
R Package mvngGrAd: Moving Grid

Adjustment In Plant Breeding Field Trials

Frank Technow

package version 0.1.6

1 Moving grid adjustment

Moving grid adjustment is a spatial method to adjust for environmental vari-

ation in field trials. It is most common in unreplicated plant breeding field

trials. The most extreme form of unreplicated trials is single plant evaluation,

for example for recurrent mass selection in populations.

The trial is arranged in a spatial row-column like design. Each entry is then

associated with a cell, respectively with a row and column number. A grid is

constructed around each cell (= entry) and the mean of the cells included in

the grid is calculated. The moving mean of the ith entry, denoted as xi, is

calculated as:

xi =

∑
j pj,obs · I(pj,obs ∈ Gi)
∑

j I(pj,obs ∈ Gi)
(1)

The grid of entry i is denoted by Gi and I(·) is a indicator function that takes

the value 1 if the condition is satisfied and 0 if not. The observed phenotypic

values of all entries which could potentially be included in Gi are denoted by

pj,obs. The value xi is taken as a measure of the growing conditions for the entry

i and is used as a covariate to calculate an adjusted phenotypic value (pi,adj)

according to the following formula:

pi,adj = pi,obs − b(xi − x̄) (2)

Where pi,obs denotes the observed phenotypic value of the ith entry, x̄ is the

mean of all xi and b the regression coefficient in the general linear model:

pi,obs = a+ bxi (3)

1

with intercept a.

The phenotypic value is a function of the genotypic value gi and the envi-

ronmental error ei. Before the adjustment this is

pi,obs = gi + ei, (4)

and after

pi,adj = gi + e′i (5)

with e′i being the ei after adjustment.

When the adjustment was successful,

var(e′i) < var(ei) (6)

and pi,adj is a better estimator of gi than pi,obs. A direct consequence of this is

that the heritability (h2) will improve. The h2 gives the proportion of variance

observed that was attributable to genetic effects. The closer to one the value is,

the better, because only genetic variance can be exploited by the breeder. The

heritability before adjustment is calculated as

h2

obs =
var(g)

var(pobs)
(7)

where var(g) is the exploitable genetic variance and var(pobs) is the variance of

pobs (i.e. the phenotypic variance). The heritability after adjustment can then

be calculated as

h2

adj =
var(g)

var(padj)
(8)

and because of (6)

h2

adj > h2

obs (9)

The adjustment procedure can only be successful, and in fact valid, if two

important conditions are met:

1. the entries must not influence the values of their covariates (xi) and

2. the entries must have been randomly assigned to positions in the field.

If either one or both are violated, the adjustment can lead to erroneous results.

If for example pi,obs is included in the calculation of xi, the first condition is

violated. The result is that the padj of superior genotypes are downwardly

biased and the padj of inferior ones upwardly. When, as is the case many times,

2

entries are not randomized but grouped according to family, the padj of superior

families are downwardly biased and the padj of inferior ones upwardly. In the

best case this leads to a reduction in var(g)† which might reverse (9) or at least

reduces the superiority of h2

adj . In the worst case, selection might be directed

to the opposite of the intended direction!

Please refer to [a] for details on quantitative genetics, to [b] for details on ex-

perimental design and covariate adjustment and to [c] for plant breeding designs

and moving grids in particular.

References

[a] D. S. Falconer: Introduction to Quantitative Genetics. Oliver and Boyd.,

London, 1967.

[b] W. G. Cochran and G. M. Cox: Experimental Designs. John Wiley & Sons,

Inc., New York, 1964.

[c] I. Bos and P. Caligari: Selection Methods in Plant Breeding. Springer New

York, 2008.

2 The package

2.1 Overview

The function performing the adjustment is called movingGrid(). The function

sketchGrid() helps with designing the grid by plotting its shape. The func-

tions fitted(), movingMean() and entryData() are convenience functions

to extract the most relevant information from the object created by movingGrid().

The package defines a new class, movG, and provides methods for the func-

tions entryData(), fitted(), movingMean(), summary(), show() and

residuals(). What follows is a detailed tutorial on the usage of movingGrid().

†The adjustment is of course something that is done to the data, and as such can not
alter the population variance. To distinguish var(g) from the true genetic variance in the
population, I termed it exploitable genetic variance.

3

As a first step, the package needs to be loaded.

R> library(mvngGrAd)

2.2 Setting up the grid

The shape of the grid must be designed by the user. This is done via three

arguments to movingGrid(), shapeCross, layers and excludeCenter. With

the help of shapeCross one specifies the cells that are to be included in a

grid that extends from the center in 0, 90, 180 and 270 degree direction, with

layers the cells that extend the grid in all other directions. The two can be used

together or alone. With the argument excludeCenter one can decide whether

or not to include pi,obs in the calculation of xi. The usage is best described with

examples.

For designing the grid, function sketchGrid() takes the same arguments

as movingGrid() and plots a visualization of the grid. This function should

always be used to verify that the actual arguments to shapeCross and layers

do create the intended grid.

The argument to shapeCross is given in form of a list with four components,

each representing one of the directions.

1. DOWN (180°)

2. UP (0°)

3. LEFT (270°)

4. RIGHT (90°).

Other arguments to sketchGrid() are i, the row of the central cell; j

the column of the central cell; rowLimit, the number of rows in the field lay-

out; colLimit, the number of columns; and excludeCenter. If only one of

shapeCross or layers is to be used, the other must be NULL.

A grid that includes one cell above and below the center and four to its right

and left and excludes the central cell can be created as follows‡ §(Figure 1 [a]):

‡The calls to sketchGrid() produce always one plot. To save space, these plots are not
included in this document, but instead figures are shown that combine several of them. These
figures are produced from code that is included in the sweave file but is not echoed. However,
the calls to sketchGrid() are identical.

§This is the grid used by a stand alone software called “plabstat” (https://www.
uni-hohenheim.de/plantbreeding/software/) that is around since the 70’s. With these set-
tings, the results of “plabstat” can be reproduced.

4

https://www.uni-hohenheim.de/plantbreeding/software/
https://www.uni-hohenheim.de/plantbreeding/software/

R> sketchGrid(i = 10,

+ j = 10,

+ rowLimit = 20,

+ colLimit = 20,

+ shapeCross =

+ list(1, ## down

+ 1, ## up

+ 1:4, ## left

+ 1:4),## right

+ layers = NULL,

+ excludeCenter = TRUE)

Using shapeCross as follows, creates a grid that also includes one cell above

and below the center and four to its right and left but excludes the cells right

next to the center (Figure 1 [b]).

R> sketchGrid(i = 10, j = 10, rowLimit = 20, colLimit = 20,

+ shapeCross = list(2, 2, 2:5, 2:5), layers = NULL,

+ excludeCenter = TRUE)

Using shapeCross on its own, without layers, can often make sense, using

layers on its own usually does not. However, it is introduced independently

from shapeCross to make its usage clear. The actual argument to layers is

an integer vector. Each integer represents a “layer” of cells included in the grid.

Integer 1 would include the cells that are right next to the center, apart from

the ones in 0, 90, 180 and 270 degree direction (Figure 1 [c]):

R> sketchGrid(i = 10, j = 10, rowLimit = 20, colLimit = 20,

+ shapeCross = list(NULL, NULL, NULL, NULL),

+ layers = 1, excludeCenter = TRUE)

and integer 2 the ones on top of that (Figure 1 [d]):

R> sketchGrid(i = 10, j = 10, rowLimit = 20, colLimit = 20,

+ shapeCross = list(NULL, NULL, NULL, NULL),

+ layers = 1:2, excludeCenter = TRUE)

and so on.

By using shapeCross and layers jointly, more complex grids can be created.

For example a honeycomb shape, which might be most suited for single plant

evaluation (Figure 2 [e]):

5

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0

9
8

7
6

5
4

3
2

1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

column

ro
w

[a]

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0

9
8

7
6

5
4

3
2

1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

column

ro
w

[b]

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0

9
8

7
6

5
4

3
2

1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

column

ro
w

[c]

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0

9
8

7
6

5
4

3
2

1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

column

ro
w

[d]

Figure 1: Grids for different settings of shapeCross ,layers, excludeCenter and

i, j

R> sketchGrid(i = 10, j = 10, rowLimit = 20, colLimit = 20,

+ shapeCross = list(1:4, 1:4, 1:4, 1:4), layers = c(1:4),

+ excludeCenter = TRUE)

However, one should keep in mind that sketchGrid() can not be made to

display any scale differences between row and column widths. So for unequal

row and column width, the grid will look different on the field than the output

of sketchGrid(). In this case sketchGrid() will only help to see which cells

are included.

Setting the argument excludeCenter to FALSE will include the central cell,

the one with the entry whose pobs is to be adjusted, in the calculation of xi

(Figure 2 [f]):

6

R> sketchGrid(i = 10, j = 10, rowLimit = 20, colLimit = 20,

+ shapeCross = list(1:4, 1:4, 1:4, 1:4), layers = c(1:4),

+ excludeCenter = FALSE)

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0

9
8

7
6

5
4

3
2

1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

column

ro
w

[e]

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0

9
8

7
6

5
4

3
2

1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

column

ro
w

[f]

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0

9
8

7
6

5
4

3
2

1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

column

ro
w

[g]

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0

9
8

7
6

5
4

3
2

1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

column

ro
w

[h]

Figure 2: Grids for different settings of shapeCross ,layers, excludeCenter and

i, j

This is of course in clear violation of the first condition for a valid adjustment

(see Section 1 on page 2). In fact one may consider to exclude the cells right

next to the center as well. This way the effects of possible interactions between

the entry in the central cell and its neighbors, do not influence xi either (Figure

2 [g]):

R> sketchGrid(i = 10, j = 10, rowLimit = 20, colLimit = 20,

7

+ shapeCross = list(2:4, 2:4, 2:4, 2:4), layers = c(2:4),

+ excludeCenter = TRUE)

For cells close to the border of the experimental area, only incomplete grids

can be constructed of course. This is correctly displayed by sketchGrid()

(Figure 2 [h]):

R> sketchGrid(i = 2, j = 2, rowLimit = 20, colLimit = 20,

+ shapeCross = list(2:4, 2:4, 2:4, 2:4), layers = c(2:4),

+ excludeCenter = TRUE)

2.3 Using movingGrid()

To demonstrate the function movingGrid () itself, data needs to be generated

first.

The experimental area of the simulated field trial consists of 50 rows and

50 columns. The row and column subscripts of each cell are stored because

they are part of the input to movingGrid(). The two vectors must of course

correspond to each other.

R> rows <- rep(1:50, each = 50)

R> cols <- rep(1:50, 50)

The population parameters are as follows:

• population mean µ = 30

• genotypic variation var(g) = 25

• environmental (error) variation var(e) = 45

The environmental errors e are simulated in such a way that there is a strong

systematic horizontal gradient in growing conditions present in the experimental

area, together with some unsystematic small scale noise.

R> set.seed(13)

R> envError <- rep(c(seq(from = -12.5, to = -0.5,

+ by = 0.5), seq(from = 0.5, to = 12.5, by = 0.5)),

+ each = 50) + rnorm(2500)

8

The following code will scale this vector to have a variance of 45.

R> scaleFactE <- (sd(envError)/sqrt(45))

R> envError <- scale(envError, center = FALSE, scale = scaleFactE)

R> envError <- as.vector(envError)

The genotypic effects of the 2500 entries are simulated with zero mean and

variance of 25 (because of some sampling variation the vector is additionally

scaled to assure a variance of 25).

R> gEffects <- rnorm(2500, mean = 0, sd = 5)

R> scaleFactG <- (sd(gEffects)/sqrt(25))

R> gEffects <- scale(gEffects, center = FALSE, scale = scaleFactG)

R> gEffects <- as.vector(gEffects)

To arrive at the genotypic values g, µ is added to gEffects

R> mu <- 30

R> gValues <- mu + gEffects

The observed phenotypic values (pobs) are then obtained by adding gValues to

envError according to (4).

R> obsP <- gValues + envError

To observe the handling of NA values, the third element of obsP is set to NA.

R> obsP[3] <- NA

Finally the phenotypic and genetic variance are stored for later use. Note that

var(pobs) will not be exactly 70 as it should be, but slightly different due to

minimal, “random” covariance between gEffects and envError.

R> varP <- var(obsP, na.rm = TRUE)

R> varG <- var(gEffects)

The row and column vectors are given to the arguments rows and columns

and the pobs to obsPhe of movingGrid() The grid is designed by shapeCross

and layers as demonstrated above. The argument excludeCenter is TRUE by

default.

9

R> ## creates object of class movG

R> resMG <- movingGrid(rows = rows,

+ columns = cols,

+ obsPhe = obsP,

+ shapeCross =

+ list(1:2,

+ 1:2,

+ 1:2,

+ 1:2),

+ layers = 1)

A summary of the adjustment process can be obtained by the function summary().

R> summary(resMG)

Adjustment by function: movingGrid

Maximum possible number of values in the grid: 12

Mean number of values in grid: 11.6

Number of observation: 2500 , number of NA-observations: 1

Coefficient of correlation between moving means

and observed phe. values: 0.77

Regression coefficient of moving means regressed

on observed phe. values : 0.96

Experimental layout:

rows: 50

columns: 50

The first line names the function used. In the second line the number of val-

ues (cells) in a complete grid is given. The mean number of values in the third

line is always smaller, because for entries close to the edge of the experimental

area only partial grids can be constructed. NA values also have this effect. The

fourth line gives the number of observations§ and how many of these were NA.

§An “observation” is everything mentioned in the vectors given to rows and columns, irre-
spective of whether the corresponding data entry in the vector to obsPhe is NA or not.

10

The Pearson coefficient of correlation between xi and pi,obs gives information

on the strength of the influence of the covariate xi. If this value is too low,

an adjustment will not yield better estimates of g than by using pobs directly.

In rare cases, for example under strong inter plant competition, the correlation

coefficient can be below zero. In such a case one should not perform an adjust-

ment. The next line gives b, the regression coefficient used for the adjustment

[see (2)]. Finally, the dimensions of the experimental area are given.¶

The function entryData() extracts all information on an entry available,

its row, column, pi,adj , pi,obs, xi and the number of values used for calculating

its xi.

R> head(entryData(resMG))

row column adjustedPhe observedPhe movingMean nValues

1 1 1 28.292 18.581 19.836 4

2 1 2 28.211 18.393 19.724 6

3 1 3 NA NA 18.492 8

4 1 4 32.779 23.825 20.627 7

5 1 5 27.936 20.621 22.339 7

6 1 6 31.962 23.694 21.344 8

For the third element, which is NA, no padj was calculated of course. The moving

mean xi is, however, available.

The padj can be obtained by using the function fitted().

R> fitted(resMG)[1:10]

[1] 28.292 28.211 NA 32.779 27.936 31.962 28.684 35.035

[9] 30.983 27.012

The x are extracted by movingMean().

R> movingMean(resMG)[1:10]

[1] 19.83616 19.72393 18.49230 20.62685 22.33869 21.34358

[7] 19.83770 18.34463 17.82967 18.96546

¶The function movingGrid() automatically assumes a rectangular experimental area with
the given dimensions. Therefore, the number of cells in the “virtual” experimental. area is
rows × columns. If the number of observations is smaller than this, the remaining cells are
filled with NA values. These are not “observations” and are not included in the number of NA
values given in the summary. They also do not influence the results of movingGrid() and
are ignored by the various extractor functions.

11

The residuals for the model in (3) are returned by the function residuals().

R> residuals(resMG)[1:10]

1 2 3 4 5 6

-1.695044 -1.775721 NA 2.791641 -2.051174 1.974373

7 8 9 10

-1.302638 5.048233 0.995523 -2.974943

The h2

obs is 0.362

R> varG/varP

[1] 0.3622204

while the h2

adj is with 0.898 considerably higher.

R> varPadj <- var(fitted(resMG), na.rm = TRUE)

R> varG/varPadj

[1] 0.898043

This demonstrates a tremendous improvement due to the adjustment procedure.

In reality the improvement will usually not be this much because the contribu-

tion of random noise, which can not be picked up by moving grid adjustment,

is much larger than in this example.

12

	Moving grid adjustment
	The package
	Overview
	Setting up the grid
	Using movingGrid()

