
Package ‘multiblock’
April 1, 2025

Encoding UTF-8

Type Package

Title Multiblock Data Fusion in Statistics and Machine Learning

Version 0.8.10

Date 2025-04-01

Description
Functions and datasets to support Smilde, Næs and Liland (2021, ISBN: 978-1-119-60096-1)
``Multiblock Data Fusion in Statistics and Machine Learning -
Applications in the Natural and Life Sciences''.
This implements and imports a large collection of methods for multiblock data analy-
sis with common interfaces, result- and plotting
functions, several real data sets and six vignettes covering a range different applications.

License GPL (>= 2)

URL https://khliland.github.io/multiblock/,

https://github.com/khliland/multiblock/

BugReports https://github.com/khliland/multiblock/issues/

Depends R (>= 3.5.0)

Imports ade4, car, HDANOVA (>= 0.8.2), MASS, mixlm, plotrix, pls,
plsVarSel, pracma, progress, Rcpp, RSpectra, SSBtools

Suggests EMSC, FactoMineR, geigen, RGCCA (>= 3.0.0), r.jive,
rmarkdown, knitr

LinkingTo Rcpp, RcppEigen

RoxygenNote 7.3.2

VignetteBuilder knitr

NeedsCompilation yes

Author Kristian Hovde Liland [aut, cre]
(<https://orcid.org/0000-0001-6468-9423>),

Solve Sæbø [ctb],
Stefan Schrunner [rev]

Maintainer Kristian Hovde Liland <kristian.liland@nmbu.no>

1

https://khliland.github.io/multiblock/
https://github.com/khliland/multiblock/
https://github.com/khliland/multiblock/issues/
https://orcid.org/0000-0001-6468-9423

2 Contents

Repository CRAN

Date/Publication 2025-04-01 08:30:02 UTC

Contents
basic . 3
block.data.frame . 4
candies . 4
cca . 5
complex . 6
compnames . 6
disco . 7
DISCOsca . 8
dummycode . 9
explvar . 10
extended.model.frame . 10
gca . 11
gpa . 12
gsvd . 13
hogsvd . 14
hpca . 15
ifa . 16
jive . 17
lpls . 18
lplsData . 20
lpls_results . 21
maage . 23
mbpls . 25
mbrda . 27
mcoa . 28
mcolors . 29
mfa . 30
mobile . 31
multiblock_plots . 32
multiblock_results . 35
mvrVal . 36
pca . 39
pcagca . 40
popls . 42
potato . 43
predict.mbpls . 44
preprocess . 46
rosa . 47
rosa_plots . 49
rosa_results . 51
sca . 54
simulated . 55

basic 3

smbpls . 56
sopls . 58
sopls_plots . 60
sopls_results . 64
SO_TDI . 67
statis . 70
supervised . 71
unique_combos . 72
unsupervised . 72
wine . 73

Index 75

basic Single- and Two-Block Methods

Description

This documentation covers a range of single- and two-block methods. In particular:

• PCA - Principal Component Analysis (pca)

• PCR - Principal Component Regression (pcr)

• PLSR - Partial Least Squares Regression (plsr)

• CCA - Canonical Correlation Analysis (cca)

• IFA - Interbattery Factor Analysis (ifa)

• GSVD - Generalized SVD (gsvd)

See Also

Overviews of available methods, multiblock, and methods organised by main structure: basic,
unsupervised, asca, supervised and complex.

Examples

data(potato)
X <- potato$Chemical
y <- potato$Sensory[,1,drop=FALSE]

pca.pot <- pca(X, ncomp = 2)
pcr.pot <- pcr(y ~ X, ncomp = 2)
pls.pot <- plsr(y ~ X, ncomp = 2)
cca.pot <- cca(potato[1:2])
ifa.pot <- ifa(potato[1:2])
gsvd.pot <- gsvd(lapply(potato[3:4], t))

4 candies

block.data.frame Block-wise indexable data.frame

Description

This is a convenience function for making data.frames that are easily indexed on a block-wise
basis.

Usage

block.data.frame(X, block_inds = NULL, to.matrix = TRUE)

Arguments

X Either a single data.frame to index or a list of matrices/data.frames

block_inds Named list of indexes if X is a single data.frame, otherwise NULL.

to.matrix logical indicating if input list elements should be converted to matrices.

Value

A data.frame which can be indexed block-wise.

Examples

Random data
M <- matrix(rnorm(200), nrow = 10)
.. with dimnames
dimnames(M) <- list(LETTERS[1:10], as.character(1:20))

A named list for indexing
inds <- list(B1 = 1:10, B2 = 11:20)

X <- block.data.frame(M, inds)
str(X)

candies Sensory assessment of candies.

Description

A dataset containing 9 sensory attributes for 5 candies assessed by 11 trained assessors.

Usage

data(candies)

cca 5

Format

A data.frame having 165 rows and 3 variables:

assessment Matrix of sensory attributes

assessor Factor of assessors

candy Factor of candies

References

Luciano G, Næs T. Interpreting sensory data by combining principal component analysis and anal-
ysis of variance. Food Qual Prefer. 2009;20(3):167-175.

cca Canonical Correlation Analysis - CCA

Description

This is a wrapper for the stats::cancor function for computing CCA.

Usage

cca(X)

Arguments

X list of input data blocks.

Details

CCA is a method which maximises correlation between linear combinations of the columns of two
blocks, i.e. max(cor(X1 x a, X2 x b)). This is done sequentially with deflation in between, such that
a sequence of correlations and weight vectors a and b are associated with a pair of matrices.

Value

multiblock object with associated with printing, scores, loadings. Relevant plotting functions:
multiblock_plots and result functions: multiblock_results.

References

Hotelling, H. (1936) Relations between two sets of variates. Biometrika, 28, 321–377.

See Also

Overviews of available methods, multiblock, and methods organised by main structure: basic,
unsupervised, asca, supervised and complex. Common functions for computation and extrac-
tion of results and plotting are found in multiblock_results and multiblock_plots, respec-
tively.

6 compnames

Examples

data(potato)
X <- potato$Chemical

cca.pot <- cca(potato[1:2])

complex Methods With Complex Linkage

Description

This documentation covers a few complex methods. In particular:

• L-PLS - Partial Least Squares in L configuration (lpls)
• SO-PLS-PM - Sequential and Orthogonalised PLS Path Modeling (sopls_pm)

See Also

Overviews of available methods, multiblock, and methods organised by main structure: basic,
unsupervised, asca, supervised and complex.

Examples

L-PLS
sim <- lplsData(I = 30, N = 20, J = 5, K = 6, ncomp = 2)
X1 <- sim$X1; X2 <- sim$X2; X3 <- sim$X3
lp <- lpls(X1,X2,X3) # exo-L-PLS

compnames Vector of component names

Description

Convenience function for creating a vector of component names based on the dimensions the input
object (matrix or object having a score function).

Usage

compnames(object, comps, explvar = FALSE, ...)

Arguments

object An object fitted using the multiblock package.
comps integer vector of components.
explvar logical indicating if explained variances should be included.
... Unused

disco 7

Details

This is a copy of compnames from the pls package to work with multiblock objects.

Value

A character vector of component names.

disco Distinctive and Common Components with SCA - DISCO

Description

This is a wrapper for the DISCOsca function by Zhengguo Gu for computing DISCO.

Usage

disco(X, ncomp = 2, ...)

Arguments

X list of input blocks.

ncomp integer number of components to extract.

... additional arguments (not used).

Details

DISCO is a restriction of SCA where Alternating Least Squares is used for estimation of loadings
and scores. The SCA solution is rotated towards loadings (in sample linked mode) which are filled
with zeros in a pattern resembling distinct, local and common components. When used in sample
linked mode and only selecting distinct components, it shares a resemblance to SO-PLS, only in an
unsupervised setting. Explained variances are computed as proportion of block variation explained
by scores*loadings’.

Value

multiblock object including relevant scores and loadings. Relevant plotting functions: multiblock_plots
and result functions: multiblock_results.

References

Schouteden, M., Van Deun, K., Wilderjans, T. F., & Van Mechelen, I. (2014). Performing DISCO-
SCA to search for distinctive and common information in linked data. Behavior research methods,
46(2), 576-587.

See Also

Overviews of available methods, multiblock, and methods organised by main structure: basic,
unsupervised, asca, supervised and complex.

8 DISCOsca

Examples

data(potato)
potList <- as.list(potato[c(1,2,9)])
pot.disco <- disco(potList)
plot(scores(pot.disco), labels="names")

DISCOsca DISCO-SCA rotation.

Description

A DISCO-SCA procedure for identifying common and distinctive components. The code is adapted
from the orphaned RegularizedSCA package by Zhengguo Gu.

Usage

DISCOsca(DATA, R, Jk)

Arguments

DATA A matrix, which contains the concatenated data with the same subjects from
multiple blocks. Note that each row represents a subject.

R Number of components (R>=2).

Jk A vector containing number of variables in the concatenated data matrix.

Value

Trot_best Estimated component score matrix (i.e., T)

Prot_best Estimated component loading matrix (i.e., P)

comdist A matrix representing common distinctive components. (Rows are data blocks
and columns are components.) 0 in the matrix indicating that the corresponding
component of that block is estimated to be zeros, and 1 indicates that (at least one
component loading in) the corresponding component of that block is not zero.
Thus, if a column in the comdist matrix contains only 1’s, then this column is a
common component, otherwise distinctive component.

propExp_component

Proportion of variance per component.

References

Schouteden, M., Van Deun, K., Wilderjans, T. F., & Van Mechelen, I. (2014). Performing DISCO-
SCA to search for distinctive and common information in linked data. Behavior research methods,
46(2), 576-587.

dummycode 9

Examples

Not run:
DATA1 <- matrix(rnorm(50), nrow=5)
DATA2 <- matrix(rnorm(100), nrow=5)
DATA <- cbind(DATA1, DATA2)
R <- 5
Jk <- c(10, 20)
DISCOsca(DATA, R, Jk)

End(Not run)

dummycode Dummy-coding of a single vector

Description

Flexible dummy-coding allowing for all R’s built-in types of contrasts and optional dropping of a
factor level to reduce rank defficiency probability.

Usage

dummycode(Y, contrast = "contr.sum", drop = TRUE)

Arguments

Y vector to dummy code.

contrast Contrast type, default = "contr.sum".

drop logical indicating if one level should be dropped (default = TRUE).

Value

matrix made by dummy-coding the input vector.

Examples

vec <- c("a","a","b","b","c","c")
dummycode(vec)

10 extended.model.frame

explvar Explained predictor variance

Description

Extraction and/or computation of explained variances for various object classes in the multiblock
package.

Usage

explvar(object)

Arguments

object An object fitted using a method from the multiblock package

Value

A vector of component-wise explained variances for predictors.

Examples

data(potato)
so <- sopls(Sensory ~ Chemical + Compression, data=potato, ncomp=c(10,10),

max_comps=10)
explvar(so)

extended.model.frame Extracting the Extended Model Frame from a Formula or Fit

Description

This function attempts to apply model.frame and extend the result with columns of interactions.

Usage

extended.model.frame(formula, data, ..., sep = ".")

Arguments

formula a model formula or terms object or an R object.

data a data.frame, list or environment (see model.frame).

... further arguments to pass to model.frame.

sep separator in contraction of names for interactions (default = ".").

gca 11

Value

A data.frame that includes everything a model.frame does plus interaction terms.

Examples

dat <- data.frame(Y = c(1,2,3,4,5,6),
X = factor(LETTERS[c(1,1,2,2,3,3)]),
W = factor(letters[c(1,2,1,2,1,2)]))

extended.model.frame(Y ~ X*W, dat)

gca Generalized Canonical Analysis - GCA

Description

This is an interface to both SVD-based (default) and RGCCA-based GCA (wrapping the RGCCA::rgcca
function)

Usage

gca(X, ncomp = "max", svd = TRUE, tol = 10^-12, corrs = TRUE, ...)

Arguments

X list of input blocks.

ncomp integer number of components to extract, either single integer (equal for all
blocks), vector (individual per block) or ’max’ for maximum possible number
of components.

svd logical indicating if Singular Value Decomposition approach should be used
(default=TRUE).

tol numeric tolerance for component inclusion (singular values).

corrs logical indicating if correlations should be calculated for RGCCA based ap-
proach.

... additional arguments for RGCCA approach.

Details

GCA is a generalisation of Canonical Correlation Analysis to handle three or more blocks. There
are several ways to generalise, and two of these are available through gca. The default is an SVD
based approach estimating a common subspace and measuring mean squared correlation to this.
An alternative approach is available through RGCCA. For the SVD based approach, the ncomp
parameter controls the block-wise decomposition while the following the consensus decomposition
is limited to the minimum number of components from the individual blocks.

12 gpa

Value

multiblock object including relevant scores and loadings. Relevant plotting functions: multiblock_plots
and result functions: multiblock_results. blockCoef contains canonical coefficients, while
blockDecomp contains decompositions of each block.

References

• Carroll, J. D. (1968). Generalization of canonical correlation analysis to three or more sets of
variables. Proceedings of the American Psychological Association, pages 227-22.

• Van der Burg, E. and Dijksterhuis, G. (1996). Generalised canonical analysis of individual
sensory profiles and instrument data, Elsevier, pp. 221–258.

See Also

Overviews of available methods, multiblock, and methods organised by main structure: basic,
unsupervised, asca, supervised and complex. Common functions for computation and extrac-
tion of results and plotting are found in multiblock_results and multiblock_plots, respec-
tively.

Examples

data(potato)
potList <- as.list(potato[c(1,2,9)])
pot.gca <- gca(potList)
plot(scores(pot.gca), labels="names")

gpa Generalized Procrustes Analysis - GPA

Description

This is a wrapper for the FactoMineR::GPA function for computing GPA.

Usage

gpa(X, graph = FALSE, ...)

Arguments

X list of input blocks.

graph logical indicating if decomposition should be plotted.

... additional arguments for RGCCA approach.

gsvd 13

Details

GPA is a generalisation of Procrustes analysis, where one matrix is scaled and rotated to be as
similar as possible to another one. Through the generalisation, individual scaling and rotation of
each input matrix is performed against a common representation which is estimated in an iterative
manner.

Value

multiblock object including relevant scores and loadings. Relevant plotting functions: multiblock_plots
and result functions: multiblock_results.

References

Gower, J. C. (1975). Generalized procrustes analysis. Psychometrika. 40: 33–51.

See Also

Overviews of available methods, multiblock, and methods organised by main structure: basic,
unsupervised, asca, supervised and complex. Common functions for computation and extrac-
tion of results and plotting are found in multiblock_results and multiblock_plots, respec-
tively.

Examples

data(potato)
potList <- as.list(potato[c(1,2,9)])
pot.gpa <- gpa(potList)
plot(scores(pot.gpa), labels="names")

gsvd Generalised Singular Value Decomposition - GSVD

Description

This is a wrapper for the geigen::gsvd function for computing GSVD.

Usage

gsvd(X)

Arguments

X list of input data blocks.

Details

GSVD is a generalisation of SVD to two variable-linked matrices where common loadings and
block-wise scores are estimated.

14 hogsvd

Value

multiblock object with associated with printing, scores, loadings. Relevant plotting functions:
multiblock_plots and result functions: multiblock_results.

References

Van Loan, C. (1976) Generalizing the singular value decomposition. SIAM Journal on Numerical
Analysis, 13, 76–83.

See Also

Overviews of available methods, multiblock, and methods organised by main structure: basic,
unsupervised, asca, supervised and complex. Common functions for computation and extrac-
tion of results and plotting are found in multiblock_results and multiblock_plots, respec-
tively.

Examples

data(potato)
X <- potato$Chemical

gsvd.pot <- gsvd(lapply(potato[3:4], t))

hogsvd Higher Order Generalized SVD - HOGSVD

Description

This is a simple implementation for computing HOGSVD

Usage

hogsvd(X)

Arguments

X list of input blocks.

Details

HOGSVD is a generalisation of SVD to two or more blocks. It finds a common set of loadings
across blocks and individual sets of scores per block.

Value

multiblock object including relevant scores and loadings. Relevant plotting functions: multiblock_plots
and result functions: multiblock_results.

hpca 15

References

Ponnapalli, S. P., Saunders, M. A., Van Loan, C. F., & Alter, O. (2011). A higher-order generalized
singular value decomposition for comparison of global mRNA expression from multiple organisms.
PloS one, 6(12), e28072.

See Also

Overviews of available methods, multiblock, and methods organised by main structure: basic,
unsupervised, asca, supervised and complex. Common functions for computation and extrac-
tion of results and plotting are found in multiblock_results and multiblock_plots, respec-
tively.

Examples

data(candies)
candyList <- lapply(1:nlevels(candies$candy),function(x)candies$assessment[candies$candy==x,])
can.hogsvd <- hogsvd(candyList)
scoreplot(can.hogsvd, block=1, labels="names")

hpca Hierarchical Principal component analysis - HPCA

Description

This is a wrapper for the RGCCA::rgcca function for computing HPCA.

Usage

hpca(X, ncomp = 2, scale = FALSE, verbose = FALSE, ...)

Arguments

X list of input blocks.

ncomp integer number of components to extract.

scale logical indicating if variables should be scaled.

verbose logical indicating if diagnostic information should be printed.

... additional arguments for RGCCA.

Details

HPCA is a hierarchical PCA analysis which combines two or more blocks into a two-level decom-
position with block-wise loadings and scores and superlevel common loadings and scores. The
method is closely related to the supervised method MB-PLS in structure.

16 ifa

Value

multiblock object including relevant scores and loadings. Relevant plotting functions: multiblock_plots
and result functions: multiblock_results.

References

Westerhuis, J.A., Kourti, T., and MacGregor,J.F. (1998). Analysis of multiblock and hierarchical
PCA and PLS models. Journal of Chemometrics, 12, 301–321.

See Also

Overviews of available methods, multiblock, and methods organised by main structure: basic,
unsupervised, asca, supervised and complex. Common functions for computation and extrac-
tion of results and plotting are found in multiblock_results and multiblock_plots, respec-
tively.

Examples

data(potato)
potList <- as.list(potato[c(1,2,9)])
pot.hpca <- hpca(potList)
plot(scores(pot.hpca), labels="names")

ifa Inter-battery Factor Analysis - IFA

Description

This is a wrapper for the RGCCA::rgcca function for computing IFA.

Usage

ifa(X, ncomp = 1, scale = FALSE, verbose = FALSE, ...)

Arguments

X list of input data blocks.

ncomp integer number of principal components to return.

scale logical indicating if variables should be standardised (default=FALSE).

verbose logical indicating if intermediate results should be printed.

... additional arguments to RGCCA::rgcca.

Details

IFA rotates two matrices to align one or more factors against each other, maximising correlations.

jive 17

Value

multiblock object with associated with printing, scores, loadings. Relevant plotting functions:
multiblock_plots and result functions: multiblock_results.

References

Tucker, L. R. (1958). An inter-battery method of factor analysis. Psychometrika, 23(2), 111-136.

See Also

Overviews of available methods, multiblock, and methods organised by main structure: basic,
unsupervised, asca, supervised and complex. Common functions for computation and extrac-
tion of results and plotting are found in multiblock_results and multiblock_plots, respec-
tively.

Examples

data(potato)
X <- potato$Chemical

ifa.pot <- ifa(potato[1:2])

jive Joint and Individual Variation Explained - JIVE

Description

This is a wrapper for the r.jive::jive function for computing JIVE.

Usage

jive(X, ...)

Arguments

X list of input blocks.

... additional arguments for r.jive::jive.

Details

Jive performs a decomposition of the variation in two or more blocks into low-dimensional repre-
sentations of individual and joint variation plus residual variation.

Value

multiblock object including relevant scores and loadings. Relevant plotting functions: multiblock_plots
and result functions: multiblock_results.

18 lpls

References

Lock, E., Hoadley, K., Marron, J., and Nobel, A. (2013) Joint and individual variation explained
(JIVE) for integrated analysis of multiple data types. Ann Appl Stat, 7 (1), 523–542.

See Also

Overviews of available methods, multiblock, and methods organised by main structure: basic,
unsupervised, asca, supervised and complex.

Examples

Too time consuming for testing
data(candies)
candyList <- lapply(1:nlevels(candies$candy),function(x)candies$assessment[candies$candy==x,])
can.jive <- jive(candyList)
summary(can.jive)

lpls L-PLS regression

Description

Simultaneous decomposition of three blocks connected in an L pattern.

Usage

lpls(
X1,
X2,
X3,
ncomp = 2,
doublecenter = TRUE,
scale = c(FALSE, FALSE, FALSE),
type = c("exo"),
impute = FALSE,
niter = 25,
subsetX2 = NULL,
subsetX3 = NULL,
...

)

lpls 19

Arguments

X1 matrix of size IxN (middle matrix)

X2 matrix of size IxJ (left matrix)

X3 matrix of size KxN (top matrix)

ncomp number of L-PLS components

doublecenter logical indicating if centering should be done both ways for X1 (default=TRUE)

scale logical vector of length three indicating if each of the matrices should be
autoscaled.

type character indicating type of L-PLS ("exo"=default, "exo_ort" or "endo")

impute logical indicating if SVD-based imputation of missing data is required.

niter numeric giving number of iterations in component extraction loop.

subsetX2 vector defining optional sub-setting of X2 data.

subsetX3 vector defining optional sub-setting of X3 data.

... Additional arguments, not used.

Details

Two versions of L-PLS are available: exo- and endo-L-PLS which assume an outward or inward
relationship between the main block X1 and the two other blocks X2 and X3.

The exo_ort algorithm returns orthogonal scores and should be chosen for visual exploration in
correlation loading plots. If exo-L-PLS with prediction is the main purpose of the model then the
non-orthogonal exo type L-PLS should be chosen for which the predict function has prediction
implemented.

20 lplsData

Value

An object of type lpls and multiblock containing all results from the L-PLS analysis. The
object type lpls is associated with functions for correlation loading plots, prediction and cross-
validation. The type multiblock is associated with the default functions for result presentation
(multiblock_results) and plotting (multiblock_plots).

Author(s)

Solve Sæbø (adapted by Kristian Hovde Liland)

References

• Martens, H., Anderssen, E., Flatberg, A.,Gidskehaug, L.H., Høy, M., Westad, F.,Thybo, A.,
and Martens, M. (2005). Regression of a data matrix on descriptors of both its rows and of its
columns via latent variables: L-PLSR. Computational Statistics & Data Analysis, 48(1), 103
– 123.

• Sæbø, S., Almøy, T., Flatberg, A., Aastveit, A.H., and Martens, H. (2008). LPLS-regression:
a method for prediction and classification under the influence of background information on
predictor variables. Chemometrics and Intelligent Laboratory Systems, 91, 121–132.

• Sæbø, S., Martens, M. and Martens H. (2010) Three-block data modeling by endo- and exo-
LPLS regression. In Handbook of Partial Least Squares: Concepts, Methods and Applications.
Esposito Vinzi, V.; Chin, W.W.; Henseler, J.; Wang, H. (Eds.). Springer.

See Also

Overviews of available methods, multiblock, and methods organised by main structure: basic,
unsupervised, asca, supervised and complex. Functions for computation and extraction of re-
sults and plotting are found in lpls_results.

Examples

Simulate data set
sim <- lplsData(I = 30, N = 20, J = 5, K = 6, ncomp = 2)
X1 <- sim$X1; X2 <- sim$X2; X3 <- sim$X3
lp <- lpls(X1,X2,X3) # exo-L-PLS

lplsData L-PLS data simulation for exo-type analysis

Description

Three data blocks are simulated to express covariance in an exo-L-PLS direction (see lpls. Dimen-
sionality and number of underlying components can be controlled.

Usage

lplsData(I = 30, N = 20, J = 5, K = 6, ncomp = 2)

lpls_results 21

Arguments

I numeric number of rows of X1 and X2

N numeric number of columns in X1 and X3

J numeric number of columns in X2

K numeric number of rows in X3

ncomp numeric number of latent components

Value

A list of three matrices with dimensions matching in an L-shape.

Author(s)

Solve Sæbø (adapted by Kristian Hovde Liland)

See Also

Overviews of available methods, multiblock, and methods organised by main structure: basic,
unsupervised, asca, supervised and complex.

Examples

lp <- lplsData(I = 30, N = 20, J = 5, K = 6, ncomp = 2)
names(lp)

lpls_results Result functions for L-PLS objects (lpls)

Description

Correlation loading plot, prediction and cross-validation for L-PLS models with class lpls.

Usage

S3 method for class 'lpls'
plot(
x,
comps = c(1, 2),
doplot = c(TRUE, TRUE, TRUE),
level = c(2, 2, 2),
arrow = c(1, 0, 1),
xlim = c(-1, 1),
ylim = c(-1, 1),
samplecol = 4,
pathcol = 2,

22 lpls_results

varcol = "grey70",
varsize = 1,
sampleindex = 1:dim(x$corloadings$R22)[1],
pathindex = 1:dim(x$corloadings$R3)[1],
varindex = 1:dim(x$corloadings$R21)[1],
...

)

S3 method for class 'lpls'
predict(
object,
X1new = NULL,
X2new = NULL,
X3new = NULL,
exo.direction = c("X2", "X3"),
...

)

lplsCV(object, segments1 = NULL, segments2 = NULL, trace = TRUE)

Arguments

x lpls object
comps integer vector of components.
doplot logical indicating if plotting should be performed.
level integer vector of length 3 for selecting plot symbol. 1=dots. 2=dimnames.
arrow integer vector of length 3 indicating arrows (1) or not (0).
xlim numeric x limits.
ylim numeric y limits.
samplecol character for sample colours.
pathcol character for third colour.
varcol character for variable colours.
varsize numeric size of symbols for variables.
sampleindex integer for selecting samples.
pathindex integer for selecting in third direction.
varindex integer for selecting variables.
... Not implemented.
object lpls object.
X1new matrix of new X1 samples.
X2new matrix of new X2 samples.
X3new matrix of new X3 samples.
exo.direction character selecting "X2" or "X3" prediction.
segments1 list of sample segments.
segments2 list of variable segments.
trace logical indicating if verbose mode should be selected.

maage 23

Value

Nothing is return for plotting (plot.lpls), predicted values are returned for predictions (predict.lpls)
and cross-validation metrics are returned for for cross-validation (lplsCV).

See Also

Overviews of available methods, multiblock, and methods organised by main structure: basic,
unsupervised, asca, supervised and complex.

Examples

Simulate data set
sim <- lplsData(I = 30, N = 20, J = 5, K = 6, ncomp = 2)
X1 <- sim$X1; X2 <- sim$X2; X3 <- sim$X3

exo-L-PLS:
lp.exo <- lpls(X1,X2,X3, ncomp = 2)
Predict X1
pred.exo.X2 <- predict(lp.exo, X1new = X1, exo.direction = "X2")
Predict X3
pred.exo.X2 <- predict(lp.exo, X1new = X1, exo.direction = "X3")

endo-L-PLS:
lp.endo <- lpls(X1,X2,X3, ncomp = 2, type = "endo")
Predict X1 from X2 and X3 (in this case fitted values):
pred.endo.X1 <- predict(lp.endo, X2new = X2, X3new = X3)

LOO cross-validation horizontally
lp.cv1 <- lplsCV(lp.exo, segments1 = as.list(1:dim(X1)[1]))

LOO cross-validation vertically
lp.cv2 <- lplsCV(lp.exo, segments2 = as.list(1:dim(X1)[2]))

Three-fold CV, horizontal
lp.cv3 <- lplsCV(lp.exo, segments1 = as.list(1:10, 11:20, 21:30))

maage Måge plot

Description

Måge plot for SO-PLS (sopls) cross-validation visualisation.

Usage

maage(
object,
expl_var = TRUE,

24 maage

pure.trace = FALSE,
pch = 20,
xlab = "# components",
ylab = ifelse(expl_var, "Explained variance (%)", "RMSECV"),
xlim = NULL,
ylim = NULL,
cex.text = 0.8,
...

)

maageSeq(
object,
compSeq = TRUE,
expl_var = TRUE,
pch = 20,
xlab = "# components",
ylab = ifelse(expl_var, "Explained variance (%)", "RMSECV"),
xlim = NULL,
ylim = NULL,
cex.text = 0.8,
col = "gray",
col.block = c("red", "blue", "darkgreen", "purple", "black", "red", "blue",
"darkgreen"),

...
)

Arguments

object An SO-PLS model (sopls object)

expl_var Logical indicating if explained variance (default) or RMSECV should be dis-
played.

pure.trace Logical indicating if single block solutions should be traced in the plot.

pch Scalar or symbol giving plot symbol.

xlab Label for x-axis.

ylab Label for y-axis.

xlim Plot limits for x-axis (numeric vector).

ylim Plot limits for y-axis (numeric vector).

cex.text Text scaling (scalar) for better readability of plots.

... Additional arguments to plot.

compSeq Integer vector giving the sequence of previous components chosen for maageSeq
(see example).

col Line colour in plot.

col.block Line colours for blocks (default = c(’red’,’blue’,’darkgreen’,’purple’,’black’))

mbpls 25

Details

This function can either be used for global optimisation across blocks or sequential optimisation,
using maageSeq. The examples below show typical usage.

Value

The maage plot has no return.

See Also

Overviews of available methods, multiblock, and methods organised by main structure: basic,
unsupervised, asca, supervised and complex.

Examples

data(wine)
ncomp <- unlist(lapply(wine, ncol))[-5]
so.wine <- sopls(`Global quality` ~ ., data=wine, ncomp=ncomp,

max_comps=10, validation="CV", segments=10)
maage(so.wine)

Sequential search for optimal number of components per block
old.par <- par(mfrow=c(2,2), mar=c(3,3,0.5,1), mgp=c(2,0.7,0))
maageSeq(so.wine)
maageSeq(so.wine, 2)
maageSeq(so.wine, c(2,1))
maageSeq(so.wine, c(2,1,1))
par(old.par)

mbpls Multiblock Partial Least Squares - MB-PLS

Description

A function computing MB-PLS scores, loadings, etc. on the super-level and block-level.

Usage

mbpls(
formula,
data,
subset,
na.action,
X = NULL,
Y = NULL,
ncomp = 1,
scale = FALSE,
blockScale = c("sqrtnvar", "ssq", "none"),
...

)

26 mbpls

Arguments

formula Model formula accepting a single response (block) and predictor block names
separated by + signs.

data The data set to analyse.

subset Expression for subsetting the data before modelling.

na.action How to handle NAs (no action implemented).

X list of input blocks. If X is supplied, the formula interface is skipped.

Y matrix of responses.

ncomp integer number of PLS components.

scale logical for autoscaling inputs (default = FALSE).

blockScale Either a character indicating type of block scaling or a numeric vector of
block weights (see Details).

... additional arguments to pls::plsr.

Details

MB-PLS is the prototypical component based supervised multiblock method. It was originally
formulated as a two-level method with a block-level and a super-level, but it was later discovered
that it could be expressed as an ordinary PLS on concatenated weighted X blocks followed by a
simple loop for calculating block-level loading weights, loadings and scores. This implementation
uses the plsr function on the scaled input blocks (1/sqrt(ncol)) enabling all summaries and plots
from the pls package.

Block weighting is performed after scaling all variables and is by default "sqrtnvar": 1/sqrt(ncol(X[[i]]))
in each block. Alternatives are "ssq": 1/norm(X[[i]], "F")^2 and "none": 1/1. Finally, if a numeric
vector is supplied, it will be used to scale the blocks after "ssq" scaling, i.e., Z[[i]] = X[[i]] /
norm(X[[i]], "F")^2 * blockScale[i].

Value

multiblock, mvr object with super-scores, super-loadings, block-scores and block-loading, and
the underlying mvr (PLS) object for the super model, with all its result and plot possibilities. Rele-
vant plotting functions: multiblock_plots and result functions: multiblock_results.

References

• Wangen, L.E. and Kowalski, B.R. (1988). A multiblock partial least squares algorithm for
investigating complex chemical systems. Journal of Chemometrics, 3, 3–20.

• Westerhuis, J.A., Kourti, T., and MacGregor,J.F. (1998). Analysis of multiblock and hierar-
chical PCA and PLS models. Journal of Chemometrics, 12, 301–321.

See Also

Overviews of available methods, multiblock, and methods organised by main structure: basic,
unsupervised, asca, supervised and complex.

mbrda 27

Examples

data(potato)
Formula interface
mb <- mbpls(Sensory ~ Chemical+Compression, data=potato, ncomp = 5)

... or X and Y
mb.XY <- mbpls(X=potato[c('Chemical','Compression')], Y=potato[['Sensory']], ncomp = 5)
identical(mb$scores, mb.XY$scores)
print(mb)
scoreplot(mb, labels="names") # Exploiting mvr object structure from pls package

Block scaling with emphasis on first block
mbs <- mbpls(Sensory ~ Chemical+Compression, data=potato, ncomp = 5, blockScale = c(10, 1))
scoreplot(mbs, labels="names") # Exploiting mvr object structure from pls package

mbrda Multiblock Redundancy Analysis - mbRDA

Description

This is a wrapper for the ade4::mbpcaiv function for computing mbRDA.

Usage

mbrda(formula, data, subset, na.action, X = NULL, Y = NULL, ncomp = 1, ...)

Arguments

formula Model formula accepting a single response (block) and predictor block names
separated by + signs.

data The data set to analyse.

subset Expression for subsetting the data before modelling.

na.action How to handle NAs (no action implemented).

X list of input blocks.

Y matrix of responses.

ncomp integer number of PLS components.

... additional arguments to ade4::mbpcaiv.

Details

mbRDA is a multiblock formulation of Redundancy (Data) Analysis. RDA is theoretically between
PLS and GCA. Like GCA, RDA does not consider correlations within X, but like PLS it does
consider correlations within Y. RDA can also be viewed as a PCR of Y constrained to have scores
that are also linear combinations of X. If the adegraphics package is attached, a nice overview can
be plotted as plot(mbr$mbpcaiv) following the example below.

28 mcoa

Value

multiblock, mvr object with scores, block-scores and block-loading. Relevant plotting functions:
multiblock_plots and result functions: multiblock_results.

References

Bougeard, S., Qannari, E.M., Lupo, C., andHanafi, M. (2011). From Multiblock Partial Least
Squares to Multiblock Redundancy Analysis. A Continuum Approach. Informatica, 22(1), 11–26.

See Also

Overviews of available methods, multiblock, and methods organised by main structure: basic,
unsupervised, asca, supervised and complex.

Examples

Convert data.frame with AsIs objects to list of matrices
data(potato)
potatoList <- lapply(potato, unclass)

mbr <- mbrda(Sensory ~ Chemical + Compression, data = potatoList, ncomp = 10)
mbr.XY <- mbrda(X = potatoList[c('Chemical','Compression')], Y = potatoList[['Sensory']],

ncomp = 10)
print(mbr)
scoreplot(mbr) # Exploiting mvr object structure from pls package

mcoa Multiple Co-Inertia Analysis - MCOA

Description

This is a wrapper for the RGCCA::rgcca function for computing MCOA.

Usage

mcoa(X, ncomp = 2, scale = FALSE, verbose = FALSE, ...)

Arguments

X list of input blocks.

ncomp integer number of components to extract.

scale logical indicating if variables should be scaled.

verbose logical indicating if diagnostic information should be printed.

... additional arguments for RGCCA.

mcolors 29

Details

MCOA resembles GCA and MFA in that it creates a set of reference scores, for which each block’s
individual scores should correlate maximally too, but also the variance within each block should
be taken into account. A single component solution is equivalent to a PCA on concatenated blocks
scaled by the so called inverse inertia.

Value

multiblock object including relevant scores and loadings. Relevant plotting functions: multiblock_plots
and result functions: multiblock_results.

References

• Le Roux; B. and H. Rouanet (2004). Geometric Data Analysis, From Correspondence Anal-
ysis to Structured Data Analysis. Dordrecht. Kluwer: p.180.

• Greenacre, Michael and Blasius, Jörg (editors) (2006). Multiple Correspondence Analysis
and Related Methods. London: Chapman & Hall/CRC.

See Also

Overviews of available methods, multiblock, and methods organised by main structure: basic,
unsupervised, asca, supervised and complex. Common functions for computation and extrac-
tion of results and plotting are found in multiblock_results and multiblock_plots, respec-
tively.

Examples

data(potato)
potList <- as.list(potato[c(1,2,9)])
pot.mcoa <- mcoa(potList)
plot(scores(pot.mcoa), labels="names")

mcolors Colour palette generation from matrix of RGB values

Description

Colour palette generation from matrix of RGB values

Usage

mcolors(
n,
colmatrix = matrix(c(0, 0, 1, 1, 1, 1, 1, 0, 0), 3, 3, byrow = TRUE)

)

30 mfa

Arguments

n Integer number of colorus to produce.

colmatrix A numeric matrix of three columns (R,G,B) to generate colour palette from.

Value

A vector of n colours in hexadecimal RGB format.

Examples

mcolors(5)

mfa Multiple Factor Analysis - MFA

Description

This is a wrapper for the FactoMineR::MFA function for computing MFA.

Usage

mfa(X, type = rep("c", length(X)), graph = FALSE, ...)

Arguments

X list of input blocks.

type character vector indicating block types, defaults to rep("c", length(X)) for
continuous values.

graph logical indicating if decomposition should be plotted.

... additional arguments for RGCCA approach.

Details

MFA is a methods typically used to compare several equally sized matrices. It is often used in
sensory analyses, where matrices consist of sensory characteristics and products, and each assessor
generates one matrix each. In its basic form, MFA scales all matrices by their largest eigenvalue,
concatenates them and performs PCA on the result. There are several possibilities for plots and
inspections of the model, handling of categorical and continuous inputs etc. connected to MFA.

Value

multiblock object including relevant scores and loadings. Relevant plotting functions: multiblock_plots
and result functions: multiblock_results.

mobile 31

References

Pagès, J. (2005). Collection and analysis of perceived product inter-distances using multiple factor
analysis: Application to the study of 10 white wines from the Loire valley. Food Quality and
Preference, 16(7), 642–649.

See Also

Overviews of available methods, multiblock, and methods organised by main structure: basic,
unsupervised, asca, supervised and complex. Common functions for computation and extrac-
tion of results and plotting are found in multiblock_results and multiblock_plots, respec-
tively.

Examples

data(potato)
potList <- as.list(potato[c(1,2,9)])
pot.mfa <- mfa(potList)
if(interactive()){

plot(pot.mfa$MFA)
}

mobile ECSI Mobile Mobile Phone Provider Dataset

Description

Mobile data questionnaire often used as an example in path modelling. All the items are scaled
from 1 to 10. Score 1 expresses a very negative point of view on the product while score 10 a very
positive opinion. For details, see the original publication.

32 multiblock_plots

Usage

data(mobile)

Format

A data.frame having 250 rows and 7 variables:

A Image

B Customer expectation

C Perceived quality

D Perceived value

E Customer satisfaction

F Customer complaints

G Customer loyalty

References

Tenenhaus M, Esposito Vinzi V, Chatelin YM, Lauro C. PLS path modeling. Comput Stat Data
Anal. 2005;48(1):159-205.

multiblock_plots Plot Functions for Multiblock Objects

Description

Plotting procedures for multiblock objects.

Usage

S3 method for class 'multiblock'
scoreplot(
object,
comps = 1:2,
block = 0,
labels,
identify = FALSE,
type = "p",
xlab,
ylab,
main,
...

)

S3 method for class 'multiblock'
loadingplot(

multiblock_plots 33

object,
comps = 1:2,
block = 0,
scatter = TRUE,
labels,
identify = FALSE,
type,
lty,
lwd = NULL,
pch,
cex = NULL,
col,
legendpos,
xlab,
ylab,
main,
pretty.xlabels = TRUE,
xlim,
...

)

loadingweightplot(object, main = "Loading weights", ...)

S3 method for class 'multiblock'
biplot(
x,
block = 0,
comps = 1:2,
which = c("x", "y", "scores", "loadings"),
var.axes = FALSE,
xlabs,
ylabs,
main,
...

)

corrplot(object, ...)

Default S3 method:
corrplot(object, ...)

S3 method for class 'mvr'
corrplot(object, ...)

S3 method for class 'multiblock'
corrplot(
object,
comps = 1:2,

34 multiblock_plots

labels = TRUE,
col = 1:5,
plotx = TRUE,
ploty = TRUE,
blockScores = FALSE,
...

)

Arguments

object multiblock object.

comps integer vector giving components, within block, to plot.

block integer/character for block selection.

labels character indicating if "names" or "numbers" should be plot symbols (op-
tional).

identify logical for activating identify to interactively identify points.

type character for selecting type of plot to make. Defaults to "p" (points) for scatter
plots and "l" (lines) for line plots.

xlab character text for x labels.

ylab character text for y labels.

main character text for main header.

... Not implemented.

scatter logical indicating if a scatterplot of loadings should be made (default = TRUE).

lty Vector of line type specifications (see par for details).

lwd numeric vector of line width specifications.

pch Vector of point specifications (see points for details).

cex numeric vector of plot size expansions (see par for details).

col integer vector of symbol/line colours (see par for details).

legendpos character indicating legend position (if scatter is FALSE), e.g. legendpos
= "topright".

pretty.xlabels logical indicating if xlabels should be more nicely plotted (default = TRUE).

xlim numeric vector of length two, with the x limits of the plot (optional).

x multiblock object.

which character for selecting type of biplot ("x" = default, "y", "scores", "loadings").

var.axes logical indicating if second axes of a biplot should have arrows.

xlabs character vector for labelling first set of biplot points (optional).

ylabs character vector for labelling second set of biplot points (optional).

plotx locical or integer/character. Whether to plot the X correlation loadings,
optionally which block(s). Defaults to TRUE.

ploty logical. Whether to plot the Y correlation loadings. Defaults to TRUE.

blockScores logical. Correlation loadings from blockScores (default = FALSE).

multiblock_results 35

Details

Plot functions for scores, loadings and loading.weights based on the functions found in the
pls package.

Value

These plotting routines only generate plots and return no values.

See Also

Overviews of available methods, multiblock, and methods organised by main structure: basic,
unsupervised, asca, supervised and complex. Common functions for computation and extrac-
tion of results are found in multiblock_results.

Examples

data(wine)
sc <- sca(wine[c('Smell at rest', 'View', 'Smell after shaking')], ncomp = 4)
loadingplot(sc, block = 1, labels = "names", scatter = TRUE)
scoreplot(sc, labels = "names")
corrplot(sc)

data(potato)
so <- sopls(Sensory ~ NIRraw + Chemical + Compression, data=potato, ncomp = c(2,2,2),

max_comps = 6, validation = "CV", segments = 10)
scoreplot(so, ncomp = c(2,1), block = 3, labels = "names")
corrplot(pcp(so, ncomp = c(2,2,2)))

multiblock_results Result Functions for Multiblock Objects

Description

Standard result computation and extraction functions for multiblock objects.

Usage

S3 method for class 'multiblock'
scores(object, block = 0, ...)

S3 method for class 'multiblock'
loadings(object, block = 0, ...)

S3 method for class 'multiblock'
print(x, ...)

S3 method for class 'multiblock'
summary(object, ...)

36 mvrVal

Arguments

object multiblock object.

block integer/character for block selection.

... Not implemented.

x multiblock object.

Details

Usage of the functions are shown using generics in the examples below. Object printing and
summary are available through: print.multiblock and summary.multiblock. Scores and load-
ings have their own extensions of scores() and loadings() throught scores.multiblock and
loadings.multiblock.

Value

Scores or loadings are returned by scores.multiblock and loadings.multiblock, while print
and summary methods invisibly returns the object.

See Also

Overviews of available methods, multiblock, and methods organised by main structure: basic,
unsupervised, asca, supervised and complex. Common functions for plotting are found in
multiblock_plots, respectively.

Examples

data(wine)
sc <- sca(wine[c('Smell at rest', 'View', 'Smell after shaking')], ncomp = 4)
print(sc)
summary(sc)
head(loadings(sc, block = 1))
head(scores(sc))

mvrVal MSEP, RMSEP and R2 of the MB-PLS model

Description

Functions to estimate the mean squared error of prediction (MSEP), root mean squared error of
prediction (RMSEP) and R2 (A.K.A. coefficient of multiple determination) for a fitted MB-PLS
models. Test-set, cross-validation and calibration-set estimates are implemented.

mvrVal 37

Usage

S3 method for class 'mbpls'
R2(
object,
estimate,
newdata,
ncomp = 1:object$ncomp,
comps,
intercept = TRUE,
se = FALSE,
...

)

S3 method for class 'mbpls'
MSEP(
object,
estimate,
newdata,
ncomp = 1:object$ncomp,
comps,
intercept = TRUE,
se = FALSE,
...

)

S3 method for class 'mbpls'
RMSEP(object, ...)

Arguments

object an mvr object

estimate a character vector. Which estimators to use. Should be a subset of c("all",
"train", "CV", "adjCV", "test"). "adjCV" is only available for (R)MSEP.
See below for how the estimators are chosen.

newdata a data frame with test set data.

ncomp, comps a vector of positive integers. The components or number of components to use.
See below.

intercept logical. Whether estimates for a model with zero components should be returned
as well.

se logical. Whether estimated standard errors of the estimates should be calculated.
Not implemented yet.

... further arguments sent to underlying functions or (for RMSEP) to MSEP

Details

RMSEP simply calls MSEP and takes the square root of the estimates. It therefore accepts the same
arguments as MSEP.

38 mvrVal

Several estimators can be used. "train" is the training or calibration data estimate, also called
(R)MSEC. For R2, this is the unadjusted R2. It is overoptimistic and should not be used for as-
sessing models. "CV" is the cross-validation estimate, and "adjCV" (for RMSEP and MSEP) is the
bias-corrected cross-validation estimate. They can only be calculated if the model has been cross-
validated. Finally, "test" is the test set estimate, using newdata as test set.

Which estimators to use is decided as follows (see below for pls:mvrValstats). If estimate is not
specified, the test set estimate is returned if newdata is specified, otherwise the CV and adjusted
CV (for RMSEP and MSEP) estimates if the model has been cross-validated, otherwise the training
data estimate. If estimate is "all", all possible estimates are calculated. Otherwise, the specified
estimates are calculated.

Several model sizes can also be specified. If comps is missing (or is NULL), length(ncomp) models
are used, with ncomp[1] components, . . . , ncomp[length(ncomp)] components. Otherwise, a
single model with the components comps[1], . . . , comps[length(comps)] is used. If intercept
is TRUE, a model with zero components is also used (in addition to the above).

The R2 values returned by "R2" are calculated as 1 − SSE/SST , where SST is the (corrected)
total sum of squares of the response, and SSE is the sum of squared errors for either the fitted
values (i.e., the residual sum of squares), test set predictions or cross-validated predictions (i.e., the
PRESS). For estimate = "train", this is equivalent to the squared correlation between the fitted
values and the response. For estimate = "train", the estimate is often called the prediction R2.

mvrValstats is a utility function that calculates the statistics needed by MSEP and R2. It is not
intended to be used interactively. It accepts the same arguments as MSEP and R2. However, the
estimate argument must be specified explicitly: no partial matching and no automatic choice is
made. The function simply calculates the types of estimates it knows, and leaves the other un-
touched.

Value

mvrValstats returns a list with components

SSE three-dimensional array of SSE values. The first dimension is the different estimators, the
second is the response variables and the third is the models.

SST matrix of SST values. The first dimension is the different estimators and the second is the
response variables.

nobj a numeric vector giving the number of objects used for each estimator.

comps the components specified, with 0 prepended if intercept is TRUE.

cumulative TRUE if comps was NULL or not specified.

The other functions return an object of class "mvrVal", with components

val three-dimensional array of estimates. The first dimension is the different estimators, the second
is the response variables and the third is the models.

type "MSEP", "RMSEP" or "R2".

comps the components specified, with 0 prepended if intercept is TRUE.

cumulative TRUE if comps was NULL or not specified.

call the function call

pca 39

Author(s)

Kristian Hovde Liland

References

Mevik, B.-H., Cederkvist, H. R. (2004) Mean Squared Error of Prediction (MSEP) Estimates for
Principal Component Regression (PCR) and Partial Least Squares Regression (PLSR). Journal of
Chemometrics, 18(9), 422–429.

See Also

mbpls

Examples

data(oliveoil, package = "pls")
mod <- pls::plsr(sensory ~ chemical, ncomp = 4, data = oliveoil, validation = "LOO")
RMSEP(mod)
Not run: plot(R2(mod))

pca Principal Component Analysis - PCA

Description

This is a wrapper for the pls::PCR function for computing PCA.

Usage

pca(X, scale = FALSE, ncomp = 1, ...)

Arguments

X matrix of input data.

scale logical indicating if variables should be standardised (default=FALSE).

ncomp integer number of principal components to return.

... additional arguments to pls:pcr.

Details

PCA is a method for decomposing a matrix into subspace components with sample scores and
variable loadings. It can be formulated in various ways, but the standard formulation uses singular
value decomposition to create scores and loadings. PCA is guaranteed to be the optimal way of
extracting orthogonal subspaces from a matrix with regard to the amount of explained variance per
component.

40 pcagca

Value

multiblock object with scores, loadings, mean X values and explained variances. Relevant plotting
functions: multiblock_plots and result functions: multiblock_results.

References

Pearson, K. (1901) On lines and planes of closest fit to points in space. Philosophical Magazine, 2,
559–572.

See Also

Overviews of available methods, multiblock, and methods organised by main structure: basic,
unsupervised, asca, supervised and complex. Common functions for computation and extrac-
tion of results and plotting are found in multiblock_results and multiblock_plots, respec-
tively.

Examples

data(potato)
X <- potato$Chemical

pca.pot <- pca(X, ncomp = 2)

pcagca PCA-GCA

Description

PCA-GCA is a methods which aims at estimating subspaces of common, local and distinct variation
from two or more blocks.

Usage

pcagca(
X,
commons = 2,
auto = TRUE,
auto.par = list(explVarLim = 40, rLim = 0.8),
manual.par = list(ncomp = 0, ncommon = 0),
tol = 10^-12

)

pcagca 41

Arguments

X list of input blocks

commons numeric giving the highest number of blocks to combine when calculating local
or common scores.

auto logical indicating if automatic choice of complexities should be used.

auto.par named list setting limits for automatic choice of complexities.

manual.par named list for manual choice of blocks. The list consists of ncomp which indi-
cates the number of components to extract from each block and ncommon which
is the corresponding for choosing the block combinations (local/common). For
the latter, use unique_combos(n_blocks, commons) to see order of local/common
blocks. Component numbers will be reduced if simpler models give better pre-
dictions. See example.

tol numeric tolerance for component inclusion (singular values).

Details

The name PCA-GCA comes from the process of first applying PCA to each block, then using GCA
to estimate local and common components, and finally orthogonalising the block-wise scores on the
local/common ones and re-estimating these to obtain distinct components. The procedure is highly
similar to the supervised method PO-PLS, where the PCA steps are exchanged with PLS.

Value

multiblock object including relevant scores and loadings. Relevant plotting functions: multiblock_plots
and result functions: multiblock_results. Distinct components are marked as ’D(x), Comp c’
for block x and component c while local and common components are marked as "C(x1, x2), Comp
c", where x1 and x2 (and more) are block numbers.

References

Smilde, A., Måge, I., Naes, T., Hankemeier, T.,Lips, M., Kiers, H., Acar, E., and Bro, R.(2017).
Common and distinct components in data fusion. Journal of Chemometrics, 31(7), e2900.

See Also

Overviews of available methods, multiblock, and methods organised by main structure: basic,
unsupervised, asca, supervised and complex. Common functions for computation and extrac-
tion of results and plotting are found in multiblock_results and multiblock_plots, respec-
tively.

Examples

data(potato)
potList <- as.list(potato[c(1,2,9)])
pot.pcagca <- pcagca(potList)

Show origin and type of all components
lapply(pot.pcagca$blockScores,colnames)

42 popls

Basic multiblock plot
plot(scores(pot.pcagca, block=2), comps=1, labels="names")

popls Parallel and Orthogonalised Partial Least Squares - PO-PLS

Description

This is a basic implementation of PO-PLS with manual and automatic component selections.

Usage

popls(
X,
Y,
commons = 2,
auto = TRUE,
auto.par = list(explVarLim = 40, rLim = 0.8),
manual.par = list(ncomp = rep(0, length(X)), ncommon = list())

)

Arguments

X list of input blocks

Y matrix of response variable(s)

commons numeric giving the highest number of blocks to combine when calculating local
or common scores.

auto logical indicating if automatic choice of complexities should be used.

auto.par named list setting limits for automatic choice of complexities. See Details.

manual.par named list for manual choice of blocks. The list consists of ncomp which indi-
cates the number of components to extract from each block and ncommon which
is the corresponding for choosing the block combinations (local/common). For
the latter, use unique_combos(n_blocks, commons) to see order of local/common
blocks. Component numbers will be reduced if simpler models give better pre-
dictions. See example.

Details

PO-PLS decomposes a set of input data blocks into common, local and distinct components through
a process involving pls and gca. The rLim parameter is a lower bound for the GCA correlation
when building common components, while explVarLim is the minimum explained variance for
common components and unique components.

potato 43

Value

A multiblock object with block-wise, local and common loadings and scores. Relevant plotting
functions: multiblock_plots and result functions: multiblock_results.

References

• I Måge, BH Mevik, T Næs. (2008). Regression models with process variables and parallel
blocks of raw material measurements. Journal of Chemometrics: A Journal of the Chemomet-
rics Society 22 (8), 443-456

• I Måge, E Menichelli, T Næs (2012). Preference mapping by PO-PLS: Separating common
and unique information in several data blocks. Food quality and preference 24 (1), 8-16

See Also

Overviews of available methods, multiblock, and methods organised by main structure: basic,
unsupervised, asca, supervised and complex. Common functions for computation and extrac-
tion of results and plotting are found in multiblock_results and multiblock_plots, respec-
tively.

Examples

data(potato)

Automatic analysis
pot.po.auto <- popls(potato[1:3], potato[['Sensory']][,1])
pot.po.auto$explVar

Manual choice of up to 5 components for each block and 1, 0, and 2 blocks,
respectively from the (1,2), (1,3) and (2,3) combinations of blocks.
pot.po.man <- popls(potato[1:3], potato[['Sensory']][,1], auto=FALSE,

manual.par = list(ncomp=c(5,5,5), ncommon=c(1,0,2)))
pot.po.man$explVar

Score plot for local (2,3) components
plot(scores(pot.po.man,3), comps=1:2, labels="names")

potato Sensory, rheological, chemical and spectroscopic analysis of potatoes.

Description

A dataset containing 9 blocks of measurements on 26 potatoes. Original dataset can be found at
http://models.life.ku.dk/Texture_Potatoes. This version has been pre-processed as follows (corre-
sponding to Liland et al. 2016):

• Variables containing NaN have been removed.
• Chemical and Compression blocks have been scaled by standard deviations.
• NIR blocks have been subjected to SNV (Standard Normal Variate).

44 predict.mbpls

Usage

data(potato)

Format

A data.frame having 26 rows and 9 variables:

Chemical Matrix of chemical measurements
Compression Matrix of rheological compression data
NIRraw Matrix of near-infrared measurements of raw potatoes
NIRcooked Matrix of near-infrared measurements of cooked potatoes
CPMGraw Matrix of NMR (CPMG) measurements of raw potatoes
CPMGcooked Matrix of NMR (CPMG) measurements of cooked potatoes
FIDraw Matrix of NMR (FID) measurements of raw potatoes
FIDcooked Matrix of NMR (FID) measurements of cooked potatoes
Sensory Matrix of sensory assessments

References

• L.G.Thygesen, A.K.Thybo, S.B.Engelsen, Prediction of Sensory Texture Quality of Boiled
Potatoes From Low-field1H NMR of Raw Potatoes. The Role of Chemical Constituents.
LWT - Food Science and Technology 34(7), 2001, pp 469-477.

• Kristian Hovde Liland, Tormod Næs, Ulf Geir Indahl, ROSA – a fast extension of Partial Least
Squares Regression for Multiblock Data Analysis, Journal of Chemometrics 30:11 (2016), pp.
651-662.

predict.mbpls Predict Method for MBPLS

Description

Prediction for the mbpls (MBPLS) model. New responses or scores are predicted using a fitted
model and a data.frame or list containing matrices of observations.

Usage

S3 method for class 'mbpls'
predict(
object,
newdata,
ncomp = 1:object$ncomp,
comps,
type = c("response", "scores"),
na.action = na.pass,
...

)

predict.mbpls 45

Arguments

object an mvr object. The fitted model

newdata a data frame. The new data. If missing, the training data is used.

ncomp, comps vector of positive integers. The components to use in the prediction. See below.

type character. Whether to predict scores or response values

na.action function determining what should be done with missing values in newdata. The
default is to predict NA. See na.omit for alternatives.

... further arguments. Currently not used

Details

When type is "response" (default), predicted response values are returned. If comps is missing
(or is NULL), predictions for length(ncomp) models with ncomp[1] components, ncomp[2] com-
ponents, etc., are returned. Otherwise, predictions for a single model with the exact components in
comps are returned. (Note that in both cases, the intercept is always included in the predictions. It
can be removed by subtracting the Ymeans component of the fitted model.)

When type is "scores", predicted score values are returned for the components given in comps. If
comps is missing or NULL, ncomps is used instead.

Value

When type is "response", a three dimensional array of predicted response values is returned. The
dimensions correspond to the observations, the response variables and the model sizes, respectively.

When type is "scores", a score matrix is returned.

Note

A warning message like ‘'newdata' had 10 rows but variable(s) found have 106 rows’ means
that not all variables were found in the newdata data frame. This (usually) happens if the formula
contains terms like yarn$NIR. Do not use such terms; use the data argument instead. See mvr for
details.

Author(s)

Kristian Hovde Liland

See Also

mbpls

Examples

data(potato)
mb <- mbpls(Sensory ~ Chemical+Compression, data=potato, ncomp = 5, subset = 1:26 <= 18)
testdata <- subset(potato, 1:26 > 18)

Predict response
yhat <- predict(mb, newdata = testdata)

46 preprocess

Predict scores and plot
scores <- predict(mb, newdata = testdata, type = "scores")
scoreplot(mb)
points(scores[,1], scores[,2], col="red")
legend("topright", legend = c("training", "test"), col=1:2, pch = 1)

preprocess Preprocessing of block data

Description

This is an interface to simplify preprocessing of one, a subset or all blocks in a multiblock object,
e.g., a data.frame (see block.data.frame) or list. Several standard preprocessing methods are
supplied in addition to letting the user supply it’s own function.

Usage

block.preprocess(
X,
block = 1:length(X),
fun = c("autoscale", "center", "scale", "SNV", "EMSC", "Fro", "FroSq", "SingVal"),
...

)

Arguments

X data.frame or list of data.

block vector of block(s) to preprocess (integers or characters).

fun character or function selecting which preprocessing to apply (see Details).

... additional arguments to underlying functions.

Details

The fun parameter controls the type of preprocessing to be performed:

• autoscale: centre and scale each feature/variable.

• center: centre each feature/variable.

• scale: scale each feature/variable.

• SNV: Standard Normal Variate correction, i.e., centre and scale each sample across fea-
tures/variables.

• EMSC: Extended Multiplicative Signal Correction defaulting to basic EMSC (2nd order poly-
nomials). Further parameters are sent to EMSC::EMSC.

• Fro: Frobenius norm scaling of whole block.

• FroSq: Squared Frobenius norm scaling of whole block (sum of squared values).

rosa 47

• SingVal: Singular value scaling of whole block (first singular value).

• User defined: If a function is supplied, this will be applied to chosen blocks. Preprocessing
can be done for all blocks or a subset. It can also be done in a series of operations to combine
preprocessing techniques.

Value

The input multiblock object is preprocessed and returned.

See Also

Overviews of available methods, multiblock, and methods organised by main structure: basic,
unsupervised, asca, supervised and complex. Common functions for computation and extrac-
tion of results and plotting are found in multiblock_results and multiblock_plots, respec-
tively.

Examples

data(potato)
Autoscale Chemical block
potato <- block.preprocess(potato, block = "Chemical", "autoscale")
Apply SNV to NIR blocks
potato <- block.preprocess(potato, block = 3:4, "SNV")
Centre Sensory block
potato <- block.preprocess(potato, block = "Sensory", "center")
Scale all blocks to unit Frobenius norm
potato <- block.preprocess(potato, fun = "Fro")

Effect of SNV
NIR <- (potato$NIRraw + rnorm(26)) * rnorm(26,1,0.2)
NIRc <- block.preprocess(list(NIR), fun = "SNV")[[1]]
old.par <- par(mfrow = c(2,1), mar = c(4,4,1,1))
matplot(t(NIR), type="l", main = "uncorrected", ylab = "")
matplot(t(NIRc), type="l", main = "corrected", ylab = "")
par(old.par)

rosa Response Oriented Sequential Alternation - ROSA

Description

Formula based interface to the ROSA algorithm following the style of the pls package.

48 rosa

Usage

rosa(
formula,
ncomp,
Y.add,
common.comp = 1,
data,
subset,
na.action,
scale = FALSE,
weights = NULL,
validation = c("none", "CV", "LOO"),
internal.validation = FALSE,
fixed.block = NULL,
design.block = NULL,
canonical = TRUE,
...

)

Arguments

formula Model formula accepting a single response (block) and predictor block names
separated by + signs.

ncomp The maximum number of ROSA components.

Y.add Optional response(s) available in the data set.

common.comp Automatically create all combinations of common components up to length
common.comp (default = 1).

data The data set to analyse.

subset Expression for subsetting the data before modelling.

na.action How to handle NAs (no action implemented).

scale Optionally scale predictor variables by their individual standard deviations.

weights Optional object weights.

validation Optional cross-validation strategy "CV" or "LOO".
internal.validation

Optional cross-validation for block selection process, "LOO", "CV3", "CV5",
"CV10" (CV-number of segments), or vector of integers (default = FALSE).

fixed.block integer vector with block numbers for each component (0 = not fixed) or list of
length <= ncomp (element length 0 = not fixed).

design.block integer vector containing block numbers of design blocks

canonical logical indicating if canonical correlation should be use when calculating load-
ing weights (default), enabling B/W maximization, common components, etc.
Alternatively (FALSE) a PLS2 strategy, e.g. for spectra response, is used.

... Additional arguments for cvseg or rosa.fit

rosa_plots 49

Details

ROSA is an opportunistic method sequentially selecting components from whichever block explains
the response most effectively. It can be formulated as a PLS model on concatenated input block with
block selection per component. This implementation adds several options that are not described in
the literature. Most importantly, it opens for internal validation in the block selection process,
making this more robust. In addition it handles design blocks explicitly, enables classification and
secondary responses (CPLS), and definition of common components.

Value

An object of classes rosa and mvr having several associated printing (rosa_results) and plotting
methods (rosa_plots).

References

Liland, K.H., Næs, T., and Indahl, U.G. (2016). ROSA - a fast extension of partial least squares re-
gression for multiblock data analysis. Journal of Chemometrics, 30, 651–662, doi:10.1002/cem.2824.

See Also

Overviews of available methods, multiblock, and methods organised by main structure: basic,
unsupervised, asca, supervised and complex. Common functions for computation and extrac-
tion of results and plotting are found in rosa_results and rosa_plots, respectively.

Examples

data(potato)
mod <- rosa(Sensory[,1] ~ ., data = potato, ncomp = 10, validation = "CV", segments = 5)
summary(mod)

For examples of ROSA results and plotting see
?rosa_results and ?rosa_plots.

rosa_plots Plotting functions for ROSA models

Description

Various plotting procedures for rosa objects.

Usage

S3 method for class 'rosa'
image(
x,
type = c("correlation", "residual", "order"),
ncomp = x$ncomp,
col = mcolors(128),

50 rosa_plots

legend = TRUE,
mar = c(5, 6, 4, 7),
las = 1,
...

)

S3 method for class 'rosa'
barplot(
height,
type = c("train", "CV"),
ncomp = height$ncomp,
col = mcolors(ncomp),
...

)

Arguments

x A rosa object
type An optional character for selecting the plot type. For image.rosa the options

are: "correlation" (default), "residual" or "order". For barplot.rosa the options
indicate: explained variance should be based on training data ("train") or cross-
validation ("CV").

ncomp Integer to control the number of components to plot (if fewer than the fitted
number of components).

col Colours used for the image and bar plot, defaulting to mcolors(128).
legend Logical indicating if a legend should be included (default = TRUE) for image.rosa.
mar Figure margins, default = c(5,6,4,7) for image.rosa.
las Axis text direction, default = 1 for image.rosa.
... Additional parameters passed to loadingplot, image, axis, color.legend, or

barplot.
height A rosa object.

Details

Usage of the functions are shown using generics in the examples below. image.rosa makes an
image plot of each candidate score’s correlation to the winner or the block-wise response resid-
ual. These plots can be used to find alternative block selection for tweaking the ROSA model.
barplot.rosa makes barplot of block and component explained variances. loadingweightsplot
is an adaptation of pls::loadingplot to plot loading weights.

Value

No return.

References

Liland, K.H., Næs, T., and Indahl, U.G. (2016). ROSA - a fast extension of partial least squares re-
gression for multiblock data analysis. Journal of Chemometrics, 30, 651–662, doi:10.1002/cem.2824.

rosa_results 51

See Also

Overviews of available methods, multiblock, and methods organised by main structure: basic,
unsupervised, asca, supervised and complex. Common functions for computation and extrac-
tion of results in rosa_results.

Examples

data(potato)
mod <- rosa(Sensory[,1] ~ ., data = potato, ncomp = 5)
image(mod)
barplot(mod)
loadingweightplot(mod)

rosa_results Result functions for ROSA models

Description

Standard result computation and extraction functions for ROSA (rosa).

Usage

S3 method for class 'rosa'
predict(
object,
newdata,
ncomp = 1:object$ncomp,
comps,
type = c("response", "scores"),
na.action = na.pass,
...

)

S3 method for class 'rosa'
coef(object, ncomp = object$ncomp, comps, intercept = FALSE, ...)

S3 method for class 'rosa'
print(x, ...)

S3 method for class 'rosa'
summary(
object,
what = c("all", "validation", "training"),
digits = 4,
print.gap = 2,
...

52 rosa_results

)

blockexpl(object, ncomp = object$ncomp, type = c("train", "CV"))

S3 method for class 'rosaexpl'
print(x, digits = 3, compwise = FALSE, ...)

rosa.classify(object, classes, newdata, ncomp, LQ)

S3 method for class 'rosa'
scores(object, ...)

S3 method for class 'rosa'
loadings(object, ...)

Arguments

object A rosa object.

newdata Optional new data with the same types of predictor blocks as the ones used for
fitting the object.

ncomp An integer giving the number of components to apply (cummulative).

comps An integer vector giving the exact components to apply (subset).

type For blockexpl: Character indicating which type of explained variance to com-
pute (default = "train", alternative = "CV").

na.action Function determining what to do with missing values in newdata.

... Additional arguments. Currently not implemented.

intercept A logical indicating if coefficients for the intercept should be included (default
= FALSE).

x A rosa object.

what A character indicating if summary should include all, validation or training.

digits The number of digits used for printing.

print.gap Gap between columns when printing.

compwise Logical indicating if block-wise (default/FALSE) or component-wise (TRUE)
explained variance should be printed.

classes A character vector of class labels.

LQ A character indicating if ’max’ (maximum score value), ’lda’ or ’qda’ should
be used when classifying.

Details

Usage of the functions are shown using generics in the examples below. Prediction, regression coef-
ficients, object printing and summary are available through: predict.rosa, coef.rosa, print.rosa
and summary.rosa. Explained variances are available (block-wise and global) through blockexpl
and print.rosaexpl. Scores and loadings have their own extensions of scores() and loadings()

rosa_results 53

throught scores.rosa and loadings.rosa. Finally, there is work in progress on classifcation sup-
port through rosa.classify.

When type is "response" (default), predicted response values are returned. If comps is missing
(or is NULL), predictions for length(ncomp) models with ncomp[1] components, ncomp[2] com-
ponents, etc., are returned. Otherwise, predictions for a single model with the exact components in
comps are returned. (Note that in both cases, the intercept is always included in the predictions. It
can be removed by subtracting the Ymeans component of the fitted model.)

If comps is missing (or is NULL), coef()[,,ncomp[i]] are the coefficients for models with ncomp[i]
components, for i = 1, . . . , length(ncomp). Also, if intercept = TRUE, the first dimension is
nxvar + 1, with the intercept coefficients as the first row.

If comps is given, however, coef()[,,comps[i]] are the coefficients for a model with only the
component comps[i], i.e., the contribution of the component comps[i] on the regression coeffi-
cients.

Value

Returns depend on method used, e.g. predict.rosa returns predicted responses or scores de-
pending on inputs, coef.rosa returns regression coefficients, blockexpl returns an object of class
rosaexpl containing block-wise and component-wise explained variance contained in a matrix
with attributes.

References

Liland, K.H., Næs, T., and Indahl, U.G. (2016). ROSA - a fast extension of partial least squares re-
gression for multiblock data analysis. Journal of Chemometrics, 30, 651–662, doi:10.1002/cem.2824.

See Also

Overviews of available methods, multiblock, and methods organised by main structure: basic,
unsupervised, asca, supervised and complex. Common functions for computation and extrac-
tion of results and plotting are found in rosa_results and rosa_plots, respectively.

Examples

data(potato)
mod <- rosa(Sensory[,1] ~ ., data = potato, ncomp = 5, subset = 1:20)
testset <- potato[-(1:20),]; testset$Sensory <- testset$Sensory[,1,drop=FALSE]
predict(mod, testset, ncomp=5)
dim(coef(mod, ncomp=5)) # <variables x responses x components>
print(mod)
summary(mod)
blockexpl(mod)
print(blockexpl(mod), compwise=TRUE)

54 sca

sca Simultaneous Component Analysis - SCA

Description

This is a basic implementation of the SCA-P algorithm (least restricted SCA) with support for both
sample- and variable-linked modes.

Usage

sca(X, ncomp = 2, scale = FALSE, samplelinked = "auto", ...)

Arguments

X list of input blocks.

ncomp integer number of components to extract.

scale logical indicating autoscaling of features (default = FALSE).

samplelinked character/logical indicating if blocks are linked by samples (TRUE) or vari-
ables (FALSE). Using ’auto’ (default), this will be determined automatically.

... additional arguments (not used).

Details

SCA, in its original variable-linked version, calculates common loadings and block-wise scores.
There are many possible constraints and specialisations. This implementations uses PCA as the
backbone, thus resulting in deterministic, ordered components. A parameter controls the linking
mode, but if left untouched an attempt is made at automatically determining variable or sample
linking.

Value

multiblock object including relevant scores and loadings. Relevant plotting functions: multiblock_plots
and result functions: multiblock_results.

References

Levin, J. (1966) Simultaneous factor analysis of several gramian matrices. Psychometrika, 31(3),
413–419.

See Also

Overviews of available methods, multiblock, and methods organised by main structure: basic,
unsupervised, asca, supervised and complex. Common functions for computation and extrac-
tion of results and plotting are found in multiblock_results and multiblock_plots, respec-
tively.

simulated 55

Examples

Object linked data
data(potato)
potList <- as.list(potato[c(1,2,9)])
pot.sca <- sca(potList)
plot(scores(pot.sca), labels="names")

Variable linked data
data(candies)
candyList <- lapply(1:nlevels(candies$candy),function(x)candies$assessment[candies$candy==x,])
pot.sca <- sca(candyList, samplelinked = FALSE)
pot.sca

simulated Data simulated to have certain characteristics.

Description

A dataset containing simulated data for 4 connected events where A is the starting point and D is the
end point. This can be described as a directed acyclic graph (sketched below, moving left->right).

Subpaths include: ABD, AD, ABCD, ACD

56 smbpls

Usage

data(simulated)

Format

A list of matrices having 200 rows and 10 variables:

A Simulated matrix A

B Simulated matrix B ...

References

Tormod Næs, Rosaria Romano, Oliver Tomic, Ingrid Måge, Age Smilde, Kristian Hovde Liland,
Sequential and orthogonalized PLS (SO-PLS) regression for path analysis: Order of blocks and
relations between effects. Journal of Chemometrics, In Press

smbpls Sparse Multiblock Partial Least Squares - sMB-PLS

Description

sMB-PLS is an adaptation of MB-PLS (mbpls) that enforces sparseness in loading weights when
computing PLS components in the global model.

Usage

smbpls(
formula,
data,
subset,
na.action,
X = NULL,
Y = NULL,
ncomp = 1,
scale = FALSE,
shrink = NULL,
truncation = NULL,
trunc.width = 0.95,
blockScale = c("sqrtnvar", "ssq", "none"),
...

)

smbpls 57

Arguments

formula Model formula accepting a single response (block) and predictor block names
separated by + signs.

data The data set to analyse.

subset Expression for subsetting the data before modelling.

na.action How to handle NAs (no action implemented).

X list of input blocks. If X is supplied, the formula interface is skipped.

Y matrix of responses.

ncomp integer number of PLS components.

scale logical for autoscaling inputs (default = FALSE).

shrink numeric scalar indicating degree of L1-shrinkage/Soft-Thresholding (optional),
0 <= shrink < 1.

truncation character indicating type of truncation (optional) "Lenth" uses asymmetric
confidence intervals to determine outlying loading weights. "quantile" uses a
quantile plot approach to determining outliers.

trunc.width numeric indicating confidence of "Lenth type" confidence interval or quantile
in "quantile plot" approach. Default = 0.95.

blockScale Either a character indicating type of block scaling or a numeric vector of
block weights (see Details).

... additional arguments to pls::plsr.

Details

Two versions of sparseness are supplied: Soft-Threshold PLS, also known as Sparse PLS, and
Truncation PLS. The former uses L1 shrinkage of loading weights, while the latter comes in two
flavours, both estimating inliers and outliers. The "Lenth" method uses asymmetric confidence
intervals around the median of a loading weigh vector to estimate inliers. The "quantile" method
uses a quantile plot approach to estimate outliers as deviations from the estimated quantile line. As
with ordinary MB-PLS scaled input blocks (1/sqrt(ncol)) are used.

Block weighting is performed after scaling all variables and is by default "sqrtnvar": 1/sqrt(ncol(X[[i]]))
in each block. Alternatives are "ssq": 1/norm(X[[i]], "F")^2 and "none": 1/1. Finally, if a numeric
vector is supplied, it will be used to scale the blocks after "ssq" scaling, i.e., Z[[i]] = X[[i]] /
norm(X[[i]], "F")^2 * blockScale[i].

Value

multiblock, mvr object with super-scores, super-loadings, block-scores and block-loading, and
the underlying mvr (PLS) object for the super model, with all its result and plot possibilities. Rele-
vant plotting functions: multiblock_plots and result functions: multiblock_results.

References

• Sæbø, S.; Almøy, T.; Aarøe, J. & Aastveit, A. ST-PLS: a multi-directional nearest shrunken
centroid type classifier via PLS Journal of Chemometrics: A Journal of the Chemometrics
Society, Wiley Online Library, 2008, 22, 54-62.

58 sopls

• Lê Cao, K.; Rossouw, D.; Robert-Granié, C. & Besse, P. A sparse PLS for variable selection
when integrating omics data Statistical applications in genetics and molecular biology, 2008,
7.

• Liland, K.; Høy, M.; Martens, H. & Sæbø, S. Distribution based truncation for variable selec-
tion in subspace methods for multivariate regression Chemometrics and Intelligent Laboratory
Systems, 2013, 122, 103-111.

• Karaman, I.; Nørskov, N.; Yde, C.; Hedemann, M.; Knudsen, K. & Kohler, A. Sparse multi-
block PLSR for biomarker discovery when integrating data from LC–MS and NMR metabolomics
Metabolomics, 2015, 11, 367-379.

See Also

Overviews of available methods, multiblock, and methods organised by main structure: basic,
unsupervised, asca, supervised and complex.

Examples

data(potato)

Truncation MB-PLS
Loading weights inside 60% confidence intervals around the median are set to 0.
tmb <- smbpls(Sensory ~ Chemical+Compression, data=potato, ncomp = 5,

truncation = "Lenth", trunc.width = 0.6)

Alternative XY-interface
tmb.XY <- smbpls(X=potato[c('Chemical','Compression')], Y=potato[['Sensory']], ncomp = 5,

truncation = "Lenth", trunc.width = 0.6)
identical(tmb, tmb.XY)
scoreplot(tmb, labels="names") # Exploiting mvr object structure from pls package
loadingweightplot(tmb, labels="names")

Soft-Threshold / Sparse MB-PLS
Loading weights are subtracted by 60% of maximum value.
smb <- smbpls(X=potato[c('Chemical','Compression')], Y=potato[['Sensory']],

ncomp = 5, shrink = 0.6)
print(smb)
scoreplot(smb, labels="names") # Exploiting mvr object structure from pls package
loadingweightplot(smb, labels="names")

Emphasis may be different for blocks
smb <- smbpls(X=potato[c('Chemical','Compression')], Y=potato[['Sensory']],

ncomp = 5, shrink = 0.6, blockScale = c(1, 10))

sopls Sequential and Orthogonalized PLS (SO-PLS)

Description

Function for computing standard SO-PLS based on the interface of the pls package.

sopls 59

Usage

sopls(
formula,
ncomp,
max_comps = min(sum(ncomp), 20),
data,
subset,
na.action,
scale = FALSE,
validation = c("none", "CV", "LOO"),
sequential = FALSE,
segments = 10,
sel.comp = "opt",
progress = TRUE,
...

)

Arguments

formula Model formula accepting a single response (block) and predictor block names
separated by + signs.

ncomp Numeric vector of components per block or scalar of overall maximum compo-
nents.

max_comps Maximum total number of components from all blocks combined (<= sum(ncomp)).

data The data set to analyse.

subset Expression for subsetting the data before modelling.

na.action How to handle NAs (no action implemented).

scale Logical indicating if variables should be scaled.

validation Optional cross-validation strategy "CV" or "LOO".

sequential Logical indicating if optimal components are chosen sequentially or globally
(default=FALSE).

segments Optional number of segments or list of segments for cross-validation. (See
[pls::cvsegments()]).

sel.comp Character indicating if sequential optimal number of components should be cho-
sen as minimum RMSECV (’opt’, default) or by Chi-square test (’chi’).

progress Logical indicating if a progress bar should be displayed while cross-validating.

... Additional arguments to underlying methods.

Details

SO-PLS is a method which handles two or more input blocks by sequentially performing PLS on
blocks against a response and orthogonalising the remaining blocks on the extracted components.
Component number optimisation can either be done globally (best combination across blocks) or
sequentially (determine for one block, move to next, etc.).

60 sopls_plots

Value

An sopls, mvr object with scores, loadings, etc. associated with printing (sopls_results) and
plotting methods (sopls_plots).

References

Jørgensen K, Mevik BH, Næs T. Combining designed experiments with several blocks of spectro-
scopic data. Chemometr Intell Lab Syst. 2007;88(2): 154–166.

See Also

SO-PLS result functions, sopls_results, SO-PLS plotting functions, sopls_plots, SO-PLS Måge
plot, maage, and SO-PLS path-modelling, SO_TDI. Overviews of available methods, multiblock,
and methods organised by main structure: basic, unsupervised, asca, supervised and complex.

Examples

data(potato)
so <- sopls(Sensory ~ Chemical + Compression, data=potato, ncomp=c(10,10),

max_comps=10, validation="CV", segments=10)
summary(so)

Scatter plot matrix with two first components from Chemical block
and 1 component from the Compression block.
scoreplot(so, comps=list(1:2,1), ncomp=2, block=2)

Result functions and more plots for SO-PLS
are found in ?sopls_results and ?sopls_plots.

sopls_plots Scores, loadings and plots for sopls objects

Description

Extraction of scores and loadings and adaptation of scoreplot, loadingplot and biplot from
package pls for sopls objects.

Usage

S3 method for class 'sopls'
loadings(object, ncomp = "all", block = 1, y = FALSE, ...)

S3 method for class 'sopls'
scores(object, ncomp = "all", block = 1, y = FALSE, ...)

S3 method for class 'sopls'
scoreplot(
object,

sopls_plots 61

comps = 1:2,
ncomp = NULL,
block = 1,
labels,
identify = FALSE,
type = "p",
xlab,
ylab,
...

)

S3 method for class 'sopls'
loadingplot(
object,
comps = 1:2,
ncomp = NULL,
block = 1,
scatter = TRUE,
labels,
identify = FALSE,
type,
lty,
lwd = NULL,
pch,
cex = NULL,
col,
legendpos,
xlab,
ylab,
pretty.xlabels = TRUE,
xlim,
...

)

S3 method for class 'sopls'
corrplot(
object,
comps = 1:2,
ncomp = NULL,
block = 1,
labels = TRUE,
col = 1:5,
plotx = TRUE,
ploty = TRUE,
...

)

S3 method for class 'sopls'

62 sopls_plots

biplot(
x,
comps = 1:2,
ncomp = "all",
block = 1,
which = c("x", "y", "scores", "loadings"),
var.axes = FALSE,
xlabs,
ylabs,
main,
...

)

Arguments

object sopls object

ncomp integer vector giving components from all blocks before block (see next ar-
gument).

block integer indicating which block to extract components from.

y logical extract Y loadings/scores instead of X loadings/scores (default = FALSE).

... further arguments sent to the underlying plot function(s)

comps integer vector giving components, within block, to plot (see Details regarding
combination of blocks).

labels character indicating if "names" or "numbers" should be plot symbols (op-
tional).

identify logical for activating identify to interactively identify points.

type character for selecting type of plot to make. Defaults to "p" (points) for scatter
plots and "l" (lines) for line plots.

xlab character text for x labels.

ylab character text for y labels.

scatter logical indicating if a scatterplot of loadings should be made (default = TRUE).

lty Vector of line type specifications (see par for details).

lwd numeric vector of line width specifications.

pch Vector of point specifications (see points for details).

cex numeric vector of plot size expansions (see par for details).

col integer vector of symbol/line colours (see par for details).

legendpos character indicating legend position (if scatter is FALSE), e.g. legendpos
= "topright".

pretty.xlabels logical indicating if xlabels should be more nicely plotted (default = TRUE).

xlim numeric vector of length two, with the x limits of the plot (optional).

plotx locical or integer/character. Whether to plot the X correlation loadings,
optionally which block(s). Defaults to TRUE.

sopls_plots 63

ploty logical. Whether to plot the Y correlation loadings. Defaults to TRUE.

x sopls object

which character for selecting type of biplot ("x" = default, "y", "scores", "loadings").

var.axes logical indicating if second axes of a biplot should have arrows.

xlabs character vector for labelling first set of biplot points (optional).

ylabs character vector for labelling second set of biplot points (optional).

main character for setting the main title of a plot.

Details

If comps is supplied as a list for scoreplot, it is assumed that its elements refer to each of the
blocks up to block number block. For instance comps = list(1, 0, 1:2) will select 1 component
from the first block, no components from the second block and the first two components from the
last block. This must be matched by ncomp, specifying how many components were selected before
block number block.

See Also

Overviews of available methods, multiblock, and methods organised by main structure: basic,
unsupervised, asca, supervised and complex. Common functions for computation and extrac-
tion of results are found in sopls_results.

#’ @return The score and loading functions return scores and loadings, while plot functions have
no return (except use of ’identify’).

Examples

data(potato)
so <- sopls(Sensory ~ Chemical + Compression + NIRraw, data=potato, ncomp=c(5,5,5))

Loadings
loadings(so, ncomp=c(3), block=2)[, 1:3]

Scores
scores(so, block=1)[, 1:4]

Default plot from first block
scoreplot(so)

Second block with names
scoreplot(so, ncomp=c(3), block=2, labels="names")

Scatterplot matrix
scoreplot(so, ncomp=c(3,2), block=3, comps=1:3)

Combination of blocks (see Details)
scoreplot(so, ncomp=c(3,2), block=3, comps=list(1,0,1))

Default plot from first block
loadingplot(so, scatter=TRUE)

64 sopls_results

Second block with names
loadingplot(so, ncomp=c(3), block=2, labels="names", scatter=TRUE)

Scatterplot matrix
loadingplot(so, ncomp=c(3,2), block=3, comps=1:3, scatter=TRUE)

Correlation loadings
corrplot(so, block=2, ncomp=1)

Default plot from first block
biplot(so)

sopls_results Result functions for SO-PLS models

Description

Standard result functions for SO-PLS (sopls).

Usage

S3 method for class 'sopls'
predict(
object,
newdata,
ncomp = object$ncomp,
type = c("response", "scores"),
na.action = na.pass,
...

)

S3 method for class 'sopls'
coef(object, ncomp = object$ncomp, intercept = FALSE, ...)

S3 method for class 'sopls'
print(x, ...)

S3 method for class 'sopls'
summary(
object,
what = c("all", "validation", "training"),
digits = 4,
print.gap = 2,
...

)

classify(object, ...)

sopls_results 65

S3 method for class 'sopls'
classify(object, classes, newdata, ncomp, LQ = "LDA", ...)

S3 method for class 'sopls'
R2(object, estimate, newdata, ncomp = "all", individual = FALSE, ...)

S3 method for class 'sopls'
RMSEP(object, estimate, newdata, ncomp = "all", individual = FALSE, ...)

pcp(object, ...)

S3 method for class 'sopls'
pcp(object, ncomp, ...)

Default S3 method:
pcp(object, X, ...)

cvanova(pred, ...)

Default S3 method:
cvanova(pred, true, absRes = TRUE, ...)

S3 method for class 'sopls'
cvanova(pred, comps, absRes = TRUE, ...)

S3 method for class 'cvanova'
print(x, ...)

S3 method for class 'cvanova'
summary(object, ...)

S3 method for class 'cvanova'
plot(x, ...)

S3 method for class 'sopls'
residuals(object, ...)

Arguments

object A sopls object.

newdata Optional new data with the same types of predictor blocks as the ones used for
fitting the object.

ncomp An integer vector giving the exact components to apply.

type A character for predict indicating if responses or scores should be predicted
(default = "response", or "scores"), for summary indicating which type of ex-
plained variance to compute (default = "train", alternative = "CV").

na.action Function determining what to do with missing values in newdata.

66 sopls_results

... Additional arguments. Currently not implemented.

intercept A logical indicating if coefficients for the intercept should be included (default
= FALSE).

x A sopls object.

what A character indicating if summary should include all, validation or training.

digits The number of digits used for printing.

print.gap Gap between columns when printing.

classes A character vector of class labels.

LQ A character indicating if ’max’ (maximum score value), ’lda’ or ’qda’ should
be used when classifying.

estimate A character indicating if ’train’, ’CV’ or ’test’ results should be displayed.

individual A logical indicating if results for individual responses should be displayed.

X A list of data blocks.

pred An object holding the CV-predicted values (sopls, matrix or list of vectors)

true A numeric of true response values for CVANOVA.

absRes A logical indicating if absolute (TRUE) or squared (FALSE) residuals should
be computed.

comps An integer vector giving the exact components to apply.

Details

The parameter ncomp controls which components to apply/extract, resulting in the sequence of com-
ponents leading up to the specific choice, i.e. ncomp = c(2,2,1) results in the sequence 1,0,0; 2,0,0;
2,1,0; 2,2,0; 2,2,1. Usage of the functions are shown using generics in the examples below. Predic-
tion, regression coefficients, object printing and summary are available through: predict.sopls,
coef.sopls, print.sopls and summary.sopls. Explained variances and RMSEP are available
through R2.sopls and RMSEP.sopls. Principal components of predictions are available through
pcp.sopls. Finally, there is work in progress on classifcation support through classify.sopls.

Value

Returns depend on method used, e.g. predict.sopls returns predicted responses or scores de-
pending on inputs, coef.sopls return regression coefficients, while print and summary methods
return the object invisibly.

References

Jørgensen K, Mevik BH, Næs T. Combining designed experiments with several blocks of spectro-
scopic data. Chemometr Intell Lab Syst. 2007;88(2): 154–166.

See Also

Overviews of available methods, multiblock, and methods organised by main structure: basic,
unsupervised, asca, supervised and complex. Common functions for plotting are found in
sopls_plots.

SO_TDI 67

Examples

data(potato)
mod <- sopls(Sensory[,1] ~ ., data = potato[c(1:3,9)], ncomp = 5, subset = 1:20)
testset <- potato[-(1:20),]; testset$Sensory <- testset$Sensory[,1,drop=FALSE]
predict(mod, testset, ncomp=c(2,1,2))
dim(coef(mod, ncomp=c(3,0,1))) # <variables x responses x components>
R2(mod, ncomp = c(4,1,2))
print(mod)
summary(mod)

PCP from sopls object
modMulti <- sopls(Sensory ~ ., data = potato[c(1:3,9)], ncomp = 5, validation = "CV", segment = 5)
(PCP <- pcp(modMulti, c(2,1,2)))
scoreplot(PCP)

PCP from matrices
preds <- modMulti$validation$Ypred[,,"2,1,2"]
PCP_default <- pcp(preds, potato[1:3])

CVANOVA
modCV <- sopls(Sensory[,1] ~ ., data = potato[c(1:3,9)], ncomp = 5, validation = "CV", segment = 5)
summary(cva <- cvanova(modCV, "2,1,2"))
plot(cva)

SO_TDI Total, direct, indirect and additional effects in SO-PLS-PM.

Description

SO-PLS-PM is the use of SO-PLS for path-modelling. This particular function is used to compute
effects (explained variances) in sub-paths of the directed acyclic graph.

Usage

sopls_pm(
X,
Y,
ncomp,
max_comps = min(sum(ncomp), 20),
sel.comp = "opt",
computeAdditional = FALSE,
sequential = FALSE,
B = NULL,
k = 10,
type = "consecutive",
simultaneous = TRUE

)

68 SO_TDI

S3 method for class 'SO_TDI'
print(x, showComp = TRUE, heading = "SO-PLS path effects", digits = 2, ...)

sopls_pm_multiple(
X,
ncomp,
max_comps = min(sum(ncomp), 20),
sel.comp = "opt",
computeAdditional = FALSE,
sequential = FALSE,
B = NULL,
k = 10,
type = "consecutive"

)

S3 method for class 'SO_TDI_multiple'
print(x, heading = "SO-PLS path effects", digits = 2, ...)

Arguments

X A list of input blocks (of type matrix).

Y A matrix of response(s).

ncomp An integer vector giving the number of components per block or a single inte-
ger for common number of components.

max_comps Maximum total number of components.

sel.comp A character or integer vector indicating the type ("opt" - minimum error /
"chi" - chi-squared reduced) or exact number of components in selections.

computeAdditional

A logical indicating if additional components should be computed.

sequential A logical indicating if sequential component optimization should be applied.

B An integer giving the number of bootstrap replicates for variation estimation.

k An integer indicating number of cross-validation segments (default = 10).

type A character for selecting type of cross-validation segments (default = "con-
secutive").

simultaneous logical indicating if simultaneous orthogonalisation on intermediate blocks
should be performed (default = TRUE).

x An object of type SO_TDI.

showComp A logical indicating if components should be shown in print (default = TRUE).

heading A character giving the heading of the print.

digits An integer for selecting number of digits in print.

... Not implemented

SO_TDI 69

Details

sopls_pm computes ’total’, ’direct’, ’indirect’ and ’additional’ effects for the ’first’ versus the ’last’
input block by cross-validated explained variances. ’total’ is the explained variance when doing
regression of ’first’ -> ’last’. ’indirect’ is the the same, but controlled for the intermediate blocks.
’direct’ is the left-over part of the ’total’ explained variance when subtracting the ’indirect’. Finally,
’additional’ is the added explained variance of ’last’ for each block following ’first’.

sopls_pm_multiple is a wrapper for sopls_pm that repeats the calculation for all pairs of blocks
from ’first’ to ’last’. Where sopls_pm has a separate response, Y, signifying the ’last’ block,
sopls_pm_multiple has multiple ’last’ blocks, depending on sub-path, thus collects the response(s)
from the list of blocks X.

When sel.comp = "opt", the number of components for all models are optimized using cross-
validation within the ncomp and max_comps supplied. If sel.comp is "chi", an optimization is also
performed, but parsimonious solutions are sought through a chi-square chriterion. When setting
sel.comp to a numeric vector, exact selection of number of components is performed.

When setting B to a number, e.g. 200, the procedures above are repeated B times using bootstrap-
ping to estimate standard deviations of the cross-validated explained variances.

Value

An object of type SO_TDI containing total, direct and indirect effects, plus possibly additional effects
and standard deviations (estimated by bootstrapping).

References

• Menichelli, E., Almøy, T., Tomic, O., Olsen, N. V., & Næs, T. (2014). SO-PLS as an ex-
ploratory tool for path modelling. Food quality and preference, 36, 122-134.

• Næs, T., Romano, R., Tomic, O., Måge, I., Smilde, A., & Liland, K. H. (2020). Sequential
and orthogonalized PLS (SO-PLS) regression for path analysis: Order of blocks and relations
between effects. Journal of Chemometrics, e3243.

See Also

Overviews of available methods, multiblock, and methods organised by main structure: basic,
unsupervised, asca, supervised and complex.

Examples

Single path for the potato data:
data(potato)
pot.pm <- sopls_pm(potato[1:3], potato[['Sensory']], c(5,5,5), computeAdditional=TRUE)
pot.pm

Corresponding SO-PLS model:
so <- sopls(Sensory ~ ., data=potato[c(1,2,3,9)], ncomp=c(5,5,5), validation="CV", segments=10)
maageSeq(pot.so, compSeq = c(3,2,4))

All path in the forward direction for the wine data:
data(wine)
pot.pm.multiple <- sopls_pm_multiple(wine, ncomp = c(4,2,9,8))

70 statis

pot.pm.multiple

statis Structuration des Tableaux à Trois Indices de la Statistique - STATIS

Description

This is a wrapper for the ade4::statis function for computing STATIS.

Usage

statis(X, ncomp = 3, scannf = FALSE, tol = 1e-07, ...)

Arguments

X list of input blocks.

ncomp integer number of components to extract.

scannf logical indicating if eigenvalue bar plot shoulde be displayed.

tol numeric eigenvalue threshold tolerance.

... additional arguments (not used).

Details

STATIS is a method, related to MFA, for analysing two or more blocks. It also decomposes the data
into a low-dimensional subspace but uses a different scaling of the individual blocks.

Value

multiblock object including relevant scores and loadings. Relevant plotting functions: multiblock_plots
and result functions: multiblock_results.

References

Lavit, C.; Escoufier, Y.; Sabatier, R.; Traissac, P. (1994). The ACT (STATIS method). Computa-
tional Statistics & Data Analysis. 18: 97

See Also

Overviews of available methods, multiblock, and methods organised by main structure: basic,
unsupervised, asca, supervised and complex. Common functions for computation and extrac-
tion of results and plotting are found in multiblock_results and multiblock_plots, respec-
tively.

supervised 71

Examples

data(candies)
candyList <- lapply(1:nlevels(candies$candy),function(x)candies$assessment[candies$candy==x,])
can.statis <- statis(candyList)
plot(scores(can.statis), labels="names")

supervised Supervised Multiblock Methods

Description

Collection of supervised multiblock methods:

• MB-PLS - Multiblock Partial Least Squares (mbpls)

• sMB-PLS - Sparse Multiblock Partial Least Squares (smbpls)

• SO-PLS - Sequential and Orthogonalized PLS (sopls)

• PO-PLS - Parallel and Orthogonalized PLS (popls)

• ROSA - Response Oriented Sequential Alternation (rosa)

• mbRDA - Multiblock Redundancy Analysis (mbrda)

See Also

Overviews of available methods, multiblock, and methods organised by main structure: basic,
unsupervised, asca, supervised and complex. Common functions for computation and extrac-
tion of results and plotting are found in multiblock_results and multiblock_plots, respec-
tively.

Examples

data(potato)
mb <- mbpls(Sensory ~ Chemical + Compression, data=potato, ncomp = 5)
print(mb)

Convert data.frame with AsIs objects to list of matrices
potatoList <- lapply(potato, unclass)
mbr <- mbrda(Sensory ~ Chemical + Compression, data=potatoList, ncomp = 10)
print(mbr)
scoreplot(mbr, labels="names")

72 unsupervised

unique_combos Unique combinations of blocks

Description

Compute a list of all possible block combinations where the number of blocks in each combination
is limited by parameters min_level and max_level.

Usage

unique_combos(n_block, max_level, min_level = 2)

Arguments

n_block integer number of input blocks.

max_level integer maximum number of blocks per combination.

min_level integer minimum number of blocks per combination.

Details

This function is used for minimal redundancy implementations of rosa and sopls and for lookups
into computed components.

Value

A list of unique block combinations.

Examples

unique_combos(3, 2)

unsupervised Unsupervised Multiblock Methods

Description

Collection of unsupervised multiblock methods:

• SCA - Simultaneous Component Analysis (sca)

• GCA - Generalized Canonical Analysis (gca)

• GPA - Generalized Procrustes Analysis (gpa)

• MFA - Multiple Factor Analysis (mfa)

• PCA-GCA (pcagca)

wine 73

• DISCO - Distinctive and Common Components with SCA (disco)

• HPCA - Hierarchical Principal component analysis (hpca)

• MCOA - Multiple Co-Inertia Analysis (mcoa)

• JIVE - Joint and Individual Variation Explained (jive)

• STATIS - Structuration des Tableaux à Trois Indices de la Statistique (statis)

• HOGSVD - Higher Order Generalized SVD (hogsvd)

Details

Original documentation of STATIS: statis. JIVE, STATIS and HOGSVD assume variable linked
matrices/data.frames, while SCA handles both links.

See Also

Overviews of available methods, multiblock, and methods organised by main structure: basic,
unsupervised, asca, supervised and complex. Common functions for computation and extrac-
tion of results and plotting are found in multiblock_results and multiblock_plots, respec-
tively.

Examples

Object linked data
data(potato)
potList <- as.list(potato[c(1,2,9)])
pot.sca <- sca(potList)

Variable linked data
data(candies)
candyList <- lapply(1:nlevels(candies$candy),function(x)candies$assessment[candies$candy==x,])
can.statis <- statis(candyList)
plot(can.statis$statis)

wine Wines of Val de Loire

Description

This dataset contains sensory assessment of 21 wines. The assessments are grouped according to the
tasting process and thus have a natural ordering with a all blocks pointing forward to all remaining
blocks in the process.

74 wine

Usage

data(wine)

Format

A data.frame having 21 rows and 5 variables:

Smell at rest Matrix of sensory assessments

View Matrix of sensory assessments

Smell after shaking Matrix of sensory assessments

Tasting Matrix of sensory assessments

Global quality Matrix of sensory assessments

References

Escofier B, Pages L. Analyses Factorielles Simples and Multiples. Paris: Dunod; 1988.

Index

∗ multivariate
mvrVal, 36

∗ regression
mvrVal, 36

asca, 3, 5–7, 12–18, 20, 21, 23, 25, 26, 28, 29,
31, 35, 36, 40, 41, 43, 47, 49, 51, 53,
54, 58, 60, 63, 66, 69–71, 73

barplot.rosa (rosa_plots), 49
basic, 3, 3, 5–7, 12–18, 20, 21, 23, 25, 26, 28,

29, 31, 35, 36, 40, 41, 43, 47, 49, 51,
53, 54, 58, 60, 63, 66, 69–71, 73

biplot.multiblock (multiblock_plots), 32
biplot.sopls (sopls_plots), 60
block.data.frame, 4
block.preprocess (preprocess), 46
blockexpl (rosa_results), 51

candies, 4
cca, 3, 5
classify (sopls_results), 64
coef.rosa (rosa_results), 51
coef.sopls (sopls_results), 64
complex, 3, 5, 6, 6, 7, 12–18, 20, 21, 23, 25,

26, 28, 29, 31, 35, 36, 40, 41, 43, 47,
49, 51, 53, 54, 58, 60, 63, 66, 69–71,
73

compnames, 6
corrplot (multiblock_plots), 32
corrplot.sopls (sopls_plots), 60
cvanova (sopls_results), 64

data.frame, 11
disco, 7, 73
DISCOsca, 8
dummycode, 9

explvar, 10
extended.model.frame, 10

gca, 11, 42, 72
gpa, 12, 72
gsvd, 3, 13

hogsvd, 14, 73
hpca, 15, 73

ifa, 3, 16
image.rosa (rosa_plots), 49

jive, 17, 73

loadingplot.multiblock
(multiblock_plots), 32

loadingplot.sopls (sopls_plots), 60
loadings.multiblock

(multiblock_results), 35
loadings.rosa (rosa_results), 51
loadings.sopls (sopls_plots), 60
loadingweightplot (multiblock_plots), 32
lpls, 6, 18, 20, 21
lpls_results, 20, 21
lplsCV (lpls_results), 21
lplsData, 20

maage, 23, 60
maageSeq (maage), 23
mbpls, 25, 39, 45, 56, 71
mbrda, 27, 71
mcoa, 28, 73
mcolors, 29
mfa, 30, 72
mobile, 31
model.frame, 10, 11
MSEP.mbpls (mvrVal), 36
multiblock, 3, 5–7, 12–18, 20, 21, 23, 25, 26,

28, 29, 31, 35, 36, 40, 41, 43, 47, 49,
51, 53, 54, 58, 60, 63, 66, 69–71, 73

multiblock_plots, 5, 7, 12–17, 20, 26,
28–31, 32, 36, 40, 41, 43, 47, 54, 57,
70, 71, 73

75

76 INDEX

multiblock_results, 5, 7, 12–17, 20, 26,
28–31, 35, 35, 40, 41, 43, 47, 54, 57,
70, 71, 73

mvr, 45
mvrVal, 36
mvrValstats.mbpls (mvrVal), 36

na.omit, 45

par, 34, 62
pca, 3, 39
pcagca, 40, 72
pcp (sopls_results), 64
pcr, 3
plot.cvanova (sopls_results), 64
plot.lpls (lpls_results), 21
plsr, 3, 26
points, 34, 62
popls, 42, 71
potato, 43
predict.lpls (lpls_results), 21
predict.mbpls, 44
predict.rosa (rosa_results), 51
predict.sopls (sopls_results), 64
preprocess, 46
print.cvanova (sopls_results), 64
print.multiblock (multiblock_results),

35
print.rosa (rosa_results), 51
print.rosaexpl (rosa_results), 51
print.SO_TDI (SO_TDI), 67
print.SO_TDI_multiple (SO_TDI), 67
print.sopls (sopls_results), 64

R2.mbpls (mvrVal), 36
R2.sopls (sopls_results), 64
residuals.sopls (sopls_results), 64
RMSEP.mbpls (mvrVal), 36
RMSEP.sopls (sopls_results), 64
rosa, 47, 49, 51, 71, 72
rosa.classify (rosa_results), 51
rosa_plots, 49, 49, 53
rosa_results, 49, 51, 51, 53

sca, 54, 72
scoreplot.multiblock

(multiblock_plots), 32
scoreplot.sopls (sopls_plots), 60
scores.multiblock (multiblock_results),

35

scores.rosa (rosa_results), 51
scores.sopls (sopls_plots), 60
simulated, 55
smbpls, 56, 71
SO_TDI, 60, 67
sopls, 23, 58, 64, 71, 72
sopls_plots, 60, 60, 66
sopls_pm, 6
sopls_pm (SO_TDI), 67
sopls_pm_multiple (SO_TDI), 67
sopls_results, 60, 63, 64
statis, 70, 73
summary.cvanova (sopls_results), 64
summary.multiblock

(multiblock_results), 35
summary.rosa (rosa_results), 51
summary.sopls (sopls_results), 64
supervised, 3, 5–7, 12–18, 20, 21, 23, 25, 26,

28, 29, 31, 35, 36, 40, 41, 43, 47, 49,
51, 53, 54, 58, 60, 63, 66, 69–71, 71,
73

unique_combos, 72
unsupervised, 3, 5–7, 12–18, 20, 21, 23, 25,

26, 28, 29, 31, 35, 36, 40, 41, 43, 47,
49, 51, 53, 54, 58, 60, 63, 66, 69–71,
72, 73

wine, 73

	basic
	block.data.frame
	candies
	cca
	complex
	compnames
	disco
	DISCOsca
	dummycode
	explvar
	extended.model.frame
	gca
	gpa
	gsvd
	hogsvd
	hpca
	ifa
	jive
	lpls
	lplsData
	lpls_results
	maage
	mbpls
	mbrda
	mcoa
	mcolors
	mfa
	mobile
	multiblock_plots
	multiblock_results
	mvrVal
	pca
	pcagca
	popls
	potato
	predict.mbpls
	preprocess
	rosa
	rosa_plots
	rosa_results
	sca
	simulated
	smbpls
	sopls
	sopls_plots
	sopls_results
	SO_TDI
	statis
	supervised
	unique_combos
	unsupervised
	wine
	Index

