
Working with Two-Mode Networks in “multiplex”

Antonio Rivero Ostoic
CESU, University of San Simón

November 16, 2023

Social networks are systems defined by a collection of relationships among collective actors. In terms of

set theory, a relation is an ordered pair such as (x, y) that refers to a directed linkage from an element x

to an element y, where x ∈ X and y ∈ Y called the domain and codomain of the relation. The context

of a binary relation R is the overall relation set that results from the Cartesian product of the domain

and codomain or X × Y of all ordered pairs (x, y) where R is a subset of the context.

Usually, a social network refers to a domain with a set of relations on such domain, which is the generic

term used to name the social entities in the system. In such a case, the system of relations is said to be

a one-mode network. However, when the domain and the codomain are not equal, there are two sets of

entities that describe the entire social system, which is known as affiliation, bipartite, or else two-mode

networks.

1 Galois representation

In terms of Formal Concept Analysis, the domain and codomain of a two-mode network are characterized

respectively as a set of objects G, and a set of attributes M . A formal context is obtained with an incident

relation I ⊆ G×M between these sets, and this triple is typically represented as a data table.

> # Fruits data set with attributes

> frt <- data.frame(yellow = c(0,1,0,0,1,0,0,0), green = c(0,0,1,0,0,0,0,1), red = c(1,0,0,1,0,0,0,0),

+ orange = c(0,0,0,0,0,1,1,0), apple = c(1,1,1,1,0,0,0,0), citrus = c(0,0,0,0,1,1,1,1))

> # Label the objects

> rownames(frt) <- c("PinkLady","GrannySmith","GoldenDelicious","RedDelicious","Lemon","Orange","Mandarin","Lime")

> frt

yellow green red orange apple citrus

PinkLady 0 0 1 0 1 0

GrannySmith 1 0 0 0 1 0

GoldenDelicious 0 1 0 0 1 0

RedDelicious 0 0 1 0 1 0

Lemon 1 0 0 0 0 1

Orange 0 0 0 1 0 1

Mandarin 0 0 0 1 0 1

Lime 0 1 0 0 0 1

1

Galois derivations

The formal concept of a formal context is a pair of sets of objects A and attributes B that is maximally

contained on each other. A Galois derivation between G and M is defined for any subsets A ⊆ G and

B ⊆ M by

A′ = m ∈ M | (g,m) ∈ I (for all g ∈ A)

B′ = g ∈ G | (g,m) ∈ I (for all m ∈ B)

where A and B are said to be the extent and intent of the formal concept respectively, whereas A′ is

the set of attributes common to all the objects in the intent and B′ the set of objects possessing the

attributes in the extent.

Starting with version 1.5 it is possible to perform an algebraic analysis of two-mode networks with the

function galois() of multiplex to produce Galois derivations. This command creates an adjunction

between the two sets partially ordered by inclusion, and we obtain the complete list of concepts of the

context, which can be assigned into an object with the class named “Galois” and “full.”

> # Load first the package

> library("multiplex")

> # Galois representation between objects and attributes

> galois(frt)

$sep

[1] ", "

$gc

$yellow

[1] "GrannySmith, Lemon"

$green

[1] "GoldenDelicious, Lime"

$`apple, red`

[1] "PinkLady, RedDelicious"

$`citrus, orange`

[1] "Mandarin, Orange"

$apple

[1] "GoldenDelicious, GrannySmith, PinkLady, RedDelicious"

$citrus

[1] "Lemon, Lime, Mandarin, Orange"

$`apple, citrus, green, orange, red, yellow`

character(0)

$`apple, yellow`

[1] "GrannySmith"

$`citrus, yellow`

[1] "Lemon"

$`apple, green`

[1] "GoldenDelicious"

2

$`citrus, green`

[1] "Lime"

[[12]]

[1] "GoldenDelicious, GrannySmith, Lemon, Lime, Mandarin, Orange, PinkLady, RedDelicious"

attr(,"class")

[1] "Galois" "full"

It is also possible to condense the labeling of the objects and attributes with the option “reduced” in

the argument labeling of the galois() function.

> # Galois derivation with a reduced labeling

> galois(frt, labeling = "reduced")

$sep

[1] ", "

$gc

$reduc

$reduc$yellow

character(0)

$reduc$green

character(0)

$reduc$red

[1] "PinkLady, RedDelicious"

$reduc$orange

[1] "Mandarin, Orange"

$reduc$apple

character(0)

$reduc$citrus

character(0)

$reduc[[7]]

character(0)

$reduc[[8]]

[1] "GrannySmith"

$reduc[[9]]

[1] "Lemon"

$reduc[[10]]

[1] "GoldenDelicious"

$reduc[[11]]

[1] "Lime"

$reduc[[12]]

character(0)

However, the full labeling is useful for the construction of the hierarchy of concepts, and therefore the

structure of the 12 concepts given by the Galois derivation is keept in the output.

3

> galois(frt, labeling = "reduced") |>

+ getElement("gc") |>

+ getElement("full") |>

+ str()

List of 12

$ yellow : chr "GrannySmith, Lemon"

$ green : chr "GoldenDelicious, Lime"

$ apple, red : chr "PinkLady, RedDelicious"

$ citrus, orange : chr "Mandarin, Orange"

$ apple : chr "GoldenDelicious, GrannySmith, PinkLady, RedDelicious"

$ citrus : chr "Lemon, Lime, Mandarin, Orange"

$ apple, citrus, green, orange, red, yellow: chr(0)

$ apple, yellow : chr "GrannySmith"

$ citrus, yellow : chr "Lemon"

$ apple, green : chr "GoldenDelicious"

$ citrus, green : chr "Lime"

$: chr "GoldenDelicious, GrannySmith, Lemon, Lime, Mandarin, Orange, PinkLady, RedDelicious"

- attr(*, "class")= chr [1:2] "Galois" "full"

Partial ordering of the concepts

A hierarchy of the concepts is given by the relation subconcept–superconcept

(A,B) ≤ (A2, B2) ⇔ A1 ⊆ A2 (⇔ B1 ⊆ B2)

For this, the function partial.order() has the “galois” option in the type argument where the hier-

archy of the concepts is constructed. In this case, even though the concepts have the “reduced” option,

it is the “full” labeling of the formal concepts that is the base of the ordering among these concepts that

can be designated in different ways.

> # Partial ordering of the formal concepts with established labels

> pogdc <- galois(frt, labeling = "reduced") |>

+ partial.order(type = "galois", lbs = paste("c", seq_len(12), sep = ""))

> pogdc

c1 c2 c3 c4 c5 c6 c7 c8 c9 c10 c11 c12

c1 1 0 0 0 0 0 0 0 0 0 0 1

c2 0 1 0 0 0 0 0 0 0 0 0 1

c3 0 0 1 0 1 0 0 0 0 0 0 1

c4 0 0 0 1 0 1 0 0 0 0 0 1

c5 0 0 0 0 1 0 0 0 0 0 0 1

c6 0 0 0 0 0 1 0 0 0 0 0 1

c7 1 1 1 1 1 1 1 1 1 1 1 1

c8 1 0 0 0 1 0 0 1 0 0 0 1

c9 1 0 0 0 0 1 0 0 1 0 0 1

c10 0 1 0 0 1 0 0 0 0 1 0 1

c11 0 1 0 0 0 1 0 0 0 0 1 1

c12 0 0 0 0 0 0 0 0 0 0 0 1

attr(,"class")

[1] "Partial.Order" "galois" ", "

Object pogdc records the partial order of the concepts with a a customized labeling of the concepts. The

partial order table shows that all concepts are included in concept 12, whereas concept 7 is included in

the rest of the concepts. As a result, these concepts constitute the maxima and the minima elements

of a complete lattice that provides for all the formal concepts of the context. From the outputs given

4

with the Galois derivation of this context, these concepts correspond to the set of objects and the set of

attributes, which are entirely abridged in the reduced formal context.

Concept diagram of the context

The concept diagram of the formal context is a system of concepts partially ordered where the greatest

lower bound of the meet and the least upper bound of the join are defined as∧
t∈T

(
At, Bt

)
=

(⋂
t∈T

At,
(⋃
t∈T

Bt

)′′)
∨
t∈T

(
At, Bt

)
=

((⋃
t∈T

At

)′′
,

⋂
t∈T

Bt

)

To plot this type of lattice diagram with the labeling corresponding to the reduced context.
> # Plot the lattice diagram

> suppressPackageStartupMessages(require("Rgraphviz", quietly = TRUE))

> frt |> galois(labeling = "reduced") |>

+ partial.order(type = "galois") |>

+ diagram(main = "Fruits & Colors", fsize = 17, fcol = "red", col.main = "blue")

Fruits & Colors

{yellow} {} {green} {}

{red} {PinkLady, RedDelicious} {orange} {Mandarin, Orange}

{apple} {} {citrus} {}

7

{} {GrannySmith} {} {Lemon}{} {GoldenDelicious} {} {Lime}

12

Figure 1: Concept Lattice of fruits and color characteristics

Since this is a reduced representation of the context, both objects and attributes are only given just once.

Besides, labels are placed instead of the nodes rather than next to them as the typical representation of

formal context. Moreover, in case that a concept does not have a label, which happens in most reduced

contexts, then the number of the concept is placed as the node.

5

2 Diagram levels & Order Filters

The construction of the concept diagram of the context allows us to have additional information about

the network relational structure. One part is concerned with the inclusion levels in the lattice structure,

and another aspect deals with downsets and upsets, which are formed from all the lower and greater

bounds of an element in the lattice diagram. Next, we take a brief look at the suitable functions to get

such information.

Levels in the lattice diagram

Mainly when dealing with large diagrams, it can be difficult to distinguish the different heights in the

lattice and the elements belonging to each level. Function diagram.levels() allows us to count with

such information, and we illustrate this routine with the entry pogdc that represents the partial order of

the concepts corresponding to the fruits data set.

> # Diagram levels using native pipeing

> require("Rgraphviz", quietly = TRUE, warn.conflicts = FALSE)

> frt |>

+ galois(labeling = "reduced") |>

+ partial.order(type = "galois") |>

+ diagram.levels()

$`2`

[1] "{yellow} {}" "{green} {}" "{apple} {}" "{citrus} {}"

$`3`

[1] "{red} {PinkLady, RedDelicious}" "{orange} {Mandarin, Orange}" "{} {GrannySmith}"

[4] "{} {Lemon}" "{} {GoldenDelicious}" "{} {Lime}"

$`4`

[1] "7"

$`1`

[1] "12"

Hence concepts 7 and 12 make a class of their own, whereas the rest of the concepts belong either to class

2 or to class 3.

By setting perm to TRUE, we obtain the different classes in the lattice structure in a convenient way,

and also a permuted partial order table according to the clustering. Recall that pogdc used in function

diagram.levels() records the formal concepts with a customized labeling.

> # Diagram levels with permutation

> if(require("Rgraphviz", quietly = TRUE, warn.conflicts = FALSE)) {
+ diagram.levels(pogdc, perm = TRUE) }

$cls

2 2 3 3 2 2 4 3 3 3 3 1

1 c1 c2 c3 c4 c5 c6 c7 c8 c9 c10 c11 c12

$clu

[1] 2 2 3 3 2 2 4 3 3 3 3 1

6

$perm

c12 c1 c2 c5 c6 c3 c4 c8 c9 c10 c11 c7

c12 1 0 0 0 0 0 0 0 0 0 0 0

c1 1 1 0 0 0 0 0 0 0 0 0 0

c2 1 0 1 0 0 0 0 0 0 0 0 0

c5 1 0 0 1 0 0 0 0 0 0 0 0

c6 1 0 0 0 1 0 0 0 0 0 0 0

c3 1 0 0 1 0 1 0 0 0 0 0 0

c4 1 0 0 0 1 0 1 0 0 0 0 0

c8 1 1 0 1 0 0 0 1 0 0 0 0

c9 1 1 0 0 1 0 0 0 1 0 0 0

c10 1 0 1 1 0 0 0 0 0 1 0 0

c11 1 0 1 0 1 0 0 0 0 0 1 0

c7 1 1 1 1 1 1 1 1 1 1 1 1

Order Filters and Order Ideals

Implications among objects and attributes in an arbitrary partially ordered set representing context are

revealed by subsets in the order structure.

Let (P,≤) be an ordered set, and a, b are elements in P .

A non-empty subset U [resp. D] of P is an upset [resp. downset] called a order filter [resp. order ideal]

if, for all a ∈ P and b ∈ U [resp. D]

b ≤ a implies a ∈ U [resp. a ≤ b implies a ∈ D]

For a particular element x ∈ P , the upset ↑x formed for all the upper bounds of x is called a principal

order filter generated by x. Dually, ↓x is a principal order ideal with all the lower bounds of x. Order

filters and order ideals not coinciding with P are called proper.

To illustrate these concepts, we apply the function fltr() to the third element of the partial order

represented by pogd that results in a proper principal order filter for this formal concept with labels.

> # First assign the partial order of the reduced context

> pogd <- frt |> galois(labeling = "reduced") |>

+ partial.order(type = "galois")

> # Principal order filter of the third concept

> fltr(3, pogd)

$`3`

[1] "{red} {PinkLady, RedDelicious}"

$`5`

[1] "{apple} {}"

$`12`

[1] "12"

We get the same result when introducing the one or more of the names of this concept.

7

> # Principal order filter of the concept with these labels

> fltr(c("red", "RedDelicious"), pogd)

Or alternatively we combine elements from different concepts to obtain other types of order filters in the
concept diagram of the context.

> # Order filter of two concepts

> fltr(c("Lemon", "Lime"), pogd)

$`9`

[1] "{} {Lemon}"

$`11`

[1] "{} {Lime}"

$`1`

[1] "{yellow} {}"

$`2`

[1] "{green} {}"

$`6`

[1] "{citrus} {}"

$`12`

[1] "12"

Order ideals and principal order ideals are obtained similarly with this function if the argument ideal is

set to TRUE.

> # Order ideal of two concepts

> fltr(c(9, 11), pogd, ideal = TRUE)

$`9`

[1] "{} {Lemon}"

$`11`

[1] "{} {Lime}"

$`7`

[1] "7"

3 Bipartite graphs

Two-mode network are depicted through bipartite graphs, where the entities in one set only can relate

to the elements placed in the other set. For this, multiplex has a reverse dependence on multigraph

for the visualization of multiple networks, and also for bipartite graphs. Hence, we use the function

bmgraph() to plot the graph of the frt data set with the default layout option.

> # Load the "multigraph" package and plot bipartite graph

> suppressPackageStartupMessages(library("multigraph", quietly = TRUE))

> bmgraph(frt, pch = 16:15, fsize = 6)

8

PinkLady

GrannySmith

GoldenDelicious

RedDelicious

Lemon

Orange

Mandarin

Lime

yellow

green

red

orange

apple

citrus

Figure 2: Bipartite graph

Multigraph with a binomial projection

Another possibility is to apply a force-directed layout to the binomial projection of this two-mode data
set. Below the plot is made with some arguments for the vertices and the graph clock-wise rotated.

> # Plot proyection of bipartite network

> bmgraph(frt, layout = "force", seed = 1, cex = 3, fsize = 7, vcol = 8, pch = 16:15, rot = 25)

9

PinkLady

GrannySmith

GoldenDelicious

RedDelicious

Lemon

Orange

Mandarin

Lime

yellow

green

red

orange

apple

citrus

Figure 3: Bipartite graph with a force-directed layout

References

[1] Ganter, B. and R. Wille Formal Concept Analysis – Mathematical Foundations. Springer. 1996.

[2] Hansen KD, Gentry J, Long L, Gentleman R, Falcon S, Hahne F and Sarkar D Rgraphviz: Provides

plotting capabilities for R graph objects. R package version 2.24.0

[3] Ostoic, J.A.R. multiplex: Algebraic Tools for the Analysis of Multiple Social Networks. R package

v 3.0.0

[4] Ostoic, J.A.R. multigraph: Plot and manipulate multigraphs. R package v 0.99

10

