## ----include = FALSE---------------------------------------------------------- knitr::opts_chunk$set(collapse = TRUE, comment = "#>") ## ----setup-------------------------------------------------------------------- library(nabla) ## ----------------------------------------------------------------------------- numerical_gradient <- function(f, x, h = 1e-7) { p <- length(x) grad <- numeric(p) for (i in seq_len(p)) { x_plus <- x_minus <- x x_plus[i] <- x[i] + h x_minus[i] <- x[i] - h grad[i] <- (f(x_plus) - f(x_minus)) / (2 * h) } grad } numerical_hessian <- function(f, x, h = 1e-5) { p <- length(x) H <- matrix(0, nrow = p, ncol = p) for (i in seq_len(p)) { for (j in seq_len(i)) { x_pp <- x_pm <- x_mp <- x_mm <- x x_pp[i] <- x_pp[i] + h; x_pp[j] <- x_pp[j] + h x_pm[i] <- x_pm[i] + h; x_pm[j] <- x_pm[j] - h x_mp[i] <- x_mp[i] - h; x_mp[j] <- x_mp[j] + h x_mm[i] <- x_mm[i] - h; x_mm[j] <- x_mm[j] - h H[i, j] <- (f(x_pp) - f(x_pm) - f(x_mp) + f(x_mm)) / (4 * h * h) H[j, i] <- H[i, j] } } H } ## ----------------------------------------------------------------------------- set.seed(42) data_norm <- rnorm(100, mean = 5, sd = 2) n <- length(data_norm) sigma <- 2 sum_x <- sum(data_norm) sum_x2 <- sum(data_norm^2) ll_normal_mu <- function(x) { mu <- x[1] -1 / (2 * sigma^2) * (sum_x2 - 2 * mu * sum_x + n * mu^2) } # Evaluate at mu = 4.5 mu0 <- 4.5 # AD gradient and Hessian ad_grad <- gradient(ll_normal_mu, mu0) ad_hess <- hessian(ll_normal_mu, mu0) # Analytical: gradient = (sum_x - n*mu)/sigma^2, Hessian = -n/sigma^2 xbar <- mean(data_norm) analytical_grad <- (sum_x - n * mu0) / sigma^2 analytical_hess <- -n / sigma^2 # Numerical num_grad <- numerical_gradient(ll_normal_mu, mu0) num_hess <- numerical_hessian(ll_normal_mu, mu0) # Three-way comparison: Gradient data.frame( method = c("Analytical", "Finite Diff", "AD"), gradient = c(analytical_grad, num_grad, ad_grad) ) # Three-way comparison: Hessian data.frame( method = c("Analytical", "Finite Diff", "AD"), hessian = c(analytical_hess, num_hess, ad_hess) ) ## ----------------------------------------------------------------------------- obs_info <- -hessian(ll_normal_mu, mu0) obs_info # should equal n/sigma^2 = 25 ## ----------------------------------------------------------------------------- ll_normal_2 <- function(x) { mu <- x[1] sigma <- x[2] -n * log(sigma) - (1 / (2 * sigma^2)) * (sum_x2 - 2 * mu * sum_x + n * mu^2) } theta0 <- c(4.5, 1.8) # AD ad_grad2 <- gradient(ll_normal_2, theta0) ad_hess2 <- hessian(ll_normal_2, theta0) # Analytical gradient: # d/dmu = n*(xbar - mu)/sigma^2 # d/dsigma = -n/sigma + (1/sigma^3)*sum((xi - mu)^2) mu0_2 <- theta0[1]; sigma0_2 <- theta0[2] ss <- sum_x2 - 2 * mu0_2 * sum_x + n * mu0_2^2 # sum of (xi - mu)^2 analytical_grad2 <- c( n * (xbar - mu0_2) / sigma0_2^2, -n / sigma0_2 + ss / sigma0_2^3 ) # Analytical Hessian: # d2/dmu2 = -n/sigma^2 # d2/dsigma2 = n/sigma^2 - 3*ss/sigma^4 # d2/dmu.dsigma = -2*n*(xbar - mu)/sigma^3 analytical_hess2 <- matrix(c( -n / sigma0_2^2, -2 * n * (xbar - mu0_2) / sigma0_2^3, -2 * n * (xbar - mu0_2) / sigma0_2^3, n / sigma0_2^2 - 3 * ss / sigma0_2^4 ), nrow = 2, byrow = TRUE) # Numerical num_grad2 <- numerical_gradient(ll_normal_2, theta0) num_hess2 <- numerical_hessian(ll_normal_2, theta0) # Gradient comparison data.frame( parameter = c("mu", "sigma"), analytical = analytical_grad2, finite_diff = num_grad2, AD = ad_grad2 ) # Hessian comparison (flatten for display) cat("AD Hessian:\n") ad_hess2 cat("\nAnalytical Hessian:\n") analytical_hess2 cat("\nMax absolute difference:", max(abs(ad_hess2 - analytical_hess2)), "\n") ## ----------------------------------------------------------------------------- set.seed(123) data_pois <- rpois(80, lambda = 3.5) n_pois <- length(data_pois) sum_x_pois <- sum(data_pois) sum_lfact <- sum(lfactorial(data_pois)) ll_poisson <- function(x) { lambda <- x[1] sum_x_pois * log(lambda) - n_pois * lambda - sum_lfact } lam0 <- 3.0 # AD ad_grad_p <- gradient(ll_poisson, lam0) ad_hess_p <- hessian(ll_poisson, lam0) # Analytical: gradient = sum_x/lambda - n, Hessian = -sum_x/lambda^2 analytical_grad_p <- sum_x_pois / lam0 - n_pois analytical_hess_p <- -sum_x_pois / lam0^2 # Numerical num_grad_p <- numerical_gradient(ll_poisson, lam0) num_hess_p <- numerical_hessian(ll_poisson, lam0) data.frame( quantity = c("Gradient", "Hessian"), analytical = c(analytical_grad_p, analytical_hess_p), finite_diff = c(num_grad_p, num_hess_p), AD = c(ad_grad_p, ad_hess_p) ) ## ----fig-poisson-gradient, fig.width=6, fig.height=4-------------------------- lam_grid <- seq(2.0, 5.5, length.out = 200) # Compute log-likelihood and gradient over the grid ll_vals <- sapply(lam_grid, function(l) ll_poisson(l)) gr_vals <- sapply(lam_grid, function(l) gradient(ll_poisson, l)) mle_lam <- sum_x_pois / n_pois # analytical MLE oldpar <- par(mar = c(4, 4.5, 2, 4.5)) plot(lam_grid, ll_vals, type = "l", col = "steelblue", lwd = 2, xlab = expression(lambda), ylab = expression(ell(lambda)), main = "Poisson log-likelihood and gradient") par(new = TRUE) plot(lam_grid, gr_vals, type = "l", col = "firebrick", lwd = 2, lty = 2, axes = FALSE, xlab = "", ylab = "") axis(4, col.axis = "firebrick") mtext("Gradient", side = 4, line = 2.5, col = "firebrick") abline(h = 0, col = "grey60", lty = 3) abline(v = mle_lam, col = "grey40", lty = 3) points(mle_lam, 0, pch = 4, col = "firebrick", cex = 1.5, lwd = 2) legend("topright", legend = c(expression(ell(lambda)), "Gradient", "MLE"), col = c("steelblue", "firebrick", "grey40"), lty = c(1, 2, 3), lwd = c(2, 2, 1), pch = c(NA, NA, 4), bty = "n") par(oldpar) ## ----------------------------------------------------------------------------- set.seed(99) data_gamma <- rgamma(60, shape = 2.5, rate = 1) n_gam <- length(data_gamma) sum_log_x <- sum(log(data_gamma)) sum_x_gam <- sum(data_gamma) beta_known <- 1 ll_gamma <- function(x) { alpha <- x[1] (alpha - 1) * sum_log_x - n_gam * lgamma(alpha) + n_gam * alpha * log(beta_known) - beta_known * sum_x_gam } alpha0 <- 2.0 # AD ad_grad_g <- gradient(ll_gamma, alpha0) ad_hess_g <- hessian(ll_gamma, alpha0) # Analytical: gradient = sum_log_x - n*digamma(alpha) + n*log(beta) # Hessian = -n*trigamma(alpha) analytical_grad_g <- sum_log_x - n_gam * digamma(alpha0) + n_gam * log(beta_known) analytical_hess_g <- -n_gam * trigamma(alpha0) # Numerical num_grad_g <- numerical_gradient(ll_gamma, alpha0) num_hess_g <- numerical_hessian(ll_gamma, alpha0) data.frame( quantity = c("Gradient", "Hessian"), analytical = c(analytical_grad_g, analytical_hess_g), finite_diff = c(num_grad_g, num_hess_g), AD = c(ad_grad_g, ad_hess_g) ) ## ----------------------------------------------------------------------------- set.seed(7) n_lr <- 50 X <- cbind(1, rnorm(n_lr), rnorm(n_lr)) # intercept + 2 predictors beta_true <- c(-0.5, 1.2, -0.8) eta_true <- X %*% beta_true prob_true <- 1 / (1 + exp(-eta_true)) y <- rbinom(n_lr, 1, prob_true) ll_logistic <- function(x) { result <- 0 for (i in seq_len(n_lr)) { eta_i <- x[1] * X[i, 1] + x[2] * X[i, 2] + x[3] * X[i, 3] result <- result + y[i] * eta_i - log(1 + exp(eta_i)) } result } beta0 <- c(0, 0, 0) # AD ad_grad_lr <- gradient(ll_logistic, beta0) ad_hess_lr <- hessian(ll_logistic, beta0) # Numerical ll_logistic_num <- function(beta) { eta <- X %*% beta sum(y * eta - log(1 + exp(eta))) } num_grad_lr <- numerical_gradient(ll_logistic_num, beta0) num_hess_lr <- numerical_hessian(ll_logistic_num, beta0) # Gradient comparison data.frame( parameter = c("beta0", "beta1", "beta2"), finite_diff = num_grad_lr, AD = ad_grad_lr, difference = ad_grad_lr - num_grad_lr ) # Hessian comparison cat("Max |AD - numerical| in Hessian:", max(abs(ad_hess_lr - num_hess_lr)), "\n") ## ----------------------------------------------------------------------------- newton_raphson <- function(f, theta0, tol = 1e-8, max_iter = 50) { theta <- theta0 for (iter in seq_len(max_iter)) { g <- gradient(f, theta) H <- hessian(f, theta) step <- solve(H, g) theta <- theta - step if (max(abs(g)) < tol) break } list(estimate = theta, iterations = iter, gradient = g) } # Apply to Normal(mu, sigma) model result_nr <- newton_raphson(ll_normal_2, c(3, 1)) result_nr$estimate result_nr$iterations # Compare with analytical MLE mle_mu <- mean(data_norm) mle_sigma <- sqrt(mean((data_norm - mle_mu)^2)) # MLE (not sd()) cat("NR estimate: mu =", result_nr$estimate[1], " sigma =", result_nr$estimate[2], "\n") cat("Analytical MLE: mu =", mle_mu, " sigma =", mle_sigma, "\n") cat("Max difference:", max(abs(result_nr$estimate - c(mle_mu, mle_sigma))), "\n") ## ----fig-normal-contour, fig.width=6, fig.height=5---------------------------- mu_grid <- seq(4.0, 6.0, length.out = 80) sigma_grid <- seq(1.2, 2.8, length.out = 80) # Evaluate log-likelihood on the grid ll_surface <- outer(mu_grid, sigma_grid, Vectorize(function(m, s) { ll_normal_2(c(m, s)) })) oldpar <- par(mar = c(4, 4, 2, 1)) contour(mu_grid, sigma_grid, ll_surface, nlevels = 25, xlab = expression(mu), ylab = expression(sigma), main = expression("Log-likelihood contours: Normal(" * mu * ", " * sigma * ")"), col = "steelblue") points(mle_mu, mle_sigma, pch = 3, col = "firebrick", cex = 2, lwd = 2) text(mle_mu + 0.15, mle_sigma, "MLE", col = "firebrick", cex = 0.9) par(oldpar) ## ----fig-nr-path, fig.width=6, fig.height=5----------------------------------- # Newton-Raphson with trace newton_raphson_trace <- function(f, theta0, tol = 1e-8, max_iter = 50) { theta <- theta0 trace <- list(theta) for (iter in seq_len(max_iter)) { g <- gradient(f, theta) H <- hessian(f, theta) step <- solve(H, g) theta <- theta - step trace[[iter + 1L]] <- theta if (max(abs(g)) < tol) break } list(estimate = theta, iterations = iter, trace = do.call(rbind, trace)) } result_trace <- newton_raphson_trace(ll_normal_2, c(3, 1)) oldpar <- par(mar = c(4, 4, 2, 1)) contour(mu_grid, sigma_grid, ll_surface, nlevels = 25, xlab = expression(mu), ylab = expression(sigma), main = "Newton-Raphson convergence path", col = "grey70") lines(result_trace$trace[, 1], result_trace$trace[, 2], col = "firebrick", lwd = 2, type = "o", pch = 19, cex = 0.8) points(result_trace$trace[1, 1], result_trace$trace[1, 2], pch = 17, col = "orange", cex = 1.5) points(mle_mu, mle_sigma, pch = 3, col = "steelblue", cex = 2, lwd = 2) legend("topright", legend = c("N-R path", "Start", "MLE"), col = c("firebrick", "orange", "steelblue"), pch = c(19, 17, 3), lty = c(1, NA, NA), lwd = c(2, NA, 2), bty = "n") par(oldpar) ## ----------------------------------------------------------------------------- # f: R^2 -> R^3 f_vec <- function(x) { a <- x[1]; b <- x[2] list(a * b, a^2, sin(b)) } J <- jacobian(f_vec, c(2, pi/4)) J # Analytical Jacobian at (2, pi/4): # Row 1: d(a*b)/da = b = pi/4, d(a*b)/db = a = 2 # Row 2: d(a^2)/da = 2a = 4, d(a^2)/db = 0 # Row 3: d(sin(b))/da = 0, d(sin(b))/db = cos(b)