.55 -0.09 COMTI -0.93

-1.49 -1.03 -0.95 Placebo

Evaluation of heterogeneity and inconsistency

Next, we decompose Cochran’s Q statistic to assess heterogeneity and inconsistency.

R> decomp.design(net1)

Q statistics to assess homogeneity / consistency

Q df p-value

Total 48.15 27 0.0074

Within designs 46.91 25 0.0050

Between designs 1.24 2 0.5376

Design-specific decomposition of within-designs Q statistic

Design Q df p-value

Placebo:COMTI 23.65 10 0.0086

Placebo:Dopamine Agonist 21.70 14 0.0850

Placebo:MAOBI 1.56 1 0.2114
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Between-designs Q statistic after detaching of single designs

(influential designs have p-value markedly different from 0.5376)

Detached design Q df p-value

Placebo:MAOBI 0.02 1 0.8793

Placebo:COMTI 1.21 1 0.2709

Placebo:COMTI:MAOBI 0.00 0 --

Q statistic to assess consistency under the assumption of

a full design-by-treatment interaction random effects model

Q df p-value tau.within tau2.within

Between designs 0.45 2 0.7968 0.4547 0.2067

The first part was already reported in the printout of net1. The design-specific decom-
position of QW shows that the within-design heterogeneity can largely be traced back to
the comparison of COMTI versus placebo. Results for detaching single designs and the full
design-by-treatment interaction model do not show evidence of inconsistency between designs.

Inconsistency between direct and indirect evidence within each network estimate can be eval-
uated using the SIDE method.

R> netsplit(net1)

Separate indirect from direct evidence (SIDE) using back-calculation method

Random effects model:

comparison k prop nma direct indir. Diff z p-value

COMTI:Dopamine Agonist 0 0 0.55 . 0.55 . . .

COMTI:MAOBI 1 0.44 0.09 -0.02 0.17 -0.19 -0.33 0.7450

COMTI:Placebo 12 0.98 -0.95 -0.93 -1.65 0.72 0.66 0.5071

Dopamine Agonist:MAOBI 0 0 -0.46 . -0.46 . . .

Dopamine Agonist:Placebo 15 1.00 -1.49 -1.49 . . . .

MAOBI:Placebo 3 0.90 -1.03 -1.03 -1.08 0.05 0.06 0.9544

Legend:

comparison - Treatment comparison

k - Number of studies providing direct evidence

prop - Direct evidence proportion

nma - Estimated treatment effect (MD) in network meta-analysis

direct - Estimated treatment effect (MD) derived from direct evidence

indir. - Estimated treatment effect (MD) derived from indirect evidence

Diff - Difference between direct and indirect treatment estimates

z - z-value of test for disagreement (direct versus indirect)

p-value - p-value of test for disagreement (direct versus indirect)

The printout shows that there are three pairwise comparisons contributing both direct and
indirect evidence, for none of which there is evidence of inconsistency. Furthermore, COMTI
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Figure 7: Net heat plot for Parkinson’s disease network meta-analysis (Stowe et al. 2010).

versus placebo and MAOBI versus placebo are mainly informed by direct evidence (column
prop).

Finally, the net heat plot also does not show any evidence of disagreement between direct
and indirect estimates (Figure 7).

R> netheat(net1, nchar.trts = 4)

5.2. Example 2: Antithrombotics to prevent strokes

We change the appearance of confidence intervals for the next two examples, which both use
the odds ratio as effect measure.

R> cilayout("(", "-")

First we transform Dogliotti2014 to contrast-based format.

R> pw2 <- pairwise(treat = treatment, n = total, event = stroke,

+ studlab = study, data = Dogliotti2014, sm = "OR")

This command is more concise compared to the first example using list() as the pivotal
arguments relate to single variables in a data set in long arm-based format. For binary
outcomes, we have to specify sample sizes (argument n) and the number of events (event) in
addition to treatment and study labels. The odds ratio is used as effect measure (while the
risk ratio is the default).

In R object pw2, variable TE contains the log odds ratio and seTE its standard error.
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R> head(pw2, 5) %>% select(studlab, treat1, treat2, TE, seTE)

studlab treat1 treat2 TE seTE

1 AFASAK-I 1989 VKAs Aspirin -0.5939405 0.4240325

2 AFASAK-I 1989 VKAs Placebo/Control -0.7752100 0.4122678

3 AFASAK-I 1989 Aspirin Placebo/Control -0.1812695 0.3484410

4 BAATAF 1990 VKAs Placebo/Control -1.5356718 0.6482047

5 CAFA 1991 VKAs Placebo/Control -0.3999555 0.5373985

Common and random effects NMAs using the inverse variance method can be conducted in
the usual way.

R> net2 <- netmeta(pw2, ref = "plac")

Comparison not considered in network meta-analysis:

studlab treat1 treat2 TE seTE

WASPO, 2007 VKAs Aspirin NA NA

We get a warning that the WASPO study is excluded from the NMA. We can confirm that
the study is excluded due to zero events in both treatment groups.

R> subset(pw2, studlab == "WASPO, 2007") %>%

+ select(studlab, event1, n1, event2, n2)

studlab event1 n1 event2 n2

28 WASPO, 2007 0 36 0 39

The network graph shown in Figure 8 was generated with the following command.

R> netgraph(net2, seq = "optimal",

+ plastic = FALSE, number.of.studies = TRUE, cex.points = n.trts,

+ offset =

+ ifelse(trts == "VKAs", 0.05,

+ ifelse(trts %in% c("Aspirin", "Apixaban"), 0.035, 0.025)),

+ labels = paste0(trts, "\n(n=", round(n.trts), ")"))

We notice that the majority of studies compared Aspirin, vitamin K antagonists (VKAs)
and Placebo/Control. Furthermore, the most commonly administered treatments are VKAs,
Apixaban and Aspirin.

As the example concerns a rare binary outcome, we also perform NMA using the Mantel-
Haenszel approach and we compare the results with the inverse variance (conventional) NMA.

R> net2.mh <- netmetabin(pw2, ref = "plac")

We use netbind() to create a forest plot with the common effects estimates from the two
models.
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Figure 8: Network graph for antithrombotics network meta-analysis (Dogliotti et al. 2014).
Line widths are proportional to the number of studies directly comparing treatments. Point
sizes are proportional to the number of observations in treatment arms.

R> nb2 <- netbind(net2, net2.mh, random = FALSE,

+ name = c("Inverse variance", "Mantel-Haenszel"))

R> forest(nb2, xlim = c(0.15, 2), at = c(0.2, 0.5, 1, 2))

The two analyses lead to very similar results (Figure 9). Accordingly, we would proceed
with the inverse variance method which has the advantage that it also provides results for a
random effects NMA.

Irrespective of whether we use the inverse variance (net2) or Mantel-Haenszel (net2.mh)
method, the same workflow as for example 1 can be followed:

• netgraph() to generate a network graph,

• print.netmeta() or summary.netmeta() to print the results,

• forest() to create a forest plot,

• netleague() to generate a league table,

• netrank() and rankogram() to rank treatments,

• decomp.design(), netsplit(), and netheat() to evaluate heterogeneity and incon-
sistency.
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Figure 9: Forest plot comparing results for inverse variance and Mantel-Haenszel method in
antithrombotics network meta-analysis (Dogliotti et al. 2014).

5.3. Example 3: Treatments for chronic obstructive pulmonary disease

We start the analysis of the third example data set by pre-processing the data for NMA.

R> pw3 <- pairwise(treat = treatment, n = total, event = exac,

+ studlab = paste(study, year), data = Baker2009, sm = "OR")

R> net3 <- netmeta(pw3, common = FALSE, ref = "plac")

Comparisons not considered in network meta-analysis:

studlab treat1 treat2 TE seTE

DalNegro 2003 2008 Fluticasone+Salmeterol Placebo NA NA

DalNegro 2003 2008 Fluticasone+Salmeterol Salmeterol NA NA

DalNegro 2003 2008 Salmeterol Placebo NA NA

We notice that the excluded DalNegro study is very small with events for all participants.

R> subset(pw3, studlab == "DalNegro 2003 2008") %>%

+ select(studlab, event1, n1, event2, n2)
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Figure 10: Network graph for COPD network meta-analysis (Baker et al. 2009). Line widths
are proportional to the number of studies directly comparing treatments. Point sizes are
proportional to the number of observations in treatment arms.

studlab event1 n1 event2 n2

75 DalNegro 2003 2008 6 6 6 6

76 DalNegro 2003 2008 6 6 6 6

77 DalNegro 2003 2008 6 6 6 6

A comparison of inverse variance and Mantel-Haenszel NMA reveals that common effects
estimates are again very similar (results not shown).

The network graph in Figure 10 was generated with the following command. We wanted the
placebo node to be on the right so we use argument rotate to turn the network plot three
positions counter-clockwise (−3 · 360◦/8 treatments = −3 · 45◦).

R> netgraph(net3, seq = "optimal",

+ plastic = FALSE, number.of.studies = TRUE, cex.points = n.trts,

+ offset = ifelse(n.trts < 1500, 0.025, 0.05),

+ labels = paste0(gsub("+", " +\n", trts, fixed = TRUE),

+ "\n(n=", round(n.trts), ")"),

+ rotate = -3 * 45)

We notice that the network is well connected and that several studies evaluated the combi-
nation fluticasone + salmeterol.

The standard NMA shows that all treatments but budesonide and formoterol are more ef-
fective than placebo. Furthermore, the combination treatments are more effective than the
individual treatments.
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R> net3

Number of studies: k = 38

Number of pairwise comparisons: m = 74

Number of observations: o = 28217

Number of treatments: n = 8

Number of designs: d = 13

Random effects model

Treatment estimate (sm = 'OR', comparison: other treatments vs 'Placebo'):

OR 95%-CI z p-value

Budesonide 0.80 (0.59-1.10) -1.37 0.1702

Budesonide+Formoterol 0.67 (0.49-0.90) -2.63 0.0086

Fluticasone 0.86 (0.75-0.99) -2.05 0.0406

Fluticasone+Salmeterol 0.75 (0.66-0.86) -4.17 < 0.0001

Formoterol 1.00 (0.80-1.25) -0.00 1.0000

Placebo . . . .

Salmeterol 0.80 (0.72-0.89) -4.06 < 0.0001

Tiotropium 0.69 (0.61-0.77) -6.39 < 0.0001

Quantifying heterogeneity / inconsistency:

tau^2 = 0.0111; tau = 0.1055; I^2 = 24.4% (0.0%-47.7%)

Tests of heterogeneity (within designs) and inconsistency

(between designs):

Q d.f. p-value

Total 60.86 46 0.0700

Within designs 43.20 34 0.1340

Between designs 17.66 12 0.1264

The next step is based on the assumption that the addition of placebo in any of the other
treatments in the network does not change the risk of COPD exacerbations (we specify this
through the argument inactive). (We note in parentheses that it is not necessary in general
to specify an inactive treatment. For example, this is not possible if there are only active
interventions, or if an active effect must be assumed also for a reference intervention such as
“treatment as usual”). Assuming placebo as inactive, we now conduct a CNMA. We do not
have to specify the separator (argument sep.comps), as the plus sign used in treatment labels
of Baker2009 is the default.

R> (nc3 <- netcomb(net3, inactive = "plac"))

Number of studies: k = 38

Number of pairwise comparisons: m = 74

Number of treatments: n = 8

Number of active components: c = 5

Number of designs: d = 13
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Random effects model (inactive component: 'Placebo')

Treatment estimate (sm = 'OR', comparison: other treatments vs 'Placebo'):

OR 95%-CI z p-value

Budesonide 0.73 (0.58-0.92) -2.64 0.0084

Budesonide+Formoterol 0.69 (0.52-0.92) -2.51 0.0121

Fluticasone 0.90 (0.81-1.00) -2.06 0.0397

Fluticasone+Salmeterol 0.74 (0.65-0.84) -4.58 < 0.0001

Formoterol 0.94 (0.78-1.14) -0.62 0.5356

Placebo . . . .

Salmeterol 0.82 (0.75-0.90) -4.28 < 0.0001

Tiotropium 0.69 (0.61-0.77) -6.45 < 0.0001

Incremental effect for existing combinations:

iOR 95%-CI z p-value

Budesonide+Formoterol 0.69 (0.52-0.92) -2.51 0.0121

Fluticasone+Salmeterol 0.74 (0.65-0.84) -4.58 < 0.0001

Incremental effect for components:

iOR 95%-CI z p-value

Budesonide 0.73 (0.58-0.92) -2.64 0.0084

Fluticasone 0.90 (0.81-1.00) -2.06 0.0397

Formoterol 0.94 (0.78-1.14) -0.62 0.5356

Salmeterol 0.82 (0.75-0.90) -4.28 < 0.0001

Tiotropium 0.69 (0.61-0.77) -6.45 < 0.0001

Quantifying heterogeneity / inconsistency:

tau^2 = 0.0101; tau = 0.1003; I^2 = 23.5% (0.0%-46.7%)

Heterogeneity statistics:

Q df p-value

Additive model 62.74 48 0.0750

Standard model 60.86 46 0.0700

Difference 1.88 2 0.3908

The number of active components is printed in addition to the other well known quantities,
followed by results for treatment combinations and components. The estimated odds ratio
for the combination fluticasone + salmeterol is equal to the product of the component odds
ratios: 0.74 = 0.90 · 0.82. Equivalently, the log odds ratio of the combination is equal to the
sum of the component log odds ratios. A comparison of the heterogeneity statistics shows
that the additive model fits the data nearly as well as the standard NMA. The Q test under
“difference” corresponds to a likelihood-ratio test (Rücker et al. 2021).

We use netbind() again to produce a forest plot with results from standard NMA and additive
CNMA. Overall, the random effects estimates of standard NMA and additive CNMA do not
differ much (Figure 11).

R> nb3 <- netbind(net3, nc3, name = c("Standard NMA", "Additive CNMA"))
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Figure 11: Forest plot comparing results for NMA and additive CNMA in COPD network
meta-analysis (Baker et al. 2009).

R> forest(nb3)

In a further step, we can rank treatments based on the treatment estimates from the additive
CNMA.

R> netrank(nc3)

P-score

Tiotropium 0.8588

Budesonide+Formoterol 0.8161

Fluticasone+Salmeterol 0.7038

Budesonide 0.6909

Salmeterol 0.4460

Fluticasone 0.2649

Formoterol 0.1770

Placebo 0.0426

This CNMA ranking shows some differences to the ranking based on the standard NMA.



34 netmeta: Network Meta-Analysis in R

R> netrank(net3)

P-score

Tiotropium 0.8719

Budesonide+Formoterol 0.8539

Fluticasone+Salmeterol 0.6856

Budesonide 0.5199

Salmeterol 0.5162

Fluticasone 0.3523

Formoterol 0.1132

Placebo 0.0871

Overall, the ranking order does not change when considering an additive CNMA instead of a
standard NMA.

R functions decomp.design(), netsplit(), and netheat() to assess heterogeneity and in-
consistency are not available for CNMAs.

6. Conclusions and outlook

This article provides a general introduction and overview to R package netmeta for frequentist
NMA. A central aim of netmeta is to provide methods for all essential steps in an NMA in a
user-friendly way.

The main hurdle in netmeta is to transform the available data set into the comparison-
based format required by netmeta() for standard NMA, netmetabin() for NMA with rare
binary outcomes, and discomb() for disconnected networks. Accordingly, use of R function
pairwise() constitutes the main pre-processing step. Our examples demonstrate its use for
the most common NMA data formats, i.e., wide arm-based and long arm-based format. After
that, the typical (C)NMA workflow as outlined in this article is straightforward to follow,
after conducting the main analysis which is the input to all subsequent analyses.

The simplicity of netmeta has led to its use by two web-applications, MetaInsight (Owen,
Bradbury, Xin, Cooper, and Sutton 2019) and CINeMA (confidence in network meta-analysis,
Nikolakopoulou et al. 2020).

While netmeta offers a comprehensive set of functions for NMA and an easy to use interface,
it lacks on flexibility compared to the more general R packages metafor (Viechtbauer 2010)
and mixmeta (Sera et al. 2019). A limitation of netmeta is that methods to conduct subgroup
analysis and network meta-regression are not readily available. Moreover, further levels of
hierarchical modelling cannot be added, in contrast with Bayesian models. Accordingly,
possible future developments include providing subgroup analysis and meta-regression and
linking one or more R packages for Bayesian NMA with netmeta in order to make more
flexible NMA methods available to applied scientists in a user-friendly way.

In summary, netmeta offers a wide range of analysis and presentational tools for fitting
frequentist NMA in R. This article presents the main capabilities of netmeta; however, the
package is constantly updated with new features and methods in line with methodological
research and new needs that arise when conducting an NMA.
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